博舍

人工智能 (AI) 体系结构 人工智能系统平台

人工智能 (AI) 体系结构

你当前正在访问MicrosoftAzureGlobalEdition技术文档网站。如果需要访问由世纪互联运营的MicrosoftAzure中国技术文档网站,请访问https://docs.azure.cn。

人工智能(AI)体系结构设计项目01/16/2023

人工智能(AI)是计算机模拟人类智能行为的功能。通过AI,计算机可以分析图像、理解语音、以自然方式交互,以及使用数据进行预测。

AI概念算法

算法是用于解决问题或分析一组数据的一系列计算和规则。它就像一个流程图,其中包含提出问题的分步说明,只不过是以数学和编程代码形式进行编写。算法可以描述如何确定宠物是猫、狗、鱼、鸟还是蜥蜴。另一种更复杂的算法可以描述如何识别书面或口头语言、分析其字词、将其翻译为其他语言,然后检查翻译的准确性。

机器学习

机器学习(ML)是一种AI技术,可使用数学算法来创建预测模型。该技术使用特定算法分析数据字段,并通过使用在数据中发现的模式来“学习”该数据以生成模型。然后,使用那些模型做出与新数据有关的明智预测或决策。

预测模型将根据已知数据进行验证,通过为特定业务方案选择的性能指标进行衡量,然后根据需要进行调整。此学习和验证过程被称为“训练”。通过定期重新训练,ML模型会随着时间的推移而改进。

规模化机器学习

Microsoft的机器学习产品有哪些?

深度学习

深度学习是一种ML,可以自行确定其预测是否准确。该技术也使用算法分析数据,但其操作规模比ML大。

深度学习使用的人工神经网络由多个算法层组成。每层均可查看传入数据,执行自己的专用分析,并生成其他层可以理解的输出。然后,系统会将此输出传递至下一层,在其中以不同的算法执行其自己的分析,依此类推。

每个神经网络都有许多层,而且有时使用多个神经网络,因此计算机可以通过自己的数据处理来学习。与ML相比,此技术需要更多的数据,更高的计算能力。

深度学习与机器学习

Azure上深度学习模型的分布式训练

Azure上深度学习模型的批量评分

Azure上PythonScikit-Learn和深度学习模型的训练

Azure上PythonScikit-Learn和深度学习模型的实时评分

机器人

机器人是一种可执行特定任务的自动化软件程序。你可将其视为没有身体的机器人。早期机器人相对简单,使用相对简单的算法逻辑处理重复性任务和大型任务。例如,搜索引擎使用Web爬网程序自动浏览和编录Web内容。

机器人现已变得更加复杂,不仅可使用AI和其他技术来模拟人类活动和决策,通常还可通过文本消息甚至语音直接与人类交互。例如,可以预订餐位的机器人、帮助客户服务交互的聊天机器人(或对话AI)以及将突发新闻或科学数据发布到社交媒体网站的社交机器人。

Microsoft提供了Azure机器人服务,这是专为企业级机器人开发构建的托管服务。

关于Azure机器人服务

负责任的机器人的十个准则

Azure参考体系结构:企业级对话机器人

工作负载示例:Azure上提供的用于酒店预订的对话式聊天机器人

自治系统

自治系统是不断发展的新类的一部分,突破了基本自动化的局限。自治系统不是像机器人一样,几乎没有变化或毫无变化地重复执行特定任务,而是赋予计算机智能功能,使其适应不断变化的环境,以实现预期目标。

智能建筑已采用自治系统自动控制照明、通风、空调及安全等操作。更复杂的示例是自导向机器人,可用于探测坍塌的矿井,以全面反映其内部情况,确定结构稳固的部分,分析透气性,并在没有远程端实时人工监视的情况下需要救援时检测被困矿工的生命体征。

MicrosoftAI中的自治系统和解决方案有关MicrosoftAI的常规信息

详细了解MicrosoftAI,并随时了解相关新闻:

