博舍

人工智能与教育丨教育领域人工智能的应用现状、影响与挑战——基于OECD《教育中的可信赖人工智能:前景与挑战》报告的解读与分析 人工智能ai技术应用在教育行业的现状研究

人工智能与教育丨教育领域人工智能的应用现状、影响与挑战——基于OECD《教育中的可信赖人工智能:前景与挑战》报告的解读与分析

OECD预测,人工智能将引发未来几十年教育领域的巨大变革,包括课堂教学与教育系统,且直接影响到教育政策制定者、教育管理者、教师、学生、家长等利益相关者。同时,人工智能将推动实现可持续发展目标4中的全球教育目标,即“确保包容公平的优质教育,并为所有人提供终身学习机会”。人工智能在教育领域的使用还将实现巨大的社会价值,提升人的创造力,减少经济、社会及性别层面的不平等问题,促进包容性和可持续发展,进而实现全人类福祉。

(二)人工智能在课堂教学中的应用现状

美国新课堂创新合作者(NewClassroomsInnovationPartners)基于人工智能开发了“面向每一个人的教学:数学”(TeachtoOne:Math)模式,可以在大数据的支持下根据每个学生的具体情况制定合适的学习与教学方案。2012年,该模式在芝加哥、纽约及华盛顿特区的8所学校试点实施,主要应用于初中数学。该模式的目标是对学生技能的发展与进步做出持续回应,定期评估学生的技能水平,通过人工智能算法定位内容传递,并为学生指定不同的教学模式。该模式依靠持续的形成性评估得出数据,以确定学生之间的学习差距。学生每天都可以访问电脑仪表盘(computerdashboard),获取个人进度信息、技能发展任务,以及各种教学资源的链接,学生可以按自定的步调进行学习。这个过程中生成的大量数据将反馈给基础信息系统。最新版“面向每一个人的教学:数学”模式能为学生个性化学习路径的每日重新配置和两周教学周期的设计提供信息,还能通过动态的电脑仪表盘为教师提供有关班级和学生表现的实时信息,帮助教师及时支持学生学习。

在中国,好未来教育集团的人工智能实验室开发了多种类型的数字方案,为学生高考备考提供帮助。其中,“适应性测试及学习计划”(adaptivetestandlearningplan)系统最具代表性。该系统从各方面数据中挖掘大量评估性问题,以更好地了解每一位学生当前的知识水平,有助于学生选择合适自身的线下课程。该系统还为学生设计和定制学习计划,将相关材料发送给学生家长,帮助家长了解孩子的备考问题。

2.为特殊需求学生的学习提供支持与帮助

全球各国(尤其是经济落后国家)长期面临如何为所有学生提供更具包容性的受教育机会的问题。包容性教育是可持续发展目标4所倡导的全球目标之一,目的是确保所有人士平等地获得各级各类教育。OECD认为,人工智能可以有效地支持特殊需求学生的学习,包括视听觉障碍或社交技能(语言或交流)障碍的学生,帮助特殊需求学生从教育中受益。

3.其他功能

(三)人工智能在学校管理与教育系统中的应用

人工智能在学校管理与教育系统层面的应用主要是预测模型及评估模型的建构,为教育机构和教育系统提供反馈,服务于教育决策。目的在于提高高质量初等、中等教育的学业完成率,减少学生辍学率,以及改造教育评估工具(如标准化评估工具等)。

1.创建预警系统,有效降低学生辍学率

辍学问题是一个重要的全球教育问题,不同发展水平的国家关注的学生辍学阶段不同。OECD报告称,在低收入国家,2015年高中阶段学生辍学率为60%;2018年小学、初中及高中教育的完成率分别是68%、44%和21%,该数字距离2030年普及教育的目标相差巨大。各国教育工作者及教育政策制定者希望寻求正确的指标来预测学生辍学情况,在此基础上找到正确的干预措施降低学生辍学率。因此,人工智能将成为重要的预测工具。相比其他工具,人工智能预警系统使用纵向数据作为预测基础,可进一步改善学校的辍学预警系统。在人工智能的辅助下,学校管理者能更创新地使用现有学生数据,改进和设计学校的干预措施,更有效地预测并降低学生辍学率。

人工智能预警系统已经在发展水平较高的国家得到广泛使用。以美国为例,许多数字供应商为地区和州的学校提供了人工智能预警系统,实时帮助学校校长和地区领导者应对学生辍学问题。人工智能预警系统的优点之一是能及时地为学校提供反馈。此外,该系统通常采用仪表盘的形式,使面临辍学风险的不同类型学生的情况可视化,并对这部分学生采取适当的干预措施。在发展水平较低、收入较低的国家,辍学问题同样是教育面临的一个严峻问题。例如,印度已经开发了辍学预警系统与对应的干预措施,并开展了有效性评估。

当前,人工智能预警系统虽在学校管理和教育系统中发挥了一定作用,但还未完全成熟。其局限性在于人工智能系统仍可能出现预测误差,即忽略一些需要帮助的学生,没有及时给予帮助。因此,使用人工智能预警系统的前提是必须保证人工智能提供的是可信任的且有使用价值的预测建议。

2.改进技能评估工具,扩展技能评估范围

在经济社会变革的时代中,综合技能的重要性与日俱增,如问题解决技能、协作技能、社交技能、情感技能等。由于大多数国家的教育系统评估方式仍以标准化评估为主要特征,各国教育政策制定者和人才市场倡导改进技能评估工具,在以知识内容与能力为主的评估范围基础上进行新的扩展,将各种综合技能纳入评估范围。

基于游戏的评估(Game-basedAssessment)为教育系统提供了评估综合技能的新工具。基于游戏的评估在形成性评估中具有很大的价值,通常使用人工智能模拟的增强现实、虚拟现实和自适应能力,不仅可以适应个别学生的能力,也可以用于总结性评估。例如,将评估项目合并到游戏环境中,使学生在一个有趣的、沉浸式体验的环境中展示他们的学习成果。该评估工具已被广泛且有效地应用于科学、技术、工程和数学(STEM)教育。

三、数字时代劳动者技能的变革与发展

(一)传统技能面临自动化引发的挑战

人工智能在经济领域得到迅速使用和传播的同时,正规教育系统应进一步培养劳动者的新知识与技能。OECD的一项最新研究预估,未来15~20年内,自动化会导致14%的现有工作消失,32%的工作可能会产生根本性变革。

