人工智能迎来快速成长期
0分享至李宝随着ChatGPT等大模型发布,全球人工智能掀起了新一轮发展热潮。科学技术部部长王志刚近日在2023第七届世界智能大会开幕式暨创新发展高峰会上表示,人工智能是新一轮科技革命和产业变革的重要驱动力量,当前,全球人工智能发展进入新一轮跃升期,潜在创新发展的空间巨大。随着人工智能和大数据技术的不断进步和普及,自然语言处理技术也逐步成熟,能够应用于越来越多的领域。最近,一批基于大语言模型的新项目,如清华大学的ChatGLM-6B、开源项目StableDiffusion、visualglm、LangChain等,逐步开始向更小、更精准的方向发展。这些项目能够在台式机、笔记本等普通设备上实现单机部署,即使在无GPU的设备上,也可以进行内容生成,但速度相比具备更高的显存容量的设备如NVIDIA的3090和4090等显卡会慢很多。这些新项目的出现,意味着以ChatGPT为首的人工智能的发展正在进入一个新的阶段。首先,这些新项目为自然语言处理技术的应用提供了更大的空间和可能。无论是自然语言交互、语音识别还是内容生成等方面,这些新技术都能够快速高效地完成相应任务。其次,这些新技术的推出也证明了自然语言处理技术的实用性和可操作性在逐渐增强,这将对人们的生产和生活方式,以及经济社会产生广泛而深远的影响。在如今高科技信息化的社会中,各行业都在大力应用人工智能技术,人工智能技术向着“大而全”的方向和“小而精”的业务场景发展。在私有化部署应用方面AI技术的发展方向将是更加的小型化和个性化。通过优化模型和算法,可以将大型语言模型压缩到小型模型或部署到低成本的计算资源上,从而降低了人工智能在各行业中的落地成本,降低了人工智能在各行业中的大规模应用的门槛。从技术角度来说,人工智能技术的发展正处于快速成长阶段。近年来,机器学习等技术的逐步成熟和普及,进一步推动了人工智能技术的快速集成和应用。开源社区的强大支持,为不少科研团队以及企业在人工智能技术领域取得了多个重大突破。随着人工智能技术的不断发展和突破,越来越多的应用将逐渐成熟,这也将进一步推动整个人工智能产业链的发展壮大。此外,这些新技术还将对企业的业务运营产生深远影响。通过结合自然语言处理技术,未来的企业能够更加快速地收集和分析信息,以更好地了解市场需求和客户需求,减少人工干预和管理成本。同时,这一技术可以让企业更好地理解和应对客户的需求,将服务和产品推送给更多的人,以此增加收益和盈利。然而,数据隐私和机器误判等问题仍然是人工智能发展的重大障碍。在保障数据隐私与安全以及预防不良数据滥用方面,社会应继续加大政策监管和技术监管力度,同时加强法律意识教育,保障每个人的数据隐私与安全。总之,随着人工智能和大数据技术的发展,自然语言处理技术也越来越成熟。未来,我们可以期待更小型、更精准、更好用的自然语言处理技术,拥抱智慧的时代。特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端AI时代,关于人工智能你需要知道的一切
AI似乎正渗透至现代生活中的每个角落,从音乐到媒体,再到商业/生产力乃至私人约会。要想在这个快速发展的时代跟上节奏,每个人都有必要留点时间认真了解关于人工智能的一切。
人工智能,也称机器学习,是一种开创于几十年前、基于神经网络的软件系统。随着近来新型算力的迅猛发展,AI终于获得了高效可靠的语音和图像识别能力,甚至掌握了生成图像和语音的诀窍。研究人员如今正努力借AI之手,帮助用户轻松总结网页内容、订购商品、调整食谱。
那机器会不会就此爆发,迅速脱离人类的掌控?!先别急,后文会认真讨论这个问题。相比之下,我们更希望读过本文,大家都能把握当前AI的发展动向。
AI基础知识
关于AI最有趣的事实在于:尽管其核心概念早在50多年前就已经诞生,但直到现在也没有多少技术专家真正熟悉个中原理。因此如果大家感到迷茫,请不必担心——其他人也差不多。
这里我们要先强调一点:虽然名叫“人工智能”,但这个词本身其实并不准确。智能还没有统一定义,而且AI系统的行为更接近计算机、而非人类大脑。只是这个计算机的输入和输出更加灵活,能在一定程度上模仿智能的表现。
下面来看看AI讨论中经常用到的基本术语。
神经网络(Neuralnetwork)
人类大脑主要由名为“神经元”的相互连接的细胞组成,它们相互啮合,形成可执行任务并存储信息的复杂网络。自1960年代以来,人们一直希望在软件当中重建这套惊人的认知系统,但直到最近的15到20年,GPU的发展成熟才让数字定义的神经网络迎来蓬勃发展,可谓是算力出奇迹的典型案例。
从本质上讲,神经网络就是大量点和线的组合:点代表数据,线则是各数值间的统计关系。