MicrosoftAI学校

AzureAI平台页

MicrosoftAI平台页

MicrosoftAI博客

GitHub上的MicrosoftAI:示例、参考体系结构和最佳做法

Azure体系结构中心

高级体系结构类型预生成AI

预生成AI就是可供使用的现成AI模型、服务和API。这些工具可帮助你向应用、网站和流添加智能功能,而不必收集数据,然后生成、训练和发布自己的模型。

例如,预生成AI可能是预训练模型,可以按原样合并,也可以用于为进一步自定义训练提供基准。再比如基于云的API服务,你可以随意调用该服务以所需方式处理自然语言。

Azure认知服务

认知服务为开发者提供了使用预生成API和集成工具包创建应用程序的机会,这些应用程序可以听、说、看、理解,甚至可以开始推理。认知服务中的服务目录可分为五大支柱类别:视觉、语音、语言、Web搜索和决策/建议。

Azure认知服务文档

免费试用Azure认知服务

选择Microsoft认知服务技术

在Azure中选择自然语言处理技术

AIBuilder中的预生成AI模型

AIBuilder是MicrosoftPowerPlatform中的一项新功能,可提供点击式接口,即使用户没有编码或数据科学技能,也可以向应用添加AI。(AIBuilder中的一些功能尚未正式发布,仍处于预览状态。有关详细信息,请参阅按区域划分的功能可用性页。)

你可以生成和训练自己的模型,但AIBuilder还可提供立即可用的精选预生成AI模型。例如,你可基于预生成模型在MicrosoftPowerApps中添加一个组件,以识别名片中的联系信息。

Azure上的PowerApps

AIBuilder文档

AIBuilder中的AI模型类型

AIBuilder中的预生成AI模型概述

自定义AI

尽管预生成AI很有用(而且越来越灵活),但从AI中获取所需内容的最佳方式或许是自己构建系统。显然,这是一个深奥复杂的主题,除了刚介绍的内容以外,我们先看一些基本概念。

代码语言

AI的核心概念是使用算法来分析数据和生成模型,以采用有效方式进行描述(或评分)。算法是由开发者和数据科学家(有时由其他算法)使用编程代码编写的。目前,最常用于AI开发的两种编程语言是Python和R。

Python是一种通用的高级编程语言。其语法简单易学,强调可读性。没有编译步骤。Python具有大型标准库,但它也支持模块和包添加功能。这有助于模块化,也有助于根据需要扩展功能。Python的AI和ML库生态系统较大,并且不断增长,其中包括Azure中随时可用的许多库。

Azure产品主页上的Python

面向Python开发人员的Azure

适用于Python的Azure机器学习SDK

有关机器学习与Python和AzureNotebooks结合使用的简介

Scikit-learn。用于Python的开源ML库

PyTorch。具有丰富生态系统的开源Python库,可用于深度学习、计算机视觉、自然语言处理等

TensorFlow。开源符号数学库还用于ML应用程序和神经网络

教程:在AzureFunctions中使用Python和TensorFlow应用机器学习模型

R是一种语言和环境,适用于统计计算和图形。从在线映射广泛的社交趋势和市场营销趋势到开发财务和气候模型,均可使用此语言。

Microsoft已完全采用R编程语言,并为R开发者提供了许多不同的选项,以便他们在Azure中运行自己的代码。

Azure中的R开发指南

MicrosoftROpen。Microsoft提供的R增强发行版,与R-3.5.3完全兼容,除了支持基于Windows和Linux的平台以外,还提供了更多提高性能和可再现性的功能

教程:通过Azure机器学习在R中创建逻辑回归模型

培训

训练是机器学习的核心。这是“教”算法创建模型的迭代过程,用于分析数据,然后根据结果做出准确预测。此过程实际上有三个常规阶段:训练、验证和测试。

在训练阶段,会对一组已知的优质数据进行标记,以便可以识别单个字段。将标记的数据提供给为做出特定预测配置的算法。完成操作后,该算法会输出一个模型,以一组参数的形式描述发现的模式。在验证过程中,会对新数据进行标记并将其用于测试模型。算法会根据需要进行调整,并可能会经历更多训练。最后,测试阶段使用没有任何标记或预选目标的实际数据。如果模型的结果是准确的,则将其视为准备就绪,可以进行部署。

使用Azure机器学习训练模型超参数优化

超参数是控制训练过程本身的数据变量。这些变量是控制算法运作方式的配置变量。因此,超参数通常是在模型训练开始之前进行设置,并且在训练过程中不是按参数方式进行修改。超参数优化涉及运行训练任务中的试用版,评估作业完成程度,然后根据需要进行调整。此过程会生成多个模型,每个模型都会使用不同的超参数系列进行训练。

