人工智能的历史与未来,主要划分为了哪三个阶段
事物飞速发展之时,往往需要你停下脚步,回顾自己所处的位置,否则你会很容易陷入对细节的兴奋之中。构成人工智能基础的数据科技正以不同的方式向前发展,而且速度飞快。因此,在你改变职业之前,或者决定使用人工智能扩展业务时,让我们首先对人工智能做一个鸟瞰,以帮助理解我们所处的位置以及未来走向。
人工智能的三个阶段
我们倾向于把人工智能看做新事物,尤其是新技术以及和深度学习相关的新技巧。然而,人工智能已经过数十年的发展,否认过往的成功似乎不合逻辑,因为技术总是不断向前发展。
当我费力向其他人解释人工智能之时,我不断为预测分析寻找一些分界线,这些分析我们已经实践了相当一段时间,也是大众对人工智能持有的观点,主要将人工智能的历史与未来划分为了三个阶段:
1.手工知识(HandcraftedKnowledge)阶段
2.统计学习(StatisticalLearning)阶段
3.语境顺应(ContextualAdaptation)阶段
Launchbury的观点对我帮助极大。尽管阶段(ages)的比喻很有用,但是这很容易让人误解为一个阶段结束了下一个阶段作为替代才开始。与此相反,我把人工智能看作一个金字塔,其中下一阶段的发展奠定在前一阶段之上。这也清晰地表明了即使是最古老的人工智能技术也不会过时,且实际上依然在使用之中。
对于第二个阶段统计学习(StatisticalLearning),即我们目前所处的阶段,我分为了一些更细的阶段,因为第二个阶段之中有一些重大突破值得单独作解释。
三个阶段
第一阶段:手工知识
第一个阶段的典型代表是「专家系统」(expertsystems),其把大量知识转化为由中小企业团队精心制定的决策树来增强人类的智能。专家系统的代表例子是TurboTax或者做调度的物流程序,它们在上世纪80年代已经出现,且很有可能更早。
对比1
尽管我们有能力运用机器学习统计算法诸如回归、SVM、随机森林以及神经网络,且这些算法自上世纪90年代以来获得了飞速扩展,但手工系统的应用并未完全消失。最近Launchbury提及到该系统的一个应用成功防御了网络攻击。大约在2004年之前,相似的系统实际上已经成为自动驾驶车的核心(其失败的主要原因是不能解释所有的现实问题)。
Launchbury认为专家系统在推理方面表现不俗,但仅限于几个严格定义的问题,且没有学习能力,不能处理不确定性问题。
第二阶段:统计学习
第二个阶段是我们现在所处的阶段。尽管Launchbury倾向于关注深度学习方面的进步,实际上早在我们使用计算机寻找数据中的信号之时就已经步入了第二阶段。统计学习阶段开始于数十年之前,但是在上世纪90年代获得了牵引力,并通过处理新数据、容量甚至是数据流而不断获得扩展。
由于不断增加的深度学习技术工具箱(比如回归、神经网络、随机森林、SVM、GBM),统计学习阶段伴随着从数据之中寻找信号能力的爆炸性增长应运而生。
这是一种不会消失的基础数据科学实践,它可以解释消费者(他们为什么来、为什么留、为什么走)、交易(是否存在欺诈)、装置(它是否有问题)、数据流(30天之后其价值是什么)的所有行为问题。统计学系对人类智能的增强是不断发展的人工智能的部分之一。
