人工智能的三次浪潮与三种模式
■史爱武
谈到人工智能,人工智能的定义到底是什么?
达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。
百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。
2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。
人工智能的三次浪潮
自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
第一次浪潮(1956-1976年,20年),最核心的是逻辑主义
逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。
早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。
在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。
虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。
第二次浪潮(1976—2006年,30年),联结主义盛行
在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。
在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。
这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。
第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破
如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。
若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。
经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。
为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。
伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。
深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。
深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。
人工智能的3种模式
人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。
(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。
(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。
(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。
我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!
人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能导论
第一章1.作为计算机科学的一个分支,人工智能的英文缩写是()。AI
2.人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门交叉科学,它涉及(D)。
A.自然科学B.社会科学C.技术科学D.A、B和C
3.人工智能定义中的“智能”,涉及到诸如(A)等问题。
A.B、C和DB.意识C.自我D.思维
4.下列关于人工智能的说法不正确的是(C)。
A.人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。
B.人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。
C.自1946年以来,人工智能学科经过多年的发展,已经趋于成熟,得到充分应用。
D.人工智能不是人的智能,但能像人那样思考,甚至也可能超过人的智能。
5.人工智能经常被称为世界三大尖端技术之一,下列说法中错误的是(B)。
A.空间技术、能源技术、人工智能
B.管理技术、工程技术、人工智能
C.基因工程、纳米科学、人工智能
D.人工智能已成为一个独立的学科分支,无论在理论和实践上都已自成系统
6.人工智能与思维科学的关系是实践和理论的关系。从思维观点看,人工智能不包括(A)。
A.直觉思维B.逻辑思维C.形象思维D.灵感思维
7.强人工智能强调人工智能的完整性,下列(C)不属于强人工智能。
A.(类人)机器的思考和推理就像人的思维一样
B.(非类人)机器产生了和人完全不一样的知觉和意识
C.看起来像是智能的,其实并不真正拥有智能,也不会有自主意识
D.有可能制造出真正能推理和解决问题的智能机器
8.被誉为“人工智能之父”的科学大师是(D)。
A.爱因斯坦B.冯·诺依曼C.钱学森D.图灵
9.电子计算机的出现使信息存储和处理的各个方面都发生了革命。下列说法中不正确的是(C)。
A.计算机是用于操纵信息的设备
B.计算机在可改变的程序的控制下运行
C.人工智能技术是后计算机时代的先进工具
D.计算机这个用电子方式处理数据的发明,为实现人工智能提供了一种媒介
10.Wiener从理论上指出,所有的智能活动都是(A)机制的结果,而这一机制是有可能用机器模拟的。这项发现对早期AI的发展影响很大。