人工智能在某些方面的能力已经超越人类,如记忆力和计算力。人工智能能够更高效地完成重复性和预测性的任务,以及大量数据处理、输入或分类的任务。但人类在沟通、情感、价值观、创造力等方面仍占据优势。因此,劳动者必须具备人工智能无法实现的技能,才能避免在工作中被机器取代。此外,2019年OECD发布的《OECD技能展望》(OECDSkillsOutlook)报告显示,当前人们对互联网的使用常常局限于获取信息与通信。培养更高阶的认知技能,即在技术含量高的环境中发挥读写能力、计算能力及问题解决能力,互联网的使用方式才能更多样化和综合化。

(二)综合认知技能的重要性增强

在数字时代,综合认知技能变得越来越重要。相对于其他综合技能而言,综合认知技能更难以自动化或被人工智能取代,是实现人类福祉与社会良性运转的重要技能。其中,创造力与批判性思维得到了新时代劳动力市场的需求与重视。由于互联网信息传播速度快,信息数量大,传播范围广,创造力与批判性思维对互联网使用者而言不可或缺。

拥有批判性思维的劳动者在使用互联网检索信息时,能够阅读复杂的数字文本,可以区分互联网信息来源是否可信。创造力能支持劳动者开发与建构新的问题解决方案,包括需要使用人工智能或机器人的方案。除创造力与批判性思维外,沟通、协作技能等社会情感技能也属于重要的综合认知技能。

(三)逐步推进实施综合技能培养

为了应对经济与社会的转型与变革,各国教育系统和教育机构制定了各种技能培养方案,帮助劳动者学习和掌握综合技能,适应人工智能带来的技能转型。

OECD国家的学校课程大都已经正式推进综合技能培养方案的实施,以各级学校学生和高等教育学生为对象,培养与发展学生的创造力、批判性思维及其他创新技能。综合技能的培养也在G20国家中越来越普及,包括中国和印度。但在综合技能培养过程中,各国教育工作者常常不了解综合技能的概念与意义,不清楚如何将综合技能的培养纳入日常教学实践中。为解决该问题,OECD与11个国家的学校网络开展合作,为教育决策者及教育一线工作者提供了针对性的课程和教案,支撑他们推进综合技能的培养方案。同时,OECD还提供了专业发展计划的案例,帮助教育工作者学习有效培养综合技能的成功经验,教育工作者才能够成功地调整教学方法和课程计划,进而有效地帮助学生在学习知识内容的同时,发展创造力和批判性思维等综合技能。

另一项重要的综合技能培养方案是开放充足的、针对性强的高等教育课程。在该方案推进过程中,STEM教育发挥了至关重要的作用,为学生提供了许多具有针对性的综合技能学习课程。同时,许多新课程开放计划与商业界合作后也取得了一定成果。OECD与15个国家的高等教育机构合作,计划未来在高等教育领域创新性地开发与实践综合技能培养课程。

四、人工智能给教育带来的问题与挑战

人工智能在教育领域的快速发展,给教育工作者和教育政策制定者带来了新的问题与挑战,主要源于对人工智能的信任度以及如何塑造人工智能的可信赖应用。

(一)建立公众对人工智能的信任

教育对人们未来就业和生活机会有巨大影响,人工智能在教育中的透明度、可解释性及问责制非常重要。例如,人工智能用于教育决策的制定将直接影响学生的个人利益。为了充分发挥人工智能在教育中的潜力,教育政策制定者、教育工作者及其他利益相关者应建立公众对人工智能的信任。

在其他方面,人工智能引导自主决策或建议(例如,基于人工智能的中小学/大学的自动招生决策)可能会出现两种情况:一是打破学校招生系统先前的偏见,提高公平性;二是引发无法预估的后果,如生源好的学校在人工智能新系统的引导下招生,如若其招生标准与算法缺乏透明度与解释性,学校的受益群体将产生变动。因此,增强对人工智能的信任只能依靠标准和算法的透明度和可解释性。关于如何解决透明度问题,OECD认为扩大人工智能的开放性是一种解决方案。但对于某些人工智能(如深度学习)而言,可解释性仍然是个很难解决的问题。

OECD国家在建立公众对人工智能的信任上有不同的方式和策略。欧盟建构了可信赖人工智能的准则,提出人工智能应该是透明的、可追溯的、可解释的。同时,欧盟认为公众应有权被告知他们正在与人工智能系统进行交互,并且应该将人工智能的优势与局限传达给人工智能的实践者或终端用户。

(二)解决个人数据隐私与安全问题

虽然人工智能对教育与学习带来了积极影响,能帮助学生对数字时代未来的发展做准备,但大多数人工智能的使用者仍是未成年人,且人工智能算法或数据本身存在一定偏差,会引发个人数据的隐私和安全问题。

人工智能引发的隐私及数据安全问题通常源于大规模的个人数据收集与使用。人工智能为了提高其功能的针对性与有效性,以收集与使用个人数据为主要方式,收集和存储数据的过程易产生个人隐私泄露的风险。人工智能引发的隐私与安全问题是双重的。一方面,教育机构会重复使用过去收集和储存的学生数据,但由于数据存储的时长、类型及长期使用的标准没有得到确定,许多学生家长对此存在担忧;另一方面,一些开发者会处于商业目的使用学生的个人数据。

关于如何解决人工智能及其应用带来的个人数据的隐私与安全问题,不同OECD国家和地区有各自的做法。例如,欧盟的《通用数据保护条例》(GeneralDataProtectionRegulation,GDPR)为个人数据的使用设定了相对严格的框架——仅允许特定条件使用数据,包括共享数据与存储数据。GDPR中最重要的原则之一是透明度、数据与存储限制及问责制。美国的《家庭教育权和隐私权法》(FamilyEducationalandPrivacyRightsAct)规定了在教育中使用个人数据的特定框架。

五、结语

人工智能正重塑着世界经济发展的新格局,引发人们经济、生活及工作的深刻变革。全球各国高度关注与重视人工智能的价值与潜力,相继制定了相关政策与规划,如美国的《为人工智能的未来做好准备》《国家人工智能研发战略规划》,英国的“现代工业战略”计划,日本的“人工智能产业化路线图”。我国于2017年发布了《新一代人工智能发展规划》,提出了“三步走”战略,又接着推出了《人工智能标准化白皮书(2018版)》,对人工智能的发展方向与应用展开了政策层面的规划。

