新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
人工智能底层芯片起底——CPU 的历史终结
与CPU少量的逻辑运算单元相比,GPU整个就是一个庞大的计算矩阵,GPU具有数以千计的计算核心、可实现10-100倍应用吞吐量,而且它还支持对深度学习至关重要的并行计算能力,可以比传统处理器更加快速,大大加快了训练过程。GPU是目前最普遍采用的深度学习运算单元之一。
目前,谷歌、Facebook、微软、Twitter和百度等互联网巨头,都在使用GPU作为其深度学习载体,让服务器学习海量的照片、视频、声音文档,以及社交媒体上的信息,来改善搜索和自动化照片标记等各种各样的软件功能。而某些汽车制造商也在利用这项技术开发无人驾驶汽车。
不过,由于GPU的设计初衷是为了应对图像处理中需要大规模并行计算。因此,根据乐晴智库介绍,其在应用于深度学习算法时有数个方面的局限性:
第一,应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理,并行度的优势不能完全发挥。
第二,硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU无法灵活的配置硬件结构。
另外,在能耗上面,虽然GPU要好于CPU,但其能耗仍旧很大。
备受看好的FPGA
备受看好的FPGA
FPGA,即现场可编辑门阵列,是一种新型的可编程逻辑器件,由于其具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。
FPGA作为人工智能深度学习方面的计算工具,主要原因就在于其本身特性:可编程专用性,高性能,低功耗。
北京大学与加州大学的一个关于FPGA加速深度学习算法的合作研究。展示了FPGA与CPU在执行深度学习算法时的耗时对比。在运行一次迭代时,使用CPU耗时375毫秒,而使用FPGA只耗时21毫秒,取得了18倍左右的加速比。
根据瑞士苏黎世联邦理工学院(ETHZurich)研究发现,基于FPGA的应用加速比CPU/GPU方案,单位功耗性能可提升25倍,而时延则缩短了50到75倍,与此同时还能实现出色的I/O集成。而微软的研究也表明,FPGA的单位功耗性能是GPU的10倍以上,由多个FPGA组成的集群能达到GPU的图像处理能力并保持低功耗的特点。
根据英特尔预计,到2020年,将有1/3的云数据中心节点采用FPGA技术。
不可估量的ASIC
不可估量的ASIC
ASIC(ApplicationSpecificIntegratedCircuits,专用集成电路),是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。ASIC用于专门的任务,比如去除噪声的电路,播放视频的电路,但是ASIC明显的短板是不可更改任务。但与通用集成电路相比,具有以下几个方面的优越性:体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低。
从算力上来说,ASIC产品的计算能力是GK210的2.5倍。功耗上,ASIC功耗做到了GK210的1/15。
当然ASIC是能效最高的,但目前,都在早期阶段,算法变化各异。想搞一款通用的ASIC适配多种场景,还是有很多路需要走的。但从比特币挖矿机经历的从CPU、GPU、FPGA到最后ASIC的四个阶段来推论,ASIC将是人工智能发展的重要趋势之一。另外,在通信领域,FPGA曾经也是风靡一时,但是随着ASIC的不断发展和蚕食,FPGA的份额和市场空间已经岌岌可危。
据了解,谷歌最近曝光的专用于人工智能深度学习计算的TPU,其实也是一款ASIC。
本文来自.返回搜狐,查看更多