加快发展新一代人工智能
理解提问,快速给出回答;训练声音,翻唱经典歌曲;根据描述,绘出趣味画作……近期,基于大模型研发的生成式人工智能,展示了在语言理解和内容生成等方面的出色能力,引发社会关注。
大模型赋能,生成式人工智能正在引发新一轮智能化浪潮。得益于拥有庞大的数据、参数以及较好的学习能力,大模型增强了人工智能的通用性。从与人顺畅聊天到写合同、剧本,从检测程序安全漏洞到辅助创作游戏甚至电影……生成式人工智能本领加速进化。随着技术迭代,更高效、更“聪明”的大模型将渗透到越来越多的领域,有望成为人工智能技术及应用的新基座,变成人们生产生活的基础性工具,进而带来经济社会发展和产业的深刻变革。人工智能大模型强大的创新潜能,使其成为全球竞争的焦点之一。
经过多方努力,我国人工智能大模型已具有一定基础。在2023中关村论坛上发布的《中国人工智能大模型地图研究报告》显示,中国人工智能大模型正呈现蓬勃发展态势。据不完全统计,截至目前,10亿级参数规模以上的大模型全国已发布了79个。我国在大模型方面已建立起涵盖理论方法和软硬件技术的体系化研发能力。也应看到,人工智能大模型离不开多项技术的融合创新。在前沿基础理论和算法上,我国与国际先进水平还存在差距。筑牢智能时代的根基,需要瞄准短板,着力推动大模型领域生成式算法、框架等原创性技术突破。同时,还应发挥我国应用场景优势,进一步深耕垂直领域,以行业专有训练数据集为基础,打造金融、医疗、电力等领域的专业大模型。要以高质量应用和数据反馈技术优化,帮助大模型迭代升级。
数据质量影响大模型“智商”。国际上一些大模型之所以领先,与大量公开高质量数据的训练息息相关。我国有海量数据和丰富应用场景,应逐步开放共享优质数据,通过制定共享目录和共享规则等方式,推动数据分级分类有序开放,让流动数据激发创新活力。例如,前不久印发的《深圳市加快推动人工智能高质量发展高水平应用行动方案(2023—2024年)》提出,“建立多模态公共数据集,打造高质量中文语料数据”。期待各地各行业从实际出发,加强高质量数据供给,为大模型成长提供充足“养料”。
人工智能大模型研发周期长、投入大、风险高。经过数年持续研发,国际领先的大模型聚集了较好的资源和人才。当前,我国不少高校院所、企业正在做研发工作,在大模型、大数据、大算力等方面各有侧重,研发力量较为分散。作为追赶者,有必要进一步强化企业科技创新主体地位,整合优势创新资源,推动形成大模型产学研攻坚合力。
人工智能大模型带来的治理挑战也不容忽视。营造良好创新生态,需做好前瞻研究,建立健全保障人工智能健康发展的法律法规、制度体系、伦理道德。为促进生成式人工智能技术健康发展和规范应用,今年4月,国家互联网信息办公室发布《生成式人工智能服务管理办法(征求意见稿)》。新技术应用往往先于规范。着眼未来,在重视防范风险的同时,也应同步建立容错、纠错机制,努力实现规范与发展的动态平衡。
人工智能是新一轮科技革命和产业变革的重要驱动力量,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。从战略高度着手,凝聚合力、攻坚克难、勇于创新,努力拓展理论和技术应用空间,必能更好培育壮大新动能,构筑发展新优势。(喻思南)
人工智能识别技术你了解多少
人工智能识别技术是指通过计算机、照相机、扫描仪等设备,自动获取并识别出目标指令、数据等信息的技术手段。最早起源于声控技术(语音识别技术),声控技术曾被广泛应用于智能手机的控制和互动中,其核心是将人的语音识别出来,与手机指令集进行对比,从而控制手机。
根据识别对象是否具有生命特征,人工智能识别技术主要可分为两类:有生命识别和无生命识别。
有生命人工智能识别技术实质是指与人体生命特征存在一定关联的技术,包括语音识别、指纹识别、人脸识别、虹膜识别等。语音识别技术工作原理是基于对识别者自身发出语音的科学有效识别,正确识别出语音的内容,或者通过语音判断出说话人的身份(说活人识别);人工智能指纹识别技术在实践应用中,其工作原理是通过对人体指纹展开智能识别,最终正确判断识别出指纹所属的对应的人,从而满足实际需求;人工智能人脸识别技术是基于对人的脸部展开智能识别,对人的脸部不同结构特征进行科学合理检验,最终明确判断识别出检验者的实际身份;虹膜识别是通过虹膜的特征判断其实际身份。
无生命识别技术实质是指与人体生命特征不存在任何关联的技术,该项技术主要包括射频识别技术、智能卡技术、条形码识别技术。射频识别技术的工作核心是无线电磁波,其具体的工作原理是:无线电信号在电磁场下进行传送,完成数据和标签的识别;条形码识别技术包括一维码技术和二维码技术,二维码技术是在一维码技术基础之上发展出来的,给数据储存留下的空间更大,同时还可以纠错,在信息标示和信息采集中具有十分有效的运用;智能卡识别技术的识别对象主要是智能卡,智能卡主要是由集成电路板组成的,其工作主要是针对数据展开的运算和储存,通过将计算技术良好的融入到智能卡当中,针对数据进行的各种工作都做到了高效完成。
人工智能识别技术的应用非常广泛,而且不同种类的人工智能识别技术已经应用到了社会各领域,例如在语言翻译、面部识别等多个社会活动中都能够看到计算机人工智能的参与。除此之外,二维码识别和使用是人工智能识别技术运用的最典型的方式,它的利用主要是以二维码的形式生成程序和指令,在用户的移动终端屏幕上生成黑白格子拼接的平面图形,这些平面图形的分布通常来说具有一定的规律性,通过各种图形的排列组合,二维码图案具有唯一性,因此用户可以对二维码图案进行保存和记录。
我们相信,随着研究人员不断地对人工智能的有关技术进行优化和创新,人工智能识别技术将会更大程度地满足人们工作和生活需求。
本文由北京信息科技大学通信学院副教授李红莲进行科学性把关。
科普中国中央厨房新华网科普事业部科普中国-科学原理一点通联合出品更多精彩内容,请下载科普中国客户端。作者:尹茹 [责任编辑:魏承瑶]
人工智能的发展与未来
随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。
现如今,各种AI产品已经逐步进入了我们的生活|Pixabay
19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。
20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。
至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。
智能,是一种特殊的物质构造形式。
就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?
图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。
英国数学家,计算机学家图灵
这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。
虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。
1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。
而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。
而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。
而这之后,人工智能的发展也与图灵的想象有所不同。
现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。
但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。
人工智能让芯片的处理能力得以提升|Pixabay
从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。
虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。
参考文献
[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.
[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.
[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.
[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.
[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.
[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987
作者:张雨晨
编辑:韩越扬
[责编:赵宇豪]