新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]人工智能发展与应用综述
人工智能发展与应用综述摘要自人工智能的概念在1956年被提出以来,研发者们就不断研究,六十多年的发展,在理论研究以及应用领域都已取得了喜人的成果,人工智能在医疗,交通,教育,商业,信息安全等领域已经深入国民生活。本文对人工智能概念进行解读,并对人工智能发展与应用进行综述,探索人工智能发展轨迹,以更好认识人工智能,对行业技术与发展有更深刻的理解。
关键词:人工智能发展应用综述总结1、引言人工智能的概念越来越深刻影响着人类的生活,如同蒸汽时代的蒸汽机,电气时代的发电机,信息时代的计算机,人工智能已经成为推动人类进入智能时代的决定性力量。当然,人工智能并不是凭空产生的,其发展具有一定的过程,在无数科学研究者,学者的辛勤努力下,人工智能研究的研究体系已经初见成果。人工智能的概念产生于欧美、日本等国家,并迅速风靡全球,可喜的是,根据清华大学发布的《人工智能发展研究报告2018》统计,我国已经成为全球人工智能投资融资规模最大的国家,我国人工智能在人脸识别,语音识别,安防监控,智能音箱,智能家居等人工智能应用领域处于国际前列。根据2017年,爱思唯尔文献数据库[1]统计结果,我国在人工智能领域发表的论文数量已居世界第一。当然,作为一项新兴事物,人工智能并非完美无缺,在许多方面仍然有较多的困难尚未攻克,本文对人工智能发展与应用进行综述[2、3],指导正确看待这一新兴事物,更好指导未来的技术发展。
2、人工智能以及核心概念由于“智能”这一概念难以确切定义,图灵用:“机器能够思考吗?”这一问题代替。图灵提出通过对机器进行“图灵测试”,以判断它是否具有智能。“图灵测试”就是让机器当做人,与人进行对话,如果有30%的测试人相信此机器是人类,那么这台机器被认为具有智能。美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样的定义:人工智能是关于知识的学科,是怎样表示知识以及怎样获得知识并使用知识的科学。从实用观点来看,人工智能是一本知识工程学:以知识为对象,研究知识的获取,知识的表示方法和知识的使用。目前学术界将人工智能分为强人工智能和弱人工智能,强人工智能就是机器具有自我意识,要求机器有知觉有意识。弱人工智能是指没有知觉意识的智能,机器按照事先写好的程序进行工作,并不拥有智能。
(1)、机器学习机器学习[4]是人工智能的核心技术,是使机器拥有智能的主要途径,是指让机器模拟人的学习能力,以此来增强机器的性能。早在上个世纪图灵就给出了类似机器学习的想法,他设想让机器模仿儿童思维,使其接受正确的教育成长为一个成人的大脑。这种想法与当今学者研究的方向不谋而合。后来图灵与同事一起编写了程序去实践这种想法,机器能够做他们编写过的事情,除此之外,不会向人类一样在能力方面有更多的延伸。如何让机器自主的学习,在今天仍然是人工智能发展的难题。
(2)、人工神经网络是受人脑神经元的启发,试图设计与人脑结构类似的网络结构,模拟大脑处理信息的的过程,以提高运算速度。作为人工神经网络的一类,卷积神经网络已经广泛用于大型图像处理中。虽然人工神经网络无法与人类大脑媲美,在模式识别,医疗,智能机器人等领域取得的成果有目共睹。
(3)、专家系统是指依靠人类专家已有的知识建立的知识系统,是一种特定领域内大量知识与经验的程序系统。它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以甚至超过人类专家的水平。目前专家系统开发最早应用最广泛的领域,多是医疗诊断,地质勘探,文化教育等领域。
3.发展历程回顾人工智能的发展可以有以下四个时期:孕育,形成,知识运用,综合集成四个阶段。孕育期:一般认为人工智能的最早工作是Warre基本出发点。Mcculloch跟WalterPitts完成的。他们提出一套人工神经元模型,两名普林顿大学数学系的研究生在1951年建造了第一台神经元网络计算机。不少早期工作可以被当做人工智能,古希腊的亚里士多德创立的演绎法,三段论的至今仍然是演绎推理的基本出发点。形成期:人工智能诞生于1956年的一次历史性聚会。几位来自美国的数学,神经学,心理学,信息科学和计算机科学的杰出科学家齐聚一堂,由麦卡锡提出了“人工智能(AI)”这一概念。