在第二阶段之中,至少有另外两个重大突破极大地提升了人类的能力。第一个是Hadoop与大数据。现在我们已经有了大规模并行处理以及储存和查询大的非结构快速移动数据集的方法。2007年Hadoop首次开源,直到现在。第二个小的突破是现代人工智能工具集的兴起,其由以下6种技术组成:
1.自然语言处理
2.图像识别
3.强化学习
4.问答机
5.对抗式训练
6.机器人
除了少数例外,这些技术可被整合为依赖于深度学习的一类,但是如果你查看深度学习工作方式以及深度神经网络运行方式的详情,你很快会意识到这些并不是问题的核心。
在卷积神经网络、循环神经网络、生成对抗神经网络、强化学习之中的进化神经网络及其所有变体之中通常有很少;反过来在问答机(Watson)、机器人或者不使用深度神经网络的强化学习变体之中存在更少。
由于这些技术的共同之处是它们生成自己的特征,也许我们应该称之为无特征建模的阶段(EraofFeaturelessModeling)。你仍然不得不使用已知的标注实例进行训练,但是你不必在列中填入预定义的变体和属性。它们在极其大的计算阵列上也需要大规模并行处理,很多次需要专业芯片(比如GPU、FPGA)以在人类时间尺度上搞定一切。
因此,重要的区别就是第二阶段的人工智能可以延续几十年,并且其主要从机器学习、大数据/Hadoop和无特征建模三个方面已经对新技术进行了三次大的变革。但这些突破仍然在统计学习方法这一阶段内,该阶段还会继续发展并产生更多的突破。
Launchbury表明,到目前为止,我们已经拥有非常先进、细分和强大预测能力的系统,但是仍然还没有理解语境和最小推理能力。因为我们的技术对数据有更大量的需求,这已经成为了一个障碍,而对我们仍然有价值和高效的预测分析技术并不应该是这样的。但我们在这个阶段早期无法解决的困难,包括自动驾驶汽车、机器赢得日益复杂游戏的能力、图像、文本和自然语言处理等方面目前都已经取得了重大的突破。
第三阶段:语境顺应(contextualadaption)
接下来呢?Lauchbury说,当前统计学习时代出现了两个问题,第三个阶段要解决两个问题。
解释推理行为的模型:虽然我们的深度神经网络善于分类,比如图片,但是处理原理仍然显得神秘莫测。我们需要既可以进行分类也可以得到解释的系统。理解推理就能让对处理过程的修正真正有效。
生成模型:这些模型可以从潜在语境中进行学习,比如一个模型,掌握了每个字母的笔画,而不是基于大量糟糕的书写样本进行粗暴分类。我们今天使用的生成模型有望显著减少对训练数据的需求。
鉴于这些特点,处在这一阶段的人工智能系统就能使用语境模型(contextualmodels)进行感知、学习、推理以及抽象,将从一个系统中学习到的东西应用到一个完全不同的语境中。
全景视野
新阶段的开始并不意味着前一阶段会戛然而止。一些技术、功能的有用性或许会降低,但是完全被淘汰出局也不太现实。比如,最新技术所需的大量计算力、研发的复杂性以及训练都会制约这些技术退出历史舞台,将来某个时候出现的高价值的问题可能还会用到这些技术。
其他情况,比如语境采用阶段,我们可能不得不等待新一代芯片的出现,这类芯片更加类似人脑。这些被称为神经形态或者脉冲神经网络的第三代神经网络都会用到现在研发最早阶段的那些芯片。
现在,我们处在第二阶段(统计学习)的什么位置?