教育信息化时代下,人工智能与教育的结合创新是未来教育变革的重要趋势。无论是改进课堂教学和教育系统,还是推动可持续发展目标4的实现,人工智能无疑展现了巨大潜力。随着教育技术行业持续壮大,G20国家也在进行大规模投资,人工智能在教育领域的普及将势不可挡。OECD的报告表明,人工智能在个性化学习、特殊需求学生学习、学生辍学问题的应用及技能评估工具的改进方面发挥了巨大作用。各国对人工智能的应用充分展现了其巨大的价值,有助于我们把握世界教育领域中人工智能的发展趋势,以及落实《G20人工智能原则》是否实现,促进人工智能在教育中的深入应用,推动下一步的研发与改进。由于人工智能在教育领域的应用大都处于新生阶段,尚未完全成熟,其决策准确性、解释性与透明度必然引起了社会的诸多质疑。为应对挑战,各国在人工智能应用的研究、开发、应用与推广过程中,应提高人工智能应用的透明度、可追溯性,增强可解释性,明确记录技术流程与人为决策等信息,建立数据与存储限制及问责制,构建更加可靠、更值得信赖、更安全及健全的人工智能系统。

作者简介:钟悦,上海师范大学国际与比较教育研究院硕士研究生;王洁,上海师范大学国际与比较教育研究院教授

来源:《世界教育信息》2021年第1期返回搜狐,查看更多

【热点聚焦】人工智能教育应用的现状分析、典型特征与发展趋势

一、人工智能的发展历程与核心驱动力

(一)人工智能的三次浪潮

人工智能起源于1956年美国达特茅斯学院举办的夏季学术研讨会。在这次会议上,达特茅斯学院助理教授JohnMcCarthy提出的“人工智能(ArtificialIntelligence,AI)”这一术语首次正式使用。之后,人工智能的先驱艾伦·图灵提出了著名的“图灵测试”:在人机分隔的情况下进行测试,如果有超过30%的测试者不能确定被试是人还是机器,那么这台机器就通过了测试,并被认为具有人工智能。图灵测试掀起了人工智能的第一轮浪潮。在人工智能研究方法上,以抽象符号为基础,基于逻辑推理的符号主义方法盛行,其突出表现为:在人机交互过程中数学证明、知识推理和专家系统等形式化方法的应用。但在电子计算机诞生的早期,有限的运算速度严重制约了人工智能的发展。

20世纪80年代,人工智能再次兴起。传统的符号主义学派发展缓慢,有研究者大胆尝试基于概率统计模型的新方法,语音识别、机器翻译取得了明显进展,人工神经网络在模式识别等领域初露端倪。但这一时期的人工智能受限于数据量与测试环境,尚处于学术研究和实验室中,不具备普遍意义上的实用价值。

人工智能的第三次浪潮缘起于2006年Hinton等人提出的深度学习技术。ImageNet竞赛代表了计算机智能图像识别领域最前沿的发展水平,2015年基于深度学习的人工智能算法在图像识别准确率方面第一次超越了人类肉眼[7],人工智能实现了飞跃性的发展。随着机器视觉研究的突破,深度学习在语音识别、数据挖掘、自然语言处理等不同研究领域相继取得突破性进展。2016年,微软将英语语音识别词错率降低至5.9%,可与人类相媲美。如今,人工智能已由实验室走向市场,无人驾驶、智能助理、新闻推荐与撰稿、搜索引擎、机器人等应用已经走进社会生活[8]。因此,2017年也被称为人工智能产业化元年。

(二)人工智能的三大要素与核心驱动力

回顾人工智能的发展历程,在三次浪潮的浮浮沉沉中,人工智能不断突破并接近自身的目标:能够根据对环境的感知,做出合理的行动,从而获得最大收益。从人工智能的发展历程来看,不难看出,运算力、数据量和算法模型是人工智能的三大要素。如图1所示,人工智能具体应用的实现,如语音识别和图像识别等,需要先赋予机器一定的推理能力,然后它才能做出合理的行动。而这种推理能力,源自于大量的应用场景数据集。通过使用大量的数据对算法模型进行一定的训练,机器才能够根据算法做出具有类人智能的判断、决策和行为。奠定了的坚实基础。

人工智能在逐步发展完善自身理论与方法,以及寻求外部动力的过程中螺旋式上升发展。从图灵测试理论的提出到无人驾驶汽车自动上路行驶,从实验室的“封闭世界”到外部“开放世界”的安全过渡,大数据、云计算和深度学习这三大核心驱动力,共同促成了人工智能的突破性进展。

1.大数据

人工智能建立于海量优质的应用场景数据基础之上。训练数据的数量、规模和质量尤为重要,丰富的海量数据集是算法模型训练的前提。甚至有观点认为,拥有更海量的数据比拥有更好的算法更重要。受益于移动互联网的发展和多样化智能终端的普及,以及物联网的发展和传感器的大量应用,源自各种设备及互联网应用的数据急剧增加,大数据迅速发展。大数据处理技术能在很大程度上提高人工智能训练数据集的质量,并能优化存储和管理标注后的数据。因此,可以说,海量数据是机器智能的源泉,大数据有力地助推了机器学习等技术的进步,在智能服务的应用中释放出无限潜力。

2.并行计算

人工智能发展过程中,有限的运算能力曾是制约人工智能发展的主要瓶颈。从电子计算机出现的早期至今,机器的运算处理能力不断提升,为人工智能的发展提供了极大的动力支持。云计算在虚拟化、动态易扩展的资源管理方面的优势,GPU等人工智能专用芯片的出现,奠定了人工智能在大规模、高性能并行运算的软硬件基础,推动数据处理规模和运算速度的指数级增长,极大地提高了算法执行效率和识别准确率。

3.深度学习

数据和硬件是人工智能的基础,而算法是人工智能的核心。人工智能发展史上,两个转折点尤其值得关注。一个是研究方法由符号主义转向统计模型,自此开辟了人工智能发展的新路径;另一个是深度学习凭借绝对优势,颠覆了其他算法设计思路,突破了人工智能的算法瓶颈。深度学习即深度网络学习,它受人类大脑神经结构的启发,由一组单元组成,每个单元借由一组输入值而产生输出值,该输出值又继续被传递到下游神经元。深度学习网络通常使用许多层次,且在每层使用大量单元,以便识别海量数据中极其复杂和精确的模式。深度学习将人类程序员从构建模型的复杂活动中解放了出来,并提供一种更优化、更智能的算法,能够自动从海量数据库中进行自我学习,自动调整规则参数并优化规则和模型,识别准确率极高。自学习状态已成为机器学习的主流方法。