会议过后,各地的科学家、学者纷纷研究相关知识,“人工智能”这一学科以及相关研究如雨后春笋一般形成。1969年的国际人工智能联合会议标志着人工智能得到国际的认可。知识应用期:1977年费根鲍姆在第五届国际人工智能大会上提出了知识工程的概念。从此之后,各类专家系统得以发展,大量的商品化专家系统和智能系统纷纷推出。专家系统的发展,也是得人工智能的发展范围扩大到了人类各个领域,并产生了巨大的经济效益。但是专家系统发展过程中也存在很多缺陷,应用领域窄,缺乏常识性知识,知识获取困难,不能访问现存的数据库等问题被逐渐暴露出来,人工智能面临着考验。综合形成期,在专家系统方面,从20世纪80年代末开始逐步向多技术,多方法的综合集成与多领域的综合应用型发展。大型专家系统开始采用了人工智能的多种语言,多种知识表示方法,多种推理机制和多种在控制策略相结合的方式,人工智能的发展进入综合形成期。目前,人工智能技术正在向大型分布式人工智能,大型分布式多专家协同系统,并行推理,多种专家系统开发工具,大型分布式人工开发环境和分布式环境下的多智能协同系统等方向发展。但是从目前来看,无论是人工智能理论还是实践都不够成熟,人工智能研究仍然需要科研工作者长期摸索。
4、人工智能的应用(1)、虚拟各人助理目前市面上的人工智能助理如:Siri,小娜等。个人助理能够帮助用户完成多项任务,多项服务,其推动力是人工智能技术。现阶段的人工助理一般具有基于上下文的对话能力,可以实现简单的人机对话,回答一些简单的问题。个人助理的应用包括语音识别,图像识别,深度学习等技术,其工作原理是“语音识别+云计算服务”。
(2)、自动驾驶谷歌公司一直致力于自动驾驶汽车的研究,2012年4月。谷歌公司宣布自动驾驶汽车已经行驶20万公里,这一数据已经接近汽车的最大里程数。我国自动驾驶技术的研究同样取得振奋人心的成果。2017年由海梁科技与深圳巴士集团等联合打造的自动驾驶客运巴士,正式进行线路的信息采集和试运行。
(3)、智慧医疗医疗一直是关系到国际民生的重要范畴。随着专家系统的不断发展完善,已有实例表明,人工智能可参与到医疗建设中。Watson[5]是IBM公司研发的采用认知计算系统的人工智能平台,watson肿瘤系统是其产品之一,可以作为辅助诊疗手段,与医院数据对接,实现病例数据的信息共享,还可以为临床医生在诊断过程中推荐诊疗方案,苏北人民医院2017年正式引入此系统,开启了智慧医疗的新时代。
5、我国人工智能发展趋势与展望人工智能技术发展至今60多年,其概念已经逐渐清晰,在生物,医疗,交通等领域孕育出了突破性的成果,但是人工智能技术能否发展到人类的水平仍然不能给出确切的答案。目前人工智能面临的问题主要是:
(1)、体系结构受限受限于冯诺依曼体系结构,目前人工智能系统在感知,认识方面无法突破瓶颈。这主要是由于传统的冯诺依曼体系结构采用的是存储程序的方法,程序是事先设定的,无法随着外界的改变而改变,这也是限制人工智能发展的关键。不过,我们有理由相信,在不久的未来能够克服这种制约。
(2)、社会问题困扰如果人工智能真的发展到与人类智慧媲美的程度,又会引发一系列的问题。一方面心理学上,“恐怖谷”理论就是假如机器人接近人类的时候,我们会对其产生莫名的厌恶和惧怕。另一方面,人工智能带来的社会问题同样困扰着人类,以自动驾驶汽车为例,3-18美国自动驾驶车辆车祸致人死亡的事件给自动驾驶技术的发展带来不小的冲击,事故责任的划分成为一大难题。目前人工智能的发展,主要是在弱人工智能发展并取得显著的成果,在强人工智能的研究上仍在开展,存在很多问题,有很大的发展空间,从目前的一些前瞻性研究可以看出人工智能可能会向以下几个方面发展:模糊处理,并行化,神经网络和机器情感。人工智能的下一个突破可能是赋予计算机情感能力。
参考文献
[1]中央人民政府驻香港特别行政区联络办公室副主任中国科学院院士谭铁牛.人工智能的发展趋势及对策[N].中华工商时报,2019-02-25(003).[2]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,30(02):4-7.[3]杨俊龙,柳作栋.人工智能技术发展及应用综述[J].计算机产品与流通,2018(03):132-133.[4]陈彦淇.简析人工智能的发展与应用[J].科技传播,2019(04):162-163+170.[5]曹敦煜.人工智能在心脏疾病诊疗中的应用[J].科技传播,2019(04):141-142.