博舍

下一代人工智能的发展方向 (上) 人工智能未来的方向

下一代人工智能的发展方向 (上)

[[349500]]

尽管人工智能的诞生已经超过半个世纪,但近十年来人工智能领域发展非常迅速。自2012年ImageNet竞赛开始深度学习的现代时代以来,只有8年的时间。自那时以来,人工智能领域的进步令人震惊,现在人工智能已经深入我们日常工作生活的方方面面。

有专家表示,这个惊人的步伐只会越来越快。从现在开始的五年后,人工智能领域将与今天大不相同。当前被认为是最先进的方法将已经过时;今天刚刚出现或处于边缘的方法将成为主流。

下一代人工智能将是什么样子?哪种新颖的AI方法将释放当前在技术和业务方面难以想象的可能性?本文重点介绍了AI中的三个新兴领域,这些领域将在未来的几年中重新定义人工智能领域和社会。

1、无监督学习

当今AI世界中最主要的范例是有监督的学习。在监督学习中,AI模型从数据集中学习人类根据预定义类别进行策划和标记的过程。(术语“监督学习”源于人类“监督者”预先准备数据的事实。)

在过去的十年中,尽管从无人驾驶汽车到语音助手,有监督的学习已经推动了AI的显着进步,但它仍然存在严重的局限性。

手动标记成千上万个数据点的过程可能非常昂贵且繁琐。在机器学习模型提取数据之前,人们必须手动标记数据这一事实已成为AI的主要瓶颈。

在更深层次上,有监督的学习代表了一种狭窄的、受限制的学习形式。受监督的算法不仅无法探索和吸收给定数据集中的所有潜在信息、关系和含义,而且仅针对研究人员提前确定的概念和类别。

相反,无监督学习是一种AI方法,其中算法无需人工提供标签或指导即可从数据中学习。

许多AI领导者将无监督学习视为人工智能的下一个前沿领域。用AI传奇人物YannLeCun的话说:“下一场AI革命将不会受到监督。”加州大学伯克利分校的教授JitendaMalik更加生动地说:“标签是机器学习研究人员的鸦片。”

无监督学习如何工作?简而言之,系统会根据世界的其他部分来了解世界的某些部分。通过观察实体的行为,实体之间的模式以及实体之间的关系(例如,上下文中的单词或视频中的人物),系统引导了对其环境的整体理解。一些研究人员用“从其他事物中预测所有事物”来概括这一点。

无监督学习更紧密地反映了人类学习世界的方式:通过开放式探索和推理,不需要监督学习的“训练轮”。它的基本优点之一是,世界上总是会有比已标记数据多得多的未标记数据(前者更容易获得)。

用LeCun的话来说,他喜欢密切相关的术语“自我监督学习”:“在自我监督学习中,输入的一部分用作监视信号,以预测输入的其余部分。可以通过自我监督学习而不是[其他AI范式]来学习有关世界结构的知识,因为数据是无限的,每个示例提供的反馈量很大。”

无监督学习已经在自然语言处理中产生了变革性的影响。NLP得益于一种新的无监督的学习架构,即Transformer,最近取得了令人难以置信的进步,该架构始于Google大约三年前。(有关Transformer的更多信息,请参见下面的#3。)

将无监督学习应用于AI的其他领域的努力仍处于早期阶段,但是正在取得快速进展。举个例子,一家名为Helm.ai的初创公司正在寻求利用无监督学习来超越自动驾驶汽车行业的领导者。

许多研究人员将无监督学习视为开发人类级AI的关键。LeCun认为,掌握无监督学习是“未来几年ML和AI面临的最大挑战。”

 

 

2、联合学习

数字时代的主要挑战之一是数据隐私。由于数据是现代人工智能的命脉,因此数据隐私问题在AI的发展轨迹中扮演着重要的角色(并且常常是限制性的)。

保持隐私的人工智能(使AI模型能够从数据集中学习而不损害其隐私的方法)正变得日益重要。保持隐私的AI的最有前途的方法也许是联合学习。

联合学习的概念最早由Google的研究人员于2017年初提出。在过去的一年中,对联合学习的兴趣激增:到2020年的前六个月,发表了超过1,000篇有关联合学习的研究论文,而在2018年只有180篇。

如今,构建机器学习模型的标准方法是将所有训练数据收集到一个地方(通常在云中),然后在数据上训练模型。但是,这种方法对全球大部分数据都不可行,出于隐私和安全原因,这些数据无法移至中央数据存储库。这使其成为传统AI技术的禁区。

联合学习通过颠覆传统的AI方法解决了这个问题。

联合学习并不需要一个统一的数据集来训练模型,而是将数据保留在原处,并分布在边缘的众多设备和服务器上。取而代之的是,将模型的许多版本发送到一个带有训练数据的设备,每个模型都在每个数据子集上进行本地训练。然后将生成的模型参数(而不是训练数据本身)发送回云。当所有这些“微型模型”汇总在一起时,结果就是一个整体模型,其功能就像是一次在整个数据集上进行训练一样。

最初的联合学习用例是针对分布在数十亿移动设备上的个人数据训练AI模型。正如这些研究人员总结的那样:“现代移动设备可以访问大量适用于机器学习模型的数据...。但是,这些丰富的数据通常对隐私敏感,数量庞大或两者兼而有之,因此可能无法登录到数据中心....我们提倡一种替代方案,将训练数据保留在移动设备上,并通过汇总本地计算的更新来学习共享模型。”