如同人脑一样,这一基本原理能够建立起多功能系统:快速接收输入,再通过网络传递并生成输出。这样一套系统,被称为“模型”。
模型(Model)
模型是指能接收输入并返回输出的具体代码的集合。之所以选择“模型”这个词,是想体现与统计模型、或者能模拟复杂自然过程的建模系统之间的相似性。在AI领域,模型可以指代ChatGPT这类完整系统,也可以是几乎一切AI或机器学习结构,目的和功能不限。模型的体量各有不同,其规模代表着占用的存储空间和运行起来需要消耗何等程度的算力。而实际体量,则由模型的训练方式所决定。
训练(Training)
要创建AI模型,先要向构成系统基础的神经网络“投喂”数据集或语料库所承载的大量信息。在此过程中,庞大的网络会创建起该数据的统计表征。训练过程也是计算密度最高的环节,往往需要在大规模高性能计算机上运行几周甚至几个月时间。这不仅是因为网络本身非常复杂,也是因为数据集规模往往极为庞大:须分析数十亿个单词或图像,并在巨大的统计模型中得到表征。但在模型完成训练之后,研究人员可以想办法对其“瘦身”,运行时的资源要求也更低——这就是所谓推理过程。
推理(Inference)
推理,就是模型实际发挥作用的过程:领先对现有证据进行推理以得出结论。当然,这跟我们人类的“推理”不同,AI模型是在统计学意义上将摄取到的各个数据点联系起来,据此预测出下一个点的位置。例如,假定要求其“补全以下序列:红色、橙色、黄色……”它就会意识到这些词跟所摄取的某一列表相匹配,也就是彩虹的颜色分布,再由此推理并补全列表中的其余部分。推理消耗的计算成本通常比训练低得多:毕竟查询目录也要比整理目录简单得多。虽然某些大模型还是得靠超级计算机加GPU才能执行推理,但也有不少小模已经能运行在智能手机甚至配置更低的设备之上。
生成式AI(GenerativeAI)
今时今日,人人都在讨论生成式AI。这是个广义术语,指那些能够生成原始输出(如图像和文本)的AI模型。某些模型能做总结,有些能做整理,有些能做识别——但至少目前最炙手可热的选手,还是那些能“凭空”生成新内容的AI模型(究竟是不是真的凭空,目前还存在争议)。但请千万记住,AI生成的结果可并不一定就是正确的,甚至根本是在胡说八道!一切完全可能是神经网络的胡思乱想,包括那些绘声绘色的故事或者栩栩如生的画作。
AI热门词汇
讲罢基础知识,咱们再来看看2023年比较热门的AI词汇。
大语言模型(Largelanguagemodel,LLM)
大语言模型已经成为当前最具影响力、用途最广泛的AI形式,几乎所有构成网络的文本和英语文学素材都被纳入训练范畴。由此训练出的,就是一套体量巨大的基础模型。大语言模型能够以自然语言交谈并回答问题,模仿各种风格的类型的书面文件,ChatGPT、Claude和LLaMa等成果都已经证明了其强大能力。尽管这些模型的表现令人印象深刻,但请注意其本质上仍属于模式识别引擎——在回答问题时,它实际是在补全识别出的模式,却无法判断该模式是否与事实相符。LLM在回答问题时经常产生“幻觉”,后文将进一步扩展延伸。
基础模型(Foundationmodel)
在巨大的数据集之上从零开始训练巨型模型,无疑是个昂贵且复杂的过程,当然应该能免则免。基础模型属于从零开始训练出的大模型,需要超级计算机才能承载得起;但我们通常可以减少其中的参数量,以精简方式使其适应更小的承载。所谓参数,也就是我们前文提到的模型中待处理的“点”的数量,目前常见的大语言模型往往拥有百万、十亿甚至是万亿级参数。
微调(Finetuning)
GPT-4这类基础模型非常聪明,但在设计上只能算是“通才”。从文学名著到奇幻故事,它都有所涉猎。可如果想让它帮助整理一封求职信用的简历,其表现甚至还不如普通中学生。好在我们可以使用专门的数据集对模型做点额外训练,这个过程就是模型微调。比如我们可以从网上搜集几千份求职申请,在“投喂”之后模型终于理解了简历的套路所在,同时又不影响它在原始训练数据中掌握的其他知识。
另外还有人类反馈强化学习(RLHF),这是一种特殊的微调方法,通过人类与LLM的交互数据来提高模型的沟通技巧。
扩散(Diffusion)
图像生成可以通过多种方式实现,但迄今为止最成功的办法还是“扩散”技术。StableDiffusion、Midjourney等流行的生成式AI核心成果都是据此发展而来。在通过展示图像来训练扩散模型时,这些图像会在添加数字噪声的过程中逐渐退化,直至原始图像荡然无存。通过观察整个过程,扩散模型能学会如何反向执行整个过程,逐渐向纯噪声中添加细节以构成预定义的任意图像。其实在图像生成领域我们已经探索出了更新、更好的实现方法,但扩散技术仍然比较可靠且相对容易理解,所以相信还会有不小的应用空间。