二、人工智能教育应用的现状分析

逻辑推理、知识表示、规划和导航、自然语言处理和感知是人工智能的主要问题空间[9]。在教育问题解决与应用中,人工智能主要有四大应用形态:智能导师系统、自动化测评系统、教育游戏与教育机器人。

(一)智能导师系统

智能导师系统(IntelligentTutoringSystem,ITS)由早期的计算机辅助教学发展而来,它模拟人类教师实现一对一的智能化教学,是人工智能技术在教育领域中的典型应用。典型的智能导师系统主要由领域模型、导师模型和学习者模型三部分组成,即经典的“三角模型”。领域模型又称为专家知识,它包含了学习领域的基本概念、规则和问题解决策略,通常由层次结构、语义网络、框架、本体和产生式规则的形式表示,其关键作用是完成知识计算和推理。导师模型决定适合学习者的学习活动和教学策略,学习者模型动态地描述了学生在学习过程中的认知风格、能力水平和情感状态。事实上,ITS的导师模型、学习者模型和领域模型正是教学三要素——教师、学生、教学内容的计算机程序化实现,其互相关系如图2所示。其中,领域模型是智能化实现的基础,教学模型则是领域模型和学生模型之间的桥梁,其实质是做出适应性决策和提供个性化学习服务。教学模型根据领域知识及其推理,依据学习者模型反映的学习者当前的知识技能水平和情感状态,做出适应性决策,向学习者提供个性化推荐服务,如图3所示。

ITS尊重学习者的个性特征,如学习风格、兴趣、特长等,满足学习者的个性化需求。ITS根据学习者模型所刻画的个性特征,向其提供个性化的学习路径[10]、学习资源[11]和学习同伴等资源。美国国防高级研究计划署赞助开发的一种使用人工智能来模拟专家和新手之间的互动的数字导师系统,能够帮助学习者获得所需的技能,将海军新兵训练成为技术技能专家所需的时间从几年减少到几个月。

近年来,情感、元认知和动机等研究越来越受重视,神经科学、认知科学、心理学和教育学的研究表明,情感状态在一定程度上影响了学生的学习效率和态度[12],消极的情感状态会阻碍学生的思考过程,而积极的情感为学生的问题解决和创新进步提供有利的条件。然而,情感缺失一直是ITS中存在的突出问题。ITS通过与学生的交互实现情感的感知、识别、调节与预测。根据学生情感的来源,如面部表情[13]、声音等可察因素,及可测量的行为等,采用传感器等技术获取数据,根据相关科学模型,应用人工智能的方法与技术,综合运用心理学和认知科学等知识进行情感推理,也称之为情感识别或情感计算[14]。研究表明,系统通过对话的方式对学生进行的情感调节具有积极效果[15]。

ITS中教学模型模拟人类教师实现一对一个性化教学的过程即是适应性教学策略选取和个性化资源推荐算法的实现过程,适应性教学策略选择是资源个性化推荐的前提。在适应性教学策略的选择方面,这种适应性表现为多个层次:从适应性应答学生的表现,适应学生的知识水平,帮助学生取得具体目标,到对学生的情感状态做出适应性干预调节,提供适应学生元认知能力的帮助。事实上,ITS要模拟人类教师凭借经验进行决策的复杂过程,具有一定难度。而人工智能引发了教育领域的数据革命和智能化革命,数据驱动的智慧教学与智能决策正在成为教育教学的新范式。

(二)自动化测评系统

评价是教学活动的重要组成部分。自动化测评技术的应用引发了评价方法和形式的深刻变革。自动化测评系统能够实现客观、一致、高效和高可用的测评结果,提供即时反馈,极大地减轻教师负担,并为教学决策提供真实可靠的依据。

1.ICT技能与程序作业的自动化测评系统

ICT技能培训与程序设计是计算机教育领域中的重要内容。ICT技能是信息时代的基本素养。文字编辑、电子表格数据处理、收发邮件、制作演示文稿和网页等技能的学习和培训过程中,ICT自动化测评系统所构建的信息模型通过信息获取、知识推理和综合评价三个步骤,动态跟踪用户的操作行为,并对操作过程进行诊断、评价和反馈,极大地提高了学习效率[16]。

计算机程序设计是培养计算思维的有效途径,程序作业通常由学生上机完成。程序设计语言有其自身的语法规则。动态程序测评能够获取程序的编译和运行时信息,分析程序的行为和功能,从程序的功能和执行效率出发,展开综合评价。而静态程序测评,如图4所示,首先对程序代码进行信息提取,然后将程序进行中间形式表示,预测程序所有可能的执行路径与结果,利用知识发现技术实现对程序的评价。目前,国内外已经实现自动化测评的程序设计语言包括Java、C/C++、Python和Pascal,以及汇编语言、脚本语言和数据库查询语言等。

2.自动化短文评价系统

短文写作是当前很多标准化测试的基本要求。随着人工智能技术的发展,自动化短文评价(AutomatedAssessmentofEssaysandShortAnswers)运用自然语言处理技术和机器学习等技术实现对短文本的计算分析和语义理解。美国教育考试服务中心(EducationalTestingService,ETS)设计和举办多项大型标准化考试,如TOEFL、SAT、GRE等。ETS始终致力于测评理论、方法和技术的研究,尤其在自动化测评领域一直处于前沿。目前,ETS已经实现了语音、短文、数学等领域的自动化评价与反馈。在其产品中,TextEvaluator[17]是一种全自动化的基于Web的技术工具,旨在辅助教师、教材出版商和考试开发人员选取用于学习和测试的文本段落。TextEvaluator超越了传统的句法复杂性和词汇难度的可读性维度,解决了由于内聚性、具体性、学术导向、论证水平、叙述程度和交互式对话风格的差异而导致的复杂性变化。另外,E-rater[18]引擎用于学生作文的自动化评分和反馈。在设定了评价标准之后,学生可以使用E-rater的反馈来评估他们的写作技巧,并确定需要改进的地方。教师可用来帮助学生独立发展自己的写作技巧,并自动获得建设性的反馈意见。除了提供短文的整体得分,E-rater还提供关于语法、写作风格和组织结构等的实时诊断和反馈。