当前阶段的三章内容中,人们可能最关注的是新东西,深度学习、强化学习以及上述构成该阶段的六种技术之间的平衡。
这是一场演化的艰难过程,刚开始结出果实,但这些新的发展中绝大部分仍然没有准备好开花结果。尽管可以看到这些技术会往哪个方向发展,但是,只有两到三个技术有望可靠商业化(图像处理、文本和语音处理,类似WatsonQAMs的有限版本。)
当你试着将这些技术拧在一起时,这些技术也不过是松散地在一起,集成这些技术仍然是最具挑战性的事情之一。我们总会想到办法的,只是还没到这一步。
我们总会走到那一步的,甚至进入第三阶段。不过,走过这一阶段之前,或许还会出现我们未曾预料的演化或者变革。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:1.人工智能时代,AI人才都有哪些特征?http://www.duozhishidai.com/article-1792-1.html2.大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html3.人工智能,机器学习和深度学习之间,主要有什么差异http://www.duozhishidai.com/article-15858-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
加快推动人工智能产业高质量发展
人工智能产业为中国经济发展提供战略新动能,是引领中国经济发展的重要战略抓手。2018年9月17日,习近平总书记在致2018世界人工智能大会的贺信中指出,新一代人工智能正在全球范围内蓬勃兴起,为经济社会发展注入了新动能,正在深刻改变人们的生产生活方式。习近平总书记强调,中国正致力于实现高质量发展,人工智能的发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。习近平总书记的重要论述,为人工智能产业实现高质量发展,更好服务于人民的美好生活指明了方向。
推动高质量发展是“十四五”时期的主题
党的十九届五中全会明确指出,我国经济已转向高质量发展阶段。以推动高质量发展为主题,是“十四五”时期以习近平同志为核心的党中央根据我国发展阶段、发展环境和发展条件变化对我国经济做出的新的重大科学判断。习近平总书记指出,高质量发展就是体现新发展理念的发展,是创新成为第一动力、协调成为内生特点、绿色成为普遍形态、开放成为必由之路、共享成为根本目的的发展。高质量的发展意味着在中高端产品消费、创新引领、绿色低碳、共享经济、现代供应链、人力资本服务等领域需要培育经济新增长点、形成发展新动能。新时代新阶段的发展必须贯彻新发展理念,必须是高质量发展。而推动经济高质量发展,关键在于以创新为驱动、高质量供给为引领,加快建立科技创新体系,构建现代产业体系,推动质量变革、效率变革、动力变革,建立中高端产业链、价值链,使发展成果更好惠及全体人民,不断实现人民对美好生活的新需求。
当前新一轮科技革命和产业革命正在发生变革,这与我国高质量发展形成历史性交汇。“十四五”时期我国经济发展应抢抓这一重要变革机遇,为高质量发展“动力换挡”导入强劲引擎。伴随移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术的驱动,以人工智能技术为代表的新一轮科技革命蓬勃发展,以前所未有的速度和方式改变着经济发展,成为高质量发展的重要引擎。习近平总书记在十九届中央政治局第九次集体学习时的讲话中指出,“人工智能是引领这一轮科技革命和产业变革的战略性技术,是新一轮科技革命和产业变革的重要驱动力量,具有溢出带动性很强的‘头雁’效应”。加快发展新一代人工智能不仅“事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题”,而且是“我们赢得全球科技竞争主动权的重要战略抓手”,更是“推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源”。在推动经济高质量发展的过程中,人工智能产业的高质量,可以为中国经济发展添薪续力。