使用Azure机器学习优化模型的超参数模型选择

训练和超参数优化过程会生成大量候选模型。这些模型具有许多不同的差异,包括准备数据所需的工作量、模型的灵活性、处理时间量,当然还包括其结果的准确性。根据需求和约束条件选择最佳训练模型被称为“模型选择”,但这更像是训练前的预规划,毕竟是选择最佳训练模型。

自动化机器学习(AutoML)

自动化机器学习(也称为AutoML)是机器学习模型开发中耗时的迭代性任务实现自动化的过程。此过程可以显著减少获取生产就绪ML模型所需的时间。自动化ML可帮助执行模型选择、超参数优化、模型训练和其他任务,不需要用户具有广博的编程知识或域知识。

什么是自动化机器学习?计分

评分(也称为“预测”)是在给定一些新输入数据后根据训练机器学习模型生成值的过程。创建的值(或分数)可以表示对未来值的预测,但也可能表示可能的类别或结果。评分过程可生成多种不同类型的值:

推荐项和相似性分数的列表

有关时序模型和回归模型的数值

概率值,指示新输入属于某个现有类别的可能性

与新项最相似的类别或群集的名称

分类模型的预测类或结果

批量评分是指在某个固定时间段内收集数据,然后分批进行处理时的评分。此过程可能包括生成业务报表或分析客户忠诚度。

实时评分就是正在执行且尽可能快地执行的评分。经典示例是信用卡欺诈行为检测,但在语音识别、医学诊断、市场分析以及许多其他应用中也可以使用实时评分。

有关Azure上自定义AI的常规信息

GitHub上的MicrosoftAI:示例、参考体系结构和最佳做法

AzureGitHub存储库上的自定义AI。即一系列脚本和教程,可帮助开发者在其AI工作负载中有效使用Azure

适用于Python的Azure机器学习SDK

Azure机器学习服务示例笔记本(Python)。即有关示例笔记本的GitHub存储库,用于演示Azure机器学习PythonSDK

适用于R的Azure机器学习SDK

AzureAI平台产品/服务

下面是可用于根据需求开发AI解决方案的Azure技术、平台和服务的细分。

Azure机器学习

此服务是企业级机器学习服务,可更快地构建和部署模型。Azure机器学习提供了Web界面和SDK,以便你可以大规模快速训练并部署机器学习模型和管道。请将这些功能与开放源代码Python框架(如PyTorch、TensorFlow和scikit-learn)配合使用。

Microsoft的机器学习产品有哪些?

Azure机器学习产品主页

Azure机器学习数据体系结构指南概述

Azure机器学习文档概述

什么是Azure机器学习?总体定位,其中包含指向多个学习资源、SDK、文档等内容的链接

Azure机器学习参考体系结构

Azure上PythonScikit-Learn和深度学习模型的训练

Azure上深度学习模型的分布式训练

Azure上Python机器学习模型的批量评分

Azure上深度学习模型的批量评分

Azure上PythonScikit-Learn和深度学习模型的实时评分

使用Azure机器学习的Python模型的机器学习操作化(MLOps)

Azure上R机器学习模型的批量评分

Azure上R机器学习模型的实时评分

AzureDatabricks上Spark机器学习模型的批量评分

企业级聊天机器人

在Azure上生成实时建议API

Azure自动化机器学习

Azure为自动化ML提供广泛支持。开发者可以使用无代码UI或通过代码优先的笔记本体验来构建模型。

Azure自动化机器学习产品主页

Azure自动化ML信息图(PDF)

教程:使用Azure机器学习中的自动化ML创建分类模型

教程:使用自动化机器学习预测出租车费

使用Python配置自动化ML试验

将CLI扩展用于Azure机器学习

使用Azure机器学习CLI自动执行机器学习活动

Azure认知服务

这是一系列全面的AI服务和认知API,可帮助你构建智能应用。这些特定于域的预训练AI模型可以使用你的数据进行自定义。

认知服务产品主页

Azure认知服务文档

Azure认知搜索

这是AI支持的云搜索服务,可用于移动应用和Web应用开发。此服务可搜索专用异类内容,带有用于AI扩充的选项(如果内容为非结构化内容或内容在采用其原始格式时无法搜索)。