3.自动化口语测评系统

自动化口语评价运用语音识别等技术实现了多种语言口语语音的自动化测试与评价,图5展示了基于移动智能终端和测评云服务的口语学习系统架构,其中声学模型和语言学模型是语音识别的关键。ETS的SpeechRater引擎是英语口语测评方面应用最广泛的测评引擎之一。其测评任务并不限定范围和对象,开放性是其最大特点。该引擎可以用于提高发音可靠性、语法熟练度和交际的流利程度。SpeechRater引擎使用自动语音识别系统处理每个响应,该系统特别适用于母语非英语的学习者。基于该系统的输出,使用自然语言处理和语音处理算法来计算在许多语言维度上定义语音的一组特征,包括流利性、发音、词汇使用、语法复杂性和韵律。然后将这些功能的模型应用于英语口语测评,最终得出分数并提供反馈建议。

对于我国的英语教学来说,言语环境匮乏是当前制约学生英语口语学习的最大障碍,口语评价难度较大且时效性差更加加剧了英语口语教与学的难度。科大讯飞依托语音技术的强劲优势,所开发的听说智能测试系统、英语听说智能考试与教学系统和大学英语四六级口语考试系统可以用于促进英语听说训练和自动化测试与反馈。另外,普通话模拟测试与学习系统和国家普通话智能测试系统在推广普通话及相关考试方面发挥着重要作用。

(三)教育游戏

游戏智能是人工智能研究内容的一部分。运用深度学习技术的AlphaGo大胜人类职业围棋选手,标志着人工智能技术的又一次飞跃。在教育应用领域中,计算机和视频游戏不仅仅提供一种娱乐方式,更能推动玩家在游戏中获得新的知识和技能。教育游戏具有明确、有意义的目标,多个目标结构,评分系统,可调节的难度级别,随机的惊喜元素,以及吸引人的幻想隐喻。教育游戏通过构建充分开放的游戏框架和环境,提供一种观察和认识世界的新视角。益智游戏玩家不仅使用游戏工具解决问题,而且还使用自己的知识和技能。在角色扮演中,玩家必须在恶劣的环境中生存和获得新的知识。在所有这些情况下,对周围空间的详细研究等活动都是对玩家的注意力、耐心、专业知识和逻辑思维的考验与锻炼。例如,芝加哥科学与工业博物馆的网站允许游客玩“生存模式”的游戏[19]。该游戏专为青少年设计,专注于研究在极端情况下发生在人体内的主要身体系统的变化过程。游戏玩家不仅克服了许多障碍,还了解了人体的结构。另外,青少年学会使用鼠标和手写笔学习撰写简单的生存搜索等机器人程序。

(四)教育机器人

教育机器人在教学中的应用越来越普遍。一方面,教育机器人可以培养和发展学生的计算思维能力。越来越多的学校正在引进教育机器人作为创新的学习环境,用于提高和建立学生的高层思维能力,作为提高学生学习动机和抽象概念理解的补充工具,帮助学生解决复杂的问题。另一方面,教育机器人具有多学科性质,提供建设性的学习环境,有助于学生更好地理解科学知识,在科学、技术、工程和数学(STEM)教育方面发挥着重要作用。在STEM教学方面,机器人可以协助教师实现工程和技术概念的真实应用,将现实世界中的科学和数学概念进行具体化,有助于消除科学和数学的抽象性。事实上,各种教育机器人的应用推动了科学、技术、工程和数学在教学的改进,机器人固有的灵活性使其在STEM不同教育场景中的应用取得了成功[20]。此外,使用机器人教学有助于增强批参与者的判性思维,促进团队合作,提高沟通交流能力和创新能力。

三、人工智能教育应用的典型特征与发展趋势

人工智能通过知识表示、计算与理解,可以模拟人类教师实现个性化教学;依托于问题空间理论,实现知识和技能的自动化测量与评价;借助于自然语言处理与语音识别技术,解决文本和口语语音的词法分析、语法判别和语义理解;通过教育游戏和教育机器人,以智能增强的方式赋予“寓教于乐”以新的内涵。进一步深入分析人工智能教育应用的典型特征,并把握其未来发展趋势是推动人工智能教育应用的必要条件。

(一)五大典型特征

人工智能在教育应用中的典型特征突出体现在以下五个方面:

1.智能化

智能化是教育信息化的发展趋势之一。海量数据蕴藏着丰富的价值,在知识表示与推理的基础上,构建算法模型,借助于高性能并行运算可以释放这种价值与能量。未来,在教育领域将会有越来越多支持教与学的智能工具,智慧教学将给学习者带来新的学习体验。在线学习环境将与生活场景无缝融合,人机交互更加便捷智能,泛在学习、终身学习将成为一种新常态。

2.自动化

与人相比,人工智能更擅长记忆、基于规则的推理、逻辑运算等程序化的工作,擅长处理目标确定的事务。而对于主观的东西,如果目标不够明确,则较为困难。如数学、物理、计算机等理工科作业,评价标准客观且容易量化,自动化测评程度较高。随着自然语言处理、文本挖掘等技术的进步,短文本类主观题的自动化测评技术将日益成熟并应用于大规模考试中。教师将从繁重的评价活动中解放出来,从而有精力专注于教学。

3.个性化

基于学习者的个人信息、认知特征、学习记录、位置信息、媒体社交信息等数据库,人工智能程序可以自学习并构建学习者模型,并从不断扩大更新的数据集中调整优化模型参数。针对学习者的个性化需求,实现个性化资源、学习路径、学习服务的推送。这种个性化将越来越呈现出客观、量化等特征。

4.多元化

人工智能涉及多个学科领域,未来的教学内容需要适应其发展需要,如美国已经高度重视STEM学科的学习,我国政府高度重视并鼓励高校扩展和加强人工智能专业教育,形成“人工智能+X”创新专业培养模式。从人才培养的角度分析,学校教育应更强调学生多元能力的综合性发展,以人工智能相关基础学科理论为基础,提供基于真实问题情境的项目实践,侧重激发、培养和提高学生的计算思维、创新思维、元认知等能力。

5.协同化

短期来看,人机协同发展是人工智能推动教育智能化发展的一种趋势。从学习科学的角度分析,学习是学习者根据自己已有的知识去主动构建和理解新知识的过程。对于人工智能来说,新知识是它们所无法理解的,所以这种时候学习者就需要教师的协同、协助和协调。因此在智能学习环境中,教师的参与必不可少,人机协同将是人工智能辅助教学的突出特征。