A.反馈B.分解C.抽象D.综合
11.(B)年夏季,一批有远见卓识的年轻科学家在达特茅斯学会上聚会,共同研究和探讨用机器模拟智能的一系列有关问题,首次提出了“人工智能(AI)”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。
A.1946B.1956C.1976D.1986
12.用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机。下列(D)不是人工智能研究的主要领域。
A.深度学习B.计算机视觉C.智能机器人D.人文地理
13.人工智能在计算机上的实现方法有多种,但下列(B)不属于其中。
A.传统的编程技术,使系统呈现智能的效果
B.多媒体拷贝复制和剪贴的方法
C.传统开发方法而不考虑所用方法是否与人或动物机体所用的方法相同
D.模拟法,不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似
14.人工智能当前的发展具有“四新”特征,下面(A)不属于其中之一。新挑战
A.新能源B.新突破C.新动能D.新高地
15.通过总结人工智能发展历程中的经验和教训,我们可以得到的启示是(D)。
A.尊重发展规律是推动学科健康发展的前提,实事求是设定发展目标是制定学科发展规划的基本原则
B.基础研究是学科可持续发展的基石
C.应用需求是科技创新的不竭之源,学科交叉是创新突破的“捷径”,宽容失败是支持创新的题中应有之义
D.A、B和C
16.人工智能的发展突破了“三算”方面的制约因素,这“三算”不包括(C)。
A.算法B.算力C.算子D.算料
17.得益于人工智能技术的兴起,一些行业岗位将呈现出显着的增长趋势,但下面(C)不属于其中之一。
A.数据科学家B.机器学习工程师C.电脑维修工程师D.AI硬件专家
18.有研究指出,人工智能可能会给人类社会带来潜在威胁,包括(D)。
A.数字安全B.物理安全C.政治安全D.A、B和C
19.有研究者认为,让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患已经在(B)中呈现过,其关键是允不允许机器拥有自主意识的产生与延续。
A.法律文件B.多部电影C.政府报告D.一些案例
第三章1.19世纪以来,当面临大量数据时,社会都依赖于采样分析。但是采样分析是(C)时代的产物。
A.电脑B.青铜器C.模拟数据D.云
2.长期以来,人们已经发展了一些使用尽可能少的信息的技术。例如,统计学的一个目的就是(C)
A.用尽可能多的数据来验证一般的发现
B.同尽可能少的数据来验证尽可能简单的发现
C.用尽可能少的数据来证实尽可能重大的发现
D.用尽可能少的数据来验证一般的发现。
3.因为大数据是建立在(A),所以我们就可以正确地考察细节并进行新的分析。
A.掌握所有数据,至少是尽可能多的数据的基础上的
B.在掌握少量精确数据的基础上,尽可能多地收集其他数据
C.掌握少量数据,至少是尽可能精确的数据的基础上的
D.尽可能掌握精确数据的基础上
4.直到今天,我们的数字技术依然建立在精准的基础上,这种思维方式适用于掌握(A)的情况。
A.小数据量B.大数据量C.无数据D.多数据
5.当人们拥有海量即时数据时,绝对的精准不再是人们追求的主要目标。当然,(C)。
A.我们应该完全放弃精确度,不再沉迷于此
B.我们不能放弃精确度,需要努力追求精确度
C.我们也不是完全放弃了精确度,只是不再沉迷于此
D.我们是确保精确度的前提下,适当寻求更多数据
6.为了获得更广泛的数据而牺牲了精确性,也因此看到了很多如若不然无法被关注到的细节。(B)。
A.在很多情况下,与致力于避免错误相比,对错误的包容会带给我们更多问题
B.在很多情况下,与致力于避免错误相比,对错误的包容会带给我们更多好处
C.无论什么情况,我们都不能容忍错误的存在
D.无论什么情况,我们都可以包容错误
7.以前,统计学家们总是把他们的兴趣放在提高样本的随机性而不是数量上。这时因为(C)。
A.提高样本随机性可以减少对数据量的需求
B.样本随机性优于对大数据的分析
C.可以获取的数据少,提高样本随机性可以提高分析准确率
D.提高样本随机性是为了减少统计分析的工作量
8.研究表明,在少量数据情况下运行得最好的算法,当加入更多的数据时,(A)。
A.也会像其他的算法一样有所提高,但是却变成了在大量数据条件下运行得最不好的
B.与其他的算法一样有所提高,仍然是在大量数据条件下运行得最好的
C.与其他的算法一样所有提高,在大量数据条件下运行得还是比较好的
D.虽然没有提高,还是在大量数据条件下运行得最好的
9.如今,要想获得大规模数据带来的好处,混乱应该是一种(D)。
A.不正确途径,需要竭力避免的
B.非标准途径,应该尽量避免的
C.非标准途径,但可以勉强接受的
D.标准途径,而不应该是竭力避免的
10.研究表明,只有()的数字数据是结构化的且能适用于传统数据库。如果不接受混乱,剩下(C)的非结构化数据都无法被利用。
A.95%,5%B.30%,70%C.5%,95%D.70%,30%
11.寻找(B)是人类长久以来的习惯,即使确定这样的关系很困难而且用途不大,人类还是习惯性地寻找缘由。
A.相关关系B.因果关系C.信息关系D.组织关系
12.在大数据时代,我们无须再紧盯事物之间的(A),而应该寻找事物之间的(),这会给我们提供非常新颖且有价值的观点。
A.因果关系,相关关系B.相关关系,因果关系
C.复杂关系,简单关系D.简单关系,复杂关系
13.所谓相关关系,其核心是指量化两个数据值之间的数理关系。相关关系强是指当一个数据值增加时,另一个数据值很有可能会随之(C)。
A.减少B.显现C.增加D.隐藏
14.通过找到一个现象的(D),相关关系可以帮助我们捕捉现在和预测未来。