党的十九届五中全会审议通过的《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》指出,“在当前和今后一个时期,我国发展仍然处于重要战略机遇期”,要紧扣重要战略机遇新变化,“坚持把发展经济着力点放在实体经济上,坚定不移建设制造强国、质量强国、网络强国、数字强国,推进产业基础高级化、产业链现代化,提高经济质量效益和核心竞争力”。在推动经济高质量发展阶段,人工智能正在为中国新旧动能转换和国民经济高质量发展提供有力支撑,它是推动工业变革的核心驱动力量,也是最能体现知识要素贡献和打造经济社会发展新动能的基础设施产业,加快推进人工智能产业优化升级,成为未来科技创新的一个“超级风口”。近年来,中国人工智能产业化发展迅速,技术发展日益成熟、应用场景日益丰富,企业数量、融资规模均居全球第二,成为人工智能产业化大国之一。与此同时,我国人工智能产业的发展在基础理论研究、关键核心技术、人才培养等方面存在一些短板,这在一定程度上限制了人工智能产业创新发展潜能的充分释放。对此,习近平总书记强调,要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,创新技术,促进其同经济社会发展深度融合,推动我国新一代人工智能实现高质量的发展。
以人才、技术促进人工智能产业实现高质量发展
我国人工智能产业迅速发展,在智能芯片、智能算法、知识图谱、计算机视觉、自然语言处理等技术方面不断取得突破,为人工智能产业的创新发展奠定了一定基础。但中国智能产业在芯片硬件等关键性核心技术上仍然比较薄弱,这成为制约人工智能产业实现高质量发展的重要隐患。对此,习近平总书记指出,人工智能具有多学科综合、高度复杂的特征。我们必须加强研判,统筹谋划,协同创新,稳步推进,把增强原创能力作为重点,以关键核心技术为主攻方向,促进人工智能实现高质量发展。
重视产业人才培养,构建“引才、留才、用才”新格局。人工智能产业要实现高质量发展,培养人工智能人才是关键。因此,要强化多层次人才的培养和引入。一是培养人工智能产业所需的复合型人才。一方面,构建以技能为本的劳动力市场,鼓励企业和各类机构为员工提供人工智能技能培训,培育一批专业技能扎实、科学素养高、动手实践能力强、具备开阔产业应用视角和国际前瞻视野的人才,确保关键工种拥有充分数量的人才储备;另一方面,完善高校人工智能学科体系建设和布局,深化“产学研”融合发展,鼓励高校、科研院所与企业合作,通过校企共建人工智能专业和课程,培育更多符合人工智能产业高质量发展所需的复合型人才。二是坚持“走出去+引进来”,加大全球高端人才的培养和引入。一方面,选派人工智能领域优秀科研人员赴海外学习交流,扩大国际化视野;另一方面,充分利用海南自由贸易港、自由贸易区、粤港澳大湾区等历史性战略机遇,鼓励人工智能产业人才引入。
加快完善数字基础设施,增强人工智能科技创新能力。人工智能产业要实现高质量发展,技术的完善和突破是重点,这就要求在技术上既要加快完善基本数字基础设施,也要坚持核心技术的攻坚克难。一是要完善数字基础设施,推动传统产业智能化转型。一方面,充分利用新基建机遇,加强人工智能基础研究和技术研发,协调推进各类数据中心、5G网络部署,全面提升端侧的数据计算、采集及传输能力,为传统产业全面向数字化转型打造坚实广泛的计算基础。另一方面,充分发挥国家新一代人工智能开放创新平台赋能作用,加强传统产业与科技公司合作力度,共同突破工业数字化壁垒,实现双赢。二是要加大基础研究力度,加快突破一批人工智能产业化关键技术。国家要调整人工智能投入结构,提高基础研究经费投入比重和投入力度,支持科学家勇闯人工智能科技前沿的“无人区”,鼓励校企开展深度合作,建立协同创新联盟,努力在人工智能发展方向和理论、方法等方面取得变革性突破,确保我国在人工智能重要领域的理论研究走在前面。同时,要以问题为导向,重点突破自主芯片技术和算法技术,加快建立新一代人工智能关键共性技术体系,确保人工智能关键核心技术牢牢掌握在自己手里。