(二)发展趋势

人工智能在教育中的应用特征为推动人工智能与教育的融合创新发展指明了方向。在当前国家大力发展人工智能的政策引领下,不仅要从本质上认识人工智能的核心要素与驱动力,把握其典型应用特征,还要能够顺应其发展趋势。以数据驱动引领教育信息化发展方向,以深化应用推动教育教学模式变革,以融合创新优化教育服务供给方式,将是人工智能教育应用的未来发展趋势,也是人工智能时代教育发展的鲜明任务和重要机遇。

1.以数据驱动引领教育信息化发展方向

人工智能技术在教育领域的深入应用,推动着信息技术与教育的融合创新发展。纵观人工智能在教育领域的应用发展历程,从早期基于规则的知识表示与推理,到今天基于深度学习的自然语言处理、语音识别与图像识别,“智能”的习得已经由早期的专家赋予演变为机器主动学习获取。除了算法模型的显著改进,作为模型的训练数据集,大数据为人工智能添加了十足的动力燃料。大数据智能以数据驱动和认知计算为核心方法,从大数据中发现知识,进而根据知识做出智能决策。数据已经成为产业界争夺的焦点,数据驱动的智能决策与服务已经成为学术界研究的热点。在教育领域,数据可以解释教育现象,也可以揭示教育规律,并能够预测未来趋势。数据驱动的方法推动着教育研究从经验主义走向数据主义和实证主义。因此,教育数据革命已经到来。数据驱动的人工智能将引领教育信息化发展的新方向。

2.以深化应用推动教育教学模式变革

人工智能在教育领域取得如此大的成就,技术引领是关键。同时,不难看出,人工智能在教育领域的应用具有较强的场景性,也就是说,这种应用是针对教育实践活动中的具体问题而展开的,具有明确的问题空间和目标导向。也因此,这种由应用驱动的技术与教育的融合发展,是技术在教育领域中的一种深入应用。如自动化口语测评中,针对具体的语言语音对象,在语音识别技术的基础上,应用语音测评技术实现对学生口语的自动化评价。人工智能技术在教育领域的深化应用,创设了强感知、高交互、泛在的学习环境,为学生的知识建构活动提供了良好条件,为创新型教学模式的发现和运用提供了空间。

3.以融合创新优化教育服务供给方式

人工智能在教育领域中的应用实现了跨学科、跨领域和跨媒体的融合创新。人工智能与神经科学、认知科学、心理学、数学等相关基础学科的交叉融合,联合推动了教育人工智能技术的发展和应用。同时,人工智能本身的发展,离不开人工智能教育和培训。而这种教育更需要建立于STEM学科融合的基础之上。人工智能与教育两者相辅相成,互相促进。跨领域推理融合了多个领域的数据与知识,奠定了强大的智能基础。跨媒体感知计算以智能感知、场景感知、视听觉感知、多媒体自主学习等理论方法为依托,旨在实现超人感知和高动态、高纬度、多模式分布式大场景感知[21]。人工智能技术与教学内容、教学媒体和知识传播路径的多层次融合,突破了传统教育方式的限制,提供跨学科、跨媒体、跨时空的智能教育服务供给,是建设“人人皆学、处处能学、时时可学”学习型社会的有效途径。

基于上述人工智能在教育中的主要应用与典型特征分析,本文提出如图6所示的人工智能与教育融合发展体系。在大数据和深度学习等技术的重要支撑下,人工智能关键技术的突破,推动了人工智能在教育领域中的多样化应用形态,并提供了更智能的学习服务与体验,呈现出智能化、自动化、个性化、多元化和协同化的特征与趋势。在服务监控与治理的保障下,以政策为引领,牢牢把握“应用驱动”的基本原则,进而展开理论和技术研究,是推动人工智能与教育融合创新发展的重要路径。

四、结束语

本文回顾了人工智能的发展历程,揭示了人工智能的三大内部要素与外部驱动力。结合人工智能技术在教育中的四大具体应用形态,深入分析了人工智能教育应用的五大典型特征,并据此指出其未来的发展趋势,最终将上述内容进行归纳总结,构建了人工智能与教育融合创新发展体系,旨在为我国人工智能与教育的融合发展提供理论指导。

人工智能技术正在推动教育信息化的快速发展。然而,在推进人工智能教育应用的过程中,还有很多具体问题值得探讨,亟待解决。如训练人工智能算法模型需要开放教育大数据,但会涉及到个人隐私暴露等信息安全问题;相关技术在教学与考试中的应用,可能需要政策和制度的同步完善;人工智能在提高教学效率和推动教育公平的同时,是否也会造成数字鸿沟的增大;未来的教师和学生、教育研究、教育管理和规划等该如何适应人工智能带来的诸多变革等。面对全球智能化发展趋势及其挑战,教育必须积极主动地调整自身发展,借助现有技术的优势与潜能,实现服务社会经济发展的功能。

参考文献:

[1]贾积有.国外人工智能教育应用最新热点问题探讨[J].中国电化教育,2010,(7):113-118.

[2]闫志明,唐夏夏,秦旋等.教育人工智能(EAI)的内涵、关键技术与应用趋势——美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J].远程教育杂志,2017,35(1):26-35.

[3]余明华,冯翔,祝智庭.人工智能视域下机器学习的教育应用与创新探索[J].远程教育杂志,2017,35(3):11-21.

[4]唐烨伟,郭丽婷,解月光,钟绍春.基于教育人工智能支持下的STEM跨学科融合模式研究[J].中国电化教育,2017,(8):46-52.

[5]张剑平,张家华.我国人工智能课程实施的问题与对策[J].中国电化教育,2008,(10):95-98.

[6]吴永和,刘博文,马晓玲.构筑“人工智能+教育”的生态系统[J].远程教育杂志,2017,35(5):27-39.

[7]TheElectronicFrontierFoundation.MeasuringtheProgressofAIResearch[DB/OL].https://www.eff.org/files/AI-progress-metrics.html#Vision,2017-10-15.

[8]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.5-25.

[9]FrankChen.AI,DeepLearningandMachineLearning:APrimer[DB/OL].http://a16z.com/2016/06/10/ai-deep-learning-machines,2017-10-15.