幻觉(Hallucination)
最初的“幻觉”概念,是指模型在输出中夹杂着与输入完全无关内容的情况。例如因为训练素材中包含大量狗的元素,所以模型偶尔会用狗作为纹理贴到建筑物上。根据猜测,如今AI所产生的幻觉主要源自训练集中缺乏足够数据、或者数据内容间相互冲突,于是它只能编造出一些似是而非的结论。
“幻觉”的存在有好处也有弊端:利用幻觉可以引导AI生成原创或更加多样的衍生艺术成果。但如果需要就事实获取明确的答案,幻觉肯定是个大麻烦——模型会一本正经地胡说八道,让不熟悉实情的用户误信为真。目前除了手动检查之外,还没有什么简单方法来判断AI输出是真是假,毕竟模型本身根本就没有“真假”的概念,只是在努力补全自己识别出的“疑似”模式。
通用人工智能(ArtificialGeneralIntelligence,AGI)
通用人工智能,又称强人工智能(StrongAI),其实并没有明确的概念定义。用最简单的话语来解释,这是一种足够强大的智能,不仅能够替人类完成很多工作,甚至能像人类一样自我学习和改进。有人担心这种学习、整合思维,然后加快学习和成长速度的循环将恒久持续,最终造就一套无法约束或控制的超级智能系统。甚至有人认为应该叫停相关研究,暂缓或阻止这种可怕的未来。
看过《黑客帝国》或者《终结者》电影的朋友肯定能理解其中的担忧,毕竟AI失控并试图消灭或奴役人类的可能性确实令人不寒而栗。但这些故事纯属编剧想象,跟现实并没什么关系。ChatGPT等成果虽然能给人留下深刻印象,但在抽象推理和动态多领域活动方面与“真正的智能”几乎没有半毛钱关系。我们尚无法断言AI未来会如何发展,但暂时不妨将AGI理解成星际旅行——人人都能把握其概念并朝着这个方向努力,可目标本身仍然遥不可及。其间需要巨大的资源投入和基础科学的飞跃式进步,绝非一夜之间便可成真。
评论人士也在反复强调,“杞人忧天”式的探讨缺乏现实意义。毕竟AI如今表现出的真正威胁,反而源自其局限性和“智障”表现。虽然没人想让天网成真,但如果不能在AI初期解决好自动化消灭工作岗位的现实问题,我们哪还有机会被T-1000满街追杀?
AI主要玩家
OpenAI
要说如今的AI领域最赫赫有名的“门派”,无疑是以OpenAI为首。顾名思义,OpenAI强调把自己的研究成果对外分享。但在有所斩获之后,OpenAI决意重组为一家更传统的营利性公司,通过API和应用软件向用户开放ChatGPT等高级语言模型的访问服务。这家公司的掌门人是SamAltman,尽管靠技术突破赚得盆满钵满,但他本人还是对AI可能引发的风险发出了警告。OpenAI是大语言模型领域的领导者,在其他方向上也有探索。
微软
微软其实也在AI研究方面做出过不少贡献,但因为种种原因没能真正将实验成果转化成现实产品。但其最明智的举动就是早期投资了OpenAI,并与后者建立起长期合作伙伴关系。微软目前已经在Bing搜索引擎上引入ChatGPT功能。尽管微软的AI贡献相对有限且难以直接使用,但其研发实力仍旧不容小觑。
谷歌
想靠“登月计划”引领AI技术革命的谷歌,不知何故没能摘取最后的胜利果实。但必须承认,谷歌研究人员的发明为如今AI的全面爆发奠定了基础,这就是tarnsformer。如今,谷歌正努力开发自己的大语言模型和其他智能体。在过去十年浪费大量时间和金钱推动AI助手无果之后,谷歌正在迎头赶上。公司CEOSundarPichai多次表示,公司将在搜索和生产力方面牢牢守住以AI为中心的发展理念。
Anthropic
在OpenAI“背叛”开源社区之后,Dario和DanielaAmodei兄妹毅然出走并创立了Anthropic,希望打造一个开放且更具道德责任感的AI研究组织。凭借充裕的资金,他们发展成为OpenAI的有力竞争对手,只是其Claude模型暂时还无法在人气和知名度上与GPT匹敌。
Stability
虽有巨大争议,但Stability仍在AI浪潮中拥有自己的一席之地。他们正收集互联网上的各种内容,并以开放硬件的方式免费提供其生成式AI模型。这既符合“信息应免费”的理念,也让项目本身蒙上了一层道德阴影。很多人认为Stability的成果被用于生成色情图像,及未经同意使用知识产权。
埃隆·马斯克
长期以来,马斯克经常直言不讳地表达自己对于AI失控的担忧。他曾在早期支持过OpenAI,但不满于该公司朝着自己不支持的方向发展。虽然马斯克并不算是AI技术专家,但他夸张的表达和评论确实引发了广泛反响(他本人还在“暂停AI研究”倡议书上签了字),而且正着手建立自己的AI研究机构。