融合实体经济,推动人工智能产业高质量发展
人工智能是具有极强渗透性的技术。当前人工智能产业化应用正加速从娱乐、消费等领域开始向制造、医疗、能源、交通等更大范围的实体经济进军,这给人工智能产业提供了庞大的市场和丰富的场景。人工智能在我国交通、医疗、教育等传统行业中的发展和应用仍然处于较低水平,无法满足人民对美好生活的需要。因此,要实现人工智能产业高质量发展,就要发挥人工智能在产业升级、产品开发、服务创新等方面的技术优势,推动人工智能与实体经济深度融合,以人工智能技术推动各产业变革,加快产业对接,聚焦重点领域,形成以场景应用为导向的发展模式。
搭建智能平台,发挥人工智能技术应用功能。人工智能不仅能创新产品和服务,而且也能在相当程度上改进或优化传统产业的生产流程,重构传统产业的业务模式。当前,以人脸识别、车辆特征识别、手写识别、文字识别等为代表的计算机视觉相关技术基本成熟,“机器视觉”在制造业中已经逐渐推广应用,加强计算机视觉技术与传统汽车制造等产业的深度融合,用机器代替人力劳动,不仅能节约人力投入,还能提高产品品质。人工智能还能对生产过程的数据进行分析并加以改进。工业生产线在运行过程中会生出大量实时数据(比如温度、压力等等),利用人工智能技术对数据进行分析,能提前预测可能出现的机器故障、残次品率等等,进而对生产流程进行优化,以达到节约成本、提高效率的目标。因此,要大力推广应用人工智能在促进制造业转型升级中的支撑和引领作用,使其成为推动高新技术产业创新发展中的“头雁”和区域发展的“增长极”。
聚焦重点领域,助推人工智能应用场景落地。如果说人工智能产业是供给侧,那么传统行业则是需求侧。推进人工智能应用场景落地,就要处理好供给侧和需求侧的关系。随着人工智能加速向医疗、交通、智慧城市等多领域的渗透,应聚焦这些涉及民生的领域,提升人工智能产业与实体经济的融合度,为人民群众提供更优质、丰富、便利的新产品和新服务,满足人民群众对美好生活的需要。因此,人工智能技术要着眼于我国庞大的市场和丰富的场景,围绕社会发展需求领域布局,探索出一条充分发挥我国市场和场景资源优势的高质量人工智能产业发展路径。
(作者单位:北京科技大学马克思主义学院)
责任编辑:肖景华
现阶段人工智能的一些局限性
原标题:现阶段人工智能的一些局限性尽管人工智能近年来取得了飞速的进步,人工智能在现阶段任然有很大的局限性,这主要表现在五个大的方面:
1.认识论的局限性。人们对于思维的过程的认识是比较片面的,觉得思维过程可以通过物理符号的运算模拟出来,而一些形象思维或者抽象思维的程式是无法被简单物化的。
2.智能化方法与途径方面的局限性。从机械角度出发,主要分为结构派和功能派。结构派从研究人的大脑神经结构出发,企图模拟人的神经网络,殊不知人的神经元数量众多,这也使得结构派的智能化道路显得任重道远;功能派从研究思维的活动和智能行为的心理学特性出发,但是根本思维还是符号主义,理论模型仍是图灵机模型。
3.数学基础的局限性。人工智能最基本的还是计算问题,这就涉及到近代数学的现状。近代数学具有封闭性,线性,结构不变性,收敛性以及精确性,而人工智能所要求的却恰好相反,它所需要的是进行非结构化的、非线性、模糊发散的计算,以满足智能化的需求。
4.计算机模型的局限性。主要表现在四个方面:
1)问题表示的方法的局限性。
2)需要对问题本身抽象出一个数学意义上的精确地解析式。
3)需要针对问题设计算法。
4)求解的结果的唯一性。
5)图灵计算机模型下的问题一般都是可递归的问题。