[10]HwangGJ,KuoFR,YinPY,etal.AHeuristicAlgorithmforplanningpersonalizedlearningpathsforcontext-awareubiquitouslearning[J].Computers&Education,2010,54(2):404-415.

[11]梁迎丽,梁英豪.基于语音评测的英语口语智能导师系统研究[J].现代教育技术,2012,22(11):82-85.

[12]NkambouR,MizoguchiR,BourdeauJ.AdvancesinIntelligentTutoringSystems[M].Berlin:SpringerHeidelberg,2010.

[13]BoumizaS,BekiarskiA,SouilemD,etal.Developmentofmodelforautomatictutorine-learningenvironmentbasedonstudentreactionsextractionusingfacialrecognition[A].201715thInternationalConferenceonElectricalMachines,DrivesandPowerSystems(ELMA)[C].Sofia:IEEE,2017.488-492.

[14]PetrovicaS,Anohina-NaumecaA,EkenelHK.EmotionRecognitioninAffectiveTutoringSystems:CollectionofGround-truthData[J].ProcediaComputerScience,2017,(104):437-444.

[15]GraesserAC.ConversationswithAutoTutorhelpstudentslearn[J].InternationalJournalofArtificialIntelligenceinEducation,2016,26(1):124-132.

[16]许骏,柳泉波.IT技能测评自动化技术[J].小型微型计算机系统,2001,22(12):1489-1493.

[17]EducationalTestingService.TextEvaluatorCapability[DB/OL].http://www.ets.org/research/topics/as_nlp/educational_applications/,2017-10-15.

[18]BursteinJ.TheE-raterscoringengine:Automatedessayscoringwithnaturallanguageprocessing[A].Mahwah.M.d.shermis&J.c.burstein[C].NJ:LawrenceErlbaumAssociates,2003.113-121.

[19]Chicagomuseumofscience+industry.CodeFred:SurvivalMode[DB/OL].http://www.msichicago.org/experiment/games/code-fred-survival-mode/,2017-10-16.

[20]BenittiFBV,SpolavrN.HowHaveRobotsSupportedSTEMTeaching?[DB/OL].https://www.kukakore.com/robotic-stem-education/,2017-10-15.

[21]PengYX,ZhuWW,ZhaoY,etal.Cross-mediaanalysisandreasoning:advancesanddirections[J].FrontiersofInformationTechnology&ElectronicEngineering,2017,18(1):44-57.

文章来源|文章转自“中国电化教育”微信公众平台,作者系梁迎丽,刘陈,版权归原作者及发布单位所有。

返回搜狐,查看更多

人工智能在中学教育教学中的应用现状分析

但是,从教学一线的现状来看,人工智能课程的教学效果有待提高,人工智能辅助教学的功能体现的不够充分,专家学者对人工智能在中学中的应用研究较为薄弱。因此,为提高中学人工智能课程教学效果和人工智能在教育教学中的深层次应用,该研究从学术期刊与教材两个方面着手,对中学人工智能教学现状、应用现状与研究现状进了分析,其目的在于借鉴学术界已有的研究成果,为中学人工智能课程的开展和人工智能在中学教育中的深层次应用提供理论指导。

研究样本与研究方法

研究样本

学术期刊的选择2001年11月教育部办公厅发布的《普通高中信息技术课程标准》中规定了中学信息技术课程包含信息技术基础必修模块和选修模块。自此,在中学信息技术课程中人工智能成为不可或缺的一部分。

因此,该文基于中国期刊网(CNKI)在《电化教育研究》、《中国电化教育》、《现代教育技术》、《中国医学教育技术》等4种期刊中检索了2002年1月到2012年12月间与人工智能相关的文献。检索时首先以“人工智能”为主题词进行初次搜索,再以人工智能研究领域的关键词(AI、机器人、模式识别、专家系统、神经网络等)进行第二次检索。在搜索结果中首先剔除重复文献、会议报道等无关样本,然后逐篇分析其关键词和摘要,直到确定文章的归属为止。最终确定了68篇文献作为重点研究内容。

教材的选择根据《普通高中课程方案(实验)》的规定,高中信息技术学科被列入技术学习领域,包括一个必修模块和五个选修模块。为增强课程选择的自由度,五个选修模块平行设计,相对独立(如图1所示)。目前,经全国中小学教材审定委员会初审通过的“普通高中信息技术课程标准实验教材”已经有五个出版社的版本:它们分别是“广东教育出版社”、“教育科学出版社”、“中国地图出版社”、“浙江教育出版社”和“上海科技教育出版社”,这五套教材已在全国多个省区实验并推广使用[4]。笔者以目前使用范围较为广泛的广教版必修教材、广教版选修教材和浙教版必修教材为例进行研究。

图1普通高中信息技术课程方案

研究方法

学术期刊的研究方法笔者对上述4种期刊中与人工智能相关的文献进行了定量和定性的分析。首先依据期刊中文献统计的数据,建立数学模型,并用数学模型计算出分析对象的各项指标。然后,依据文献中各对象的数值指标、一线课堂的真实情况以及人工智能研究领域的最新进展对分析对象的性质、特点、发展变化规律做出判断。教材的研究方法笔者就广教版和浙教版高中必修内容《信息技术基础》中人工智能的设置类型和设置比例进行了对比分析,又以广教版高中信息技术选修5《人工智能初步》为例,对目前中学人工智能选修课的内容分布、难易程度、教学模式、实施现状等逐一做了分析。

研究结果分析

从2002年1月到2012年12月,上述4中期刊中与人工智能相关的文献共计68篇,其中与中学教育教学直接相关的有24篇,其分布情况如表1所示。

从期刊文献的发表数量来看,人工智能已经成为教育技术学领域的一个重要研究领域和发展方向。人工智能在中学教育教学中的应用也受到了专家学者的普遍关注。据文献统计数据显示,《中国电化教育》杂志对中学的关注度较高;从作者来看,浙江师范大学的张剑平教授对人工智能的关注度很高;在上述研究样本中,张剑平教授的文献共计有12篇,其中与中学直接相关的有7篇。

从期刊文献的发表时序来看,文献数目呈“凸”字型分布(如图2所示)。人工智能引入教育界时,人们对这一模仿人脑的新型技术充满好奇与期待,在学术界的关注度呈逐年上升趋势。但是,由于对人工智能的研究需要脑神经科学、计算机科学、教育学、心理学等复杂的学科背景,许多专家学者对其研究逐步减弱,因此其发展速度偏低,其关注度在2008年之后呈递减趋势。