Azure认知搜索产品主页

AI扩充入门

Azure认知搜索文档概述

在Azure中选择自然语言处理技术

快速入门:在Azure门户中创建Azure认知搜索认知技能集

Azure机器人服务

这是一个专门设计的机器人开发环境,具有快速入门的现成模板。

Azure机器人服务产品主页

Azure机器人服务文档概述

Azure参考体系结构:企业级对话机器人

工作负载示例:Azure上提供的用于酒店预订的对话式聊天机器人

MicrosoftBot框架

GitHubBotBuilder存储库

Azure上的ApacheSpark

ApacheSpark是并行处理框架,支持使用内存中处理来提升大数据分析应用程序的性能。Spark提供了用于内存中群集计算的基元。Spark作业可在内存中加载和缓存数据,并可重复查询,查询速度比基于磁盘的应用程序(如Hadoop)快得多。

AzureHDInsight中的ApacheSpark是Microsoft的ApacheSpark在云中的实现。HDInsight中的Spark群集可与Azure存储和AzureDataLakeStorage兼容,因此你可以使用HDInsightSpark群集处理Azure中存储的数据。

适用于ApacheSpark的Microsoft机器学习库,即MMLSpark(MicrosoftMLforApacheSpark)。它是一个开源库,在Spark生态系统中添加了许多深度学习和数据科学工具、网络功能和生产级性能。详细了解MMLSpark功能。

AzureHDInsight概述。有关功能、群集体系结构和用例的基本信息,以及指向快速入门和教程的指针。

教程:在AzureHDInsight中生成ApacheSpark机器学习应用程序

HDInsight上的ApacheSpark最佳做法

配置HDInsightApacheSpark群集设置

HDInsight中的机器学习

MMLSpark的GitHub存储库:适用于ApacheSpark的Microsoft机器学习库

在HDInsight上创建ApacheSpark机器学习管道

用于机器学习的AzureDatabricksRuntime

AzureDatabricks是一个基于ApacheSpark的分析平台,具有一键设置、简化的工作流以及一个供数据科学家、工程师和商业分析师相互协作的交互工作区。

用于机器学习的DatabricksRuntime(DatabricksRuntimeML)可用于启动具有分布式训练所需全部库的Databricks群集。此工具可为机器学习和数据科学提供随时可用的环境。而且,其中包含多个常用库,包括TensorFlow、PyTorch、Keras和XGBoost。它还支持使用Horovod进行分布式训练。

AzureDatabricks产品主页

AzureDatabricks文档

AzureDatabricks中的机器学习功能

操作指南:用于机器学习的DatabricksRuntime

AzureDatabricks上Spark机器学习模型的批量评分

AzureDatabricks上的深度学习概述

客户案例

各个行业都在以令人鼓舞的创新方式应用AI。下面是大量客户案例研究和成功案例:

ASOS:在线零售商使用Azure机器学习服务解决难题

KPMG使用Azure认知服务帮助金融机构节省数百万美元的合规成本

Volkswagen:机器翻译用40种语言表达Volkswagen

Buncee:NYC学校使用AzureAI为各个年龄各种层次的读者提供支持

InterSystems:数据平台公司以史无前例的速度生成重要信息,改善了IT健康状况

Zencity:数据驱动型初创公司提供资金帮助本地政府改善居民的生活质量

Bosch依靠IoT创新,帮助驱动程序防止严重事故,提高流量安全性

AutomationAnywhere:机器人进程自动化平台开发者使用Azure认知服务扩充其软件

Wix使用Azure认知搜索在1.5亿个网站上部署可缩放的智能搜索

AsklepiosKlinikAltona:使用MicrosoftHoloLens2和3D可视化效果提高手术精准度

AXAGlobalP&C:全球保险公司使用基于云的HPC对复杂的自然灾害建模

浏览更多AI客户案例

后续步骤

若要了解Microsoft提供的人工智能开发产品,请参阅MicrosoftAI平台页。

有关如何开发AI解决方案的训练,请参阅MicrosoftAI学校。

GitHub上的MicrosoftAI:示例、参考体系结构和最佳做法安排了基于Microsoft开源AI的存储库,并提供教程和学习材料。

什么是人工智能 (AI)

虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,106KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。

然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。

StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:

人类方法:

像人类一样思考的系统像人类一样行动的系统

理想方法:

理性思考的系统理性行动的系统

艾伦·图灵的定义可归入"像人类一样行动的系统"类别。

以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。

目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。 

随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