6)很多时候,要实现真正的人工智能,我们要求的是满意解而非是精确解,而这时以图灵模型为原型的计算机模型所做不到的。
5.形式演绎理论方面的局限性
6.实现技术方面的局限性。知识表示、推理、环境与工具等都存在较大的局限性,限制其发展。
毕竟人脑和机器是有很大的区别的,人脑胜于计算机的地方,就是具有逻辑思维、概念的抽象、辩证思维和形象思维,能从知识中抽取出性质不同、更高层次的核心知识,能从多方面地把握信息,因此在解决问题时,大大减少了对每一种可能组合的解决问题方案的探索,甚至在很多情况下,根本无须探索各种可能的组合,就直接想出办法,找到答案。这样,就避免了组合爆炸。计算机虽能进行调整,进行有限的自组织,但由于不具备形象思维和逻辑思维,仅能放大人的悟性活动中的演绎方法,不可能真正具有智能。由此,决定了计算机不能进行学习、思维、创造。在计算机领域,机器人仍然是机器,并不具有生命,但是克隆技术、转基因技术等的巨大突破却可能使人们设计创造出具有生命、甚至具有智能的东西。
对于已解决或者即将解决的智能问题,通过对计算机的功能程序和它们之间的关系的深入研究中,或许我们可以找到一条发展人工智能的新途径。使用计算机解题,都必须通过汇编语言编写一些程序,将要求解的问题和算法转换成机器语言,即“0”、“1”代二进制机器指令,方可进行。因此用通用的指令集,即代表了计算机解决问题的能力。因此或许可以从功能方面去研究一些具有基本功能,但是又无法由其他指令编程实现的基本指令并通过对他们的指令集进行分析,以研究人工智能。
人工智能诞生的时间并太久,技术也显得不很成熟,某种意义上讲,总是面临着相当多的局限。既然,冯诺依曼是现在计算机的原型,其机器指令也是限制人工智能化的一大障碍,或许,可从改善机器语言的的本身出发,找到新的突破口,将人工智能成熟化。返回搜狐,查看更多
责任编辑:让人工智能充分赋能经济社会发展
科技部等六部门发文统筹推进场景创新
让人工智能充分赋能经济社会发展
继2017年国务院印发《新一代人工智能发展规划》(以下简称《发展规划》)之后,科技部、教育部、工信部等六部门近日联合发布《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》(以下简称《指导意见》),在业界引发广泛关注。
作为深刻改变人类社会生活的革命性、战略性技术,人工智能在我国发展如何?怎样推动人工智能快速迭代升级?记者进行了采访。
从实验室走向生产生活,人工智能驶入发展快车道
如今,放眼大江南北,“人工智能”不再是一个学术名词,而是人们生产生活中的“常客”。
在旷视科技改造升级后的国药控股广州有限公司物流中心,随处可见人工智能的“身影”:智能移动机器人、智能堆垛机往来穿梭,成为搬运的主力军,智能五面扫描装置可实时读取运动中的药箱上的电子监管码,实现药品流通可追溯……智慧仓储物流不仅为该中心每年节约人力成本上百万元,更显著提高了工作效率,在疫情防控期间实现了医药物资配送的快速响应。
在位于浙江杭州滨江区的计算机视觉公司易思维的实验室,装配了高性能视觉传感器的工业机器人正在模拟汽车流水线的工位上忙碌。明察秋毫的“眼睛”和自主决策的“大脑”,助力冲压、焊接、涂装、总装四大汽车制造环节的智能化升级,既省工省时又提质增效。易思维研发的工业视觉检测成套装备体系,已在上汽大众、一汽大众、特斯拉等数十家国内外厂商的200多个整车厂落地开花,在“冲、焊、涂、总”四大环节上实现系统化应用。
在华为打造的5G智慧煤矿——晋能控股集团塔山煤矿,地下500米的矿井实现了智能互联:智能巡检机器人往来探视,工人可一键呼叫“网约车”、实时手机视频通话。依托“会说话”“能决策”的智能化综放开采设备,塔山煤矿采煤工效提升40%以上。
在日常生活中,人工智能也无处不在:对着手机眨眨眼,几秒内就可以完成身份认证;手环、手表等智能终端,及时提醒用户健康状况……