根据研究文献的集中趋向,笔者将研究内容划分为五个类目。再根据已确定的研究类目,对研究文献进行了统计分析,其结果如表2所示。

由表2可以看出,研究内容主要集中在人工智能的理论研究、系统研发,人工智能在教育中的应用以及在课程教学中的研究,且分布较为均匀。深入研究发现,在人工智能课程教学研究中以“机器人教学”为主。人工智能教育应用主要集中在高等院校,在中学中的应用较为简单,如Z+Z智能教育软件在数学教学中应用。从人工智能在信息技术课程中的设置情况分析在全国中小学信息技术教育工作会议上,教育部决定从2001年起用5-10年的时间在全国中小学普及信息技术教育。自2002年广东省、山东省、海南省、宁夏回族自治区首批进入新课改以来,我国其他地区也陆续进入了新课改。目前,人工智能的不少研究领域,如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的日常生活。张剑平2003年1月发表在《电化教育研究》上的《关于人工智能教育的思考》一文中强调:人工智能理论和技术在一定程度上代表着信息技术的前沿,应当在现有的中学信息技术课程体系中增加人工智能课程,以便更全面地培养学生的信息素养。

当前,我国中学使用的信息技术教材存在地域性差异。但基本上关于人工智能的都包含两个部分:一是在信息技术必修教材中与人工智能相关的内容;二是人工智能选修模块。笔者首先就现行高中信息技术必修教材(以广东教育出版社《普通高中课程标准实验教科书信息技术基础》和浙江教育出版社《普通高中课程标准实验教科书信息技术基础》)中人工智能部分在教材中所占的比例和涉及的领域进行了分析研究。其结果如表3所示。

从上述统计结果可以看出,在中学信息技术教育中,人工智能已经成为重要一部分,但是就教学层面而言,只关注了人工智能在信息处理方面的原理和应用。对于人工智能的其他研究领域在必修教材中没有涉及。其次,以广教版选修教材例,分析了选修5《人工智能初步》课程设置情况:目前大部分学校对信息技术的选修模块开设的并不完整,大多只开了选修《多媒体技术应用》。因此,笔者就两个选修模块的教材进行了横向比较,并分析其原因:在信息技术选修5《人工智能初步》中深入介绍了人工智能。教材内容主要包涵了五部分内容:即人工智能初探、知识表示及Prolog语言、专家系统、问题求解、人工智能的回顾与展望。从教材内容的设置来看,充分体现了新课改自主探究的理念。整个教材的设置解读了人工智能是什么、为什么、怎么实现的问题。这不仅使学生能够一脉相承地了解人工智能的总体思路,也为学生在实际的生活和学习中如何解决问题提供了的思路。

选修5和选修2相比较,在以下三个方面存在显著差异,使得选修5在中学的实施广度上低于选修2。第一,师资力量薄弱。尽管从课程内容设置的数量上来看,选修5少于选修2(选修5共五章内容,涉及74个知识点;选修2共8章内容,涉及91个知识点)。但是从难易程度上来看,选修5明显高于选修2。选修2为多媒体技术应用,主要包涵对多媒体的认识以及多媒体作品的采集与加工。随着信息化的飞速发展,这些内容与教师和学生的生活息息相关,这个主题已经不再陌生,技术相对成熟,且简单便于操作,信息技术教师的胜任度高。而由于选修模块的开设时间较短,大多数学校还没有专攻人工智能方向的教师。第二,对硬件的要求高。对于选修2,只需要学校配备普通的多媒体计算机即可。而选修5对计算机的配置要求较高,在第四章第五节中还涉及了机器人相关知识,从某种程度上来说学校还需要购置相应的人工智能设备。可见,选修5对硬件的要求远高于选修2。第三,与必修的相关程度偏低。在必修《信息技术基础》中,与多媒体相关的内容远高于人工智能。因此,学生在多媒体方面的基础高于人工智能。因此,学校在课程开设上对选修2有了倾向性,学生在选课上也对选修2有了倾向性。

从教材的整体设置结构来看,都是以建构主义为基本指导思想,注重学生的实际操作能力。每一小节都设置了活动课,以促进知识的应用能力和创新能力。从文献中分析,与人工智能在中学教学中的教法相关的研究较少。马超[5]等发表在《现代教育技术》2008年第8期上的《高中<人工智能初步>教学的三种常用模式》中总结了人工智能在我国高中课堂上的三种常用模式:即“情境化教学模式”、“基于问题的教学模式”、“基于案例的教学模式”。同时指出,“问题探索”是核心,“基于案例”是难点。笔者认为,要真正促进人工智能在中学中的进程,课堂是关键,而教法又是把握住课堂的关键。但是在这一领域的理论研究和实践经验都比较匮乏,需要一线教师的不懈努力,也需要理论与实践的深层次结合。

总结

人工智能技术及其应用的发展已经走过了50余年,它作为信息技术的前沿领域,对社会发展的影响越来越大。在基础教育课程改革的浪潮中,许多国家意识到在基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。英国早在1999年将人工智能课程作为选修课出现在中学的信息与通信技术(ICT)课程中[6]。我国教育部于2003年4月正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步[7]。但是就目前人工智能课程在我国中

学阶段的开展情况来看不容乐观,人工智能在中学教育教学中的应用体现的还不够充分。因此,想要解决上述问题,需要各级教育行政机构的高度重视,需要专家学者的执着追求,更需要一线教师的积极探索。

参考文献

[1]张剑平.关于人工智能教育的思考[J].电化教育研究,2003,(1):24-28

[2]史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1

[3]吴战杰,秦健.Agent技术及其在网络教育中的应用研究[J].电化教育研究,2003,(3):32-36

[4]王海燕,赵彬.中学信息技术教材研究与教学设计[M].西安:陕西师范大学出版社,2011:2

[5]马超,张义兵,赵庆国.高中《人工智能初步》教学的三种常用模式[J].现代教育技术,2008,(8):51-53

[6]SQA.NQReviewInvestigationReport:ComputingandInformation

Systems[EB/OL].http://www.sqa.org.uk/sqa/28.139.html

[7]教育部.普通高中技术课程标准(实验)[EB/OL].http://www.ycy.com.cn/Article/kcbz/gz/200608/8543_3.html

|来源:中国医学教育技术

|作者:王斐

|美编:甄宏莉返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