A.出现原因B.隐藏原因C.一般的关联物D.良好的关联物
15.大数据时代,专家们正在研发能发现并对比分析非线性关系的技术工具。通过(A),相关关系帮助我们更好地了解了这个世界。
A.探求“是什么”而不是“为什么”
B.探求“为什么”而不是“是什么”
C.探求“原因”而不是“结果”
D.探求“结果”而不是“原因”
第四章1.搜索是大多数人生活中的(B)。
A.稀罕情况B.自然组成部分
C.不可能出现D.大概率事件
2.搜索及其执行是人工智能技术的(C)。
A.一般应用B.重要应用C.重要基础D.不同领域
3.关于搜索算法,下面不正确或者不合适的说法是(D)。
A.利用计算机的高性能来有目的的穷举一个问题的部分或所有的可能情况,从而求出问题的解的一种方法
B.根据初始条件和扩展规则构造一颗“解答树”并寻找符合目标状态的节点
C.可以划分成两个部分——控制结构(扩展节点的方式)和产生系统(扩展节点)
D.主要是通过修改其数据结构来实现的
4.关于盲目搜索,下列选项中不正确或者不合适的选项是(A)。
A.又叫启发式搜索,是一种多信息搜索
B.这些算法不依赖任何问题领域的特定知识
C.一般只适用于求解比较简单的问题
D.通常需要大量的空间和时间
5.盲目搜索通常是按预定的搜索策略进行搜索,常用的盲目搜索有(C)两种。
A.连续搜索和重复搜索B.上下搜索和超链接搜索C.广度优先搜索和深度优先搜索D.多媒体搜索和AI搜索
6.状态空间图是一个有助于形式化搜索过程的(D),是对一个问题的表示。
A.程序结构B.算法结构C.模块结构D.数学结构
7.回溯算法是所有搜索算法中最为基本的一种算法,它采用一种“(A)”思想作为其控制结构。
A.走不通就掉头B.一走到底
C.循环往复D.从一点出发不重复
8.盲目搜索是不使用领域知识的不知情搜索算法,它有3种主要算法,下列(C)不属于其中。
A.深度优先搜索B.广度优先搜索
C.广度迭代搜索D.迭代加深的深度优先搜索
9.知情搜索是用启发法,通过(B)来缩小问题空间,是问题求解中通常是很有用的工具。
A.既不限定搜索深度也不限定搜索宽度
B.限定搜索深度或是限定搜索宽度
C.提高搜索算法智能化水平D.提高搜索算法的软件工程设计水平
10.爬山法是贪婪且原始的,它可能会受到3个常见问题的困扰,但下列(D)不属于这样的问题。
A.山麓问题B.高原问题C.山脊问题D.压缩问题
11.启发法是用于解决问题的一组常用指南。使用启发法,我们可以得到一个(A)的结果。
A.很有利但不能保证B.很有利且可以得到有效保证
C.不利且不能得到保证D.不明确
12.启发式搜索方法的目的是在考虑到要达到的目标状态情况下,(B)节点数目。
A.极大地增加B.极大地减少C.稳定已有的D.无须任何
13.有3种为找到任何解的知情搜索的特定搜索算法,但下列(C)不属于其中之一。
A.爬山法B.最陡爬坡法C.直接爬坡法D.最佳优先法
14.有一些搜索算法的设计灵感来自于自然系统,例如遗传、(D)等典型算法在图像边缘检测、图像分割、图像识别、图像匹配、图像分类等领域有广泛应用。
A.蚁群B.模拟退火C.粒子群D.A、B和C
第七章1.在线影片租赁服务商Netflix的主营业务是提供互联网随选流媒体播放,它所依赖的关键服务是(B)。
A.搜索引擎B.推荐引擎C.百度引擎D.谷歌引擎
2.下列(D)信息服务利用了人工智能的机器学习技术。
A.智能语音助手SiriB.Alexa个人助理客户端
C.Netflix电影推荐D.上述所有都是
3.机器学习最早的发展可以追溯到(A)。
A.英国数学家贝叶斯在1763年发表的贝叶斯定理
B.1950年计算机科学家图灵发明的图灵测试
C.1952年亚瑟·塞缪尔创建的一个简单的下棋游戏程序
D.唐纳德·米奇在1963年推出的强化学习的tic-tac-toe(井字棋)程序
4.学习是人类具有的一种重要的智能行为,社会学家、逻辑学家和心理学家都各有其不同的看法。关于机器学习,合适的定义是(D)。
A.兰利的定义是:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”
B.汤姆·米切尔的定义是:“机器学习是对能通过经验自动改进的计算机算法的研究”
C.Alpaydin的定义是:“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准”
D.A、B、C都可以
5.机器学习的核心是“使用(C)解析数据,从中学习,然后对世界上的某件事情做出决定或预测”。
A.程序B.函数C.算法D.模块
6.有三种主要类型的机器学习:监督学习、非监督学习和(B)学习,各自有着不同的特点。
A.重复B.强化C.自主D.优化
7.监督学习的主要类型是(A)。
A.分类和回归B.聚类和回归C.分类和降维D.聚类和降维
8.无监督学习又称归纳性学习,分为(D)。
A.分类和回归B.聚类和回归C.分类和降维D.聚类、离散点检测和降维
9.强化学习使用机器的个人历史和经验来做出决定,其经典应用是(C)。
A.文字处理B.数据挖掘C.游戏娱乐D.自动控制
10.要完全理解大多数机器学习算法,需要对一些关键的数学概念有一个基本的理解。机器学习使用的数学知识主要包括(D)。
A.线性代数B.微积分C.概率和统计D.A、B、C
11.机器学习的各种算法都是基于(A)理论的。
A.贝叶斯B.回归C.决策树D.聚类
监督学习的大部分算法基于回归理论。
12.在机器学习的具体应用中,(D)决定了学习系统基本结构的工作内容,确定了学习部分所需要解决的问题。
A.环境B.知识库C.执行部分D.A、B、C
以上解答若有错误之处,请及时留言错误处及修改后答案,我会及时更正。
doc版本下载地址:
https://wws.lanzous.com/iqpIbimdaeh