“《发展规划》实施至今,我国的人工智能已由实验室走向生产生活的方方面面,驶上了发展快车道。”科技部新一代人工智能发展研究中心主任、中国科学技术信息研究所所长赵志耘认为,“生产更高效、生活更精彩”的背后,是人工智能科技的显著进步。“我国在机器学习、计算机视觉、自然语言处理、类脑计算等领域涌现出一批重要理论成果,大规模预训练模型等前沿研究达到国际先进水平,人工智能基础软硬件快速发展,基于自主技术的人工智能产业生态已初步形成。”
科技部新一代人工智能发展研究中心提供的数据显示,5年来我国智能产业规模持续壮大,企业数量以及风险投资额居世界前列:2021年人工智能核心产业规模超过4000亿元,企业超过3000家;人工智能领域风险投资额占全球比重从2013年的不到5%增长到2021年的20%左右,跃居世界第二。
把新技术应用到实践中,通过迭代不断成熟提升
《指导意见》从打造人工智能重大场景、提升人工智能场景创新能力、加快推动人工智能场景开放等方面,统筹推进人工智能场景创新。
“这不仅是稳经济、培育新增长点的权宜之计,更是促进人工智能更高水平应用、更好支撑高质量发展的长远之策。”科技部战略规划司副司长邢怀滨说,“从全国来看,目前仍存在对场景创新认识不到位、重大场景系统设计不足、场景机会开放程度不够、场景创新生态不完善等问题,急需加强人工智能场景创新。”
邢怀滨告诉记者,场景创新是以新技术的创造性应用为导向,以供需联动为路径,实现新技术迭代升级和产业快速增长的过程。“这个‘牛鼻子’有多方面的牵引效应:直接推动人工智能技术的推广应用,加快传统产业的提质升级;在应用中发现新需求、凝练新课题,从需求侧反推人工智能技术体系的提升完善;促进人工智能相关软硬件技术及其标准的对接、贯通,进而形成全国统一的技术生态、产业生态。”
“目前人工智能正处在新的发展阶段,技术日趋成熟可用,各行业对人工智能技术需求迫切。”赵志耘说,在这个阶段,最重要的是把新技术应用到实践中,通过迭代不断成熟提升。“场景创新作为一种目标导向、应用导向的研发新机制,既有利于引导学术界更好地聚焦行业问题、优化研发方向,也有利于引导企业尽快把理论成果、技术成果快速转化为行业效果。”
易思维创始人兼CEO郭寅认为,人工智能是一门强应用相关的技术学科,从最早的雏形发展到今天,都离不开在各类应用场景中发现问题、解决难题、迭代技术,人工智能技术发展与场景应用创新是个相互促进、螺旋上升的过程。“随着《指导意见》的实施,我国人工智能技术将迎来加快迭代升级的新热潮。”
加快构建全链条、全过程的人工智能行业应用生态
8月15日,科技部启动支持建设新一代人工智能示范应用场景,发布了智慧农场、智能港口、智能矿山、智能工厂等首批支持的十大应用场景。
“人工智能的应用场景涉及生产、生活的方方面面,不能眉毛胡子一把抓。我们坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康谋篇布局,以充分挖掘人工智能的价值。”邢怀滨说,“按照提高生产能效、改善工作方式、方便群众生活等主要标准,我们希望尽快打造形成一批可复制、可推广的标杆型示范应用场景,加快构建全链条、全过程的人工智能行业应用生态,让人工智能充分赋能经济社会发展。”
“人工智能是渗透面广、带动性强、影响深刻的新生事物,政府和市场要各司其职、协同发力,真正把充分发挥市场作用和更好发挥政府作用有机结合起来。”邢怀滨强调,一方面,要坚持企业在场景创新全过程中的主体地位,鼓励企业放手去干、去闯;另一方面,政府要与学术界、企业界紧密合作,在相关社会伦理、规则制定、法制完善等方面履职尽责。
“中国拥有全球最齐全的产业体系和超大规模的消费市场,丰富繁多的应用场景为人工智能提供了巨大的用武之地。”邢怀滨表示,“经过全社会的共同努力,中国一定能在新一代人工智能这个赛道上跑出好成绩。”(记者赵永新)
【纠错】【责任编辑:吴咏玲】