最近,医疗保健已成为联合学习应用中特别有前途的领域。

不难理解原因。一方面,医疗保健中有大量有价值的AI用例。另一方面,医疗保健数据,尤其是患者的个人身份信息,非常敏感;像HIPAA这样的法规丛书限制了它的使用和移动。联合学习可以使研究人员能够开发挽救生命的医疗保健AI工具,而无需从源头转移敏感的健康记录或使它们暴露于隐私泄露中。

涌现了许多初创公司,以追求医疗保健领域的联合学习。最有名的是总部位于巴黎的Owkin;早期阶段的参与者包括Lynx.MD、FerrumHealth和SecureAILabs。

除医疗保健外,联合学习有一天可能会在任何涉及敏感数据的AI应用的开发中发挥中心作用:从金融服务到自动驾驶汽车,从政府用例到各种消费产品。与差分隐私和同态加密之类的其他隐私保护技术结合使用,联合学习可以提供释放AI巨大潜力的关键,同时减轻对数据隐私的棘手挑战。

如今,全球范围内颁布的数据隐私立法浪潮(从GDPR和CCPA开始,即将推出许多类似的法律)只会加速对这些隐私保护技术的需求。期望联合学习在未来几年中将成为AI技术堆栈的重要组成部分。

3、Transformer

我们已经进入了自然语言处理的黄金时代。

OpenAI发布的GPT-3是有史以来功能最强大的语言模型,今年夏天吸引了整个技术界。它为NLP设定了新的标准:它可以编写令人印象深刻的诗歌,生成有效的代码,撰写周到的业务备忘录,撰写有关自身的文章等等。

GPT-3只是一系列类似架构的NLP模型(Google的BERT、OpenAI的GPT-2、Facebook的RoBERTa等)中最新的(也是最大的),它们正在重新定义NLP的功能。

推动语言AI革命的关键技术突破是Transformer。

在2017年具有里程碑意义的研究论文中介绍了Transformer。以前,最新的NLP方法都基于循环神经网络(例如LSTM)。根据定义,递归神经网络按顺序显示数据,即按单词出现的顺序一次处理一个单词。

Transformer的一项伟大创新是使语言处理并行化:给定文本主体中的所有标记都是同时而不是按顺序分析的。为了支持这种并行化,Transformer严重依赖于称为注意力的AI机制。注意使模型能够考虑单词之间的关系,而不论它们之间有多远,并确定段落中的哪些单词和短语对于“注意”最为重要。

为什么并行化如此有价值?因为它使Transformers的计算效率大大高于RNN,这意味着可以在更大的数据集上对它们进行训练。GPT-3训练了大约5000亿个单词,由1750亿个参数组成,这使现有的RNN显得相形见绌。

迄今为止,由于GPT-3等的成功应用,Transformer几乎只与NLP相关联。但是就在本月,发布了一篇突破性的新论文,该论文成功地将Transformer应用于计算机视觉。许多AI研究人员认为,这项工作可以预示计算机视觉的新时代。(正如著名的ML研究人员OriolVinyals所说的那样,“我的观点是:告别卷积。”)

尽管像Google和Facebook这样的领先AI公司已经开始将基于Transformer的模型投入生产,但大多数组织仍处于将该技术产品化和商业化的初期阶段。OpenAI已宣布计划通过API将GPT-3进行商业访问,这可能会为在其上构建应用的整个初创企业生态系统注入种子。

 从自然语言开始,期望Transformers在未来的几年中将成为整个新一代AI功能的基础。过去十年在人工智能领域令人兴奋,但事实证明,这仅仅是未来十年的序幕。

 

人工智能技术在医药研发中的应用

鉴于人工智能技术在医药领域内得到越来越多的关注,以及在未来新药研发的重要位置,有必要对目前的研究及应用现状进行归纳总结。本文首先概述人工智能的主要方法,论述人工智能的特点,综述人工智能在医药研发各专业领域中的应用情况,讨论国内外实践经验,归纳人工智能应用的关键问题,最后提出建议并总结。

1

人工智能概述

1.1人工智能的主要应用领域

人工智能的主要应用领域包括机器学习、进化计算、图像识别、自然语言处理、认知计算等。除此之外,其他领域仍在持续性发展中。目前机器学习的主流研究方向也是人工智能的重要应用领域,机器学习可以通过计算获得经验来提高系统本身的性能。机器学习可以分为传统机器学习和高级机器学习,传统机器学习包括无监督学习和有监督学习等,高级机器学习则包括深度学习、强化学习和迁移学习等[9-11]。

1.2人工智能的主要发展过程与自身特点

自从1956年人工智能诞生以来,它经历了从高潮到低潮的各个阶段。最近的低潮发生在1992年,当时日本的第五代计算机并未取得成功,其后人工神经网络热潮在20世纪90年代初退烧,人工智能领域再次进入低潮期。直到2006年,GeoffreyHinton提出了深度学习的概念并改进了模型训练方法,突破了神经网络的长期发展瓶颈,人工智能的发展迎来新一轮浪潮。此后,国内外众多知名大学和知名IT企业开展了深度学习、强化学习、迁徙学习等一系列新技术的课题研究。同时,智能医疗、智能交通、智能制造等社会发展的新需求驱动人工智能发展进入了一个新阶段。

人工智能基于先进的机器学习、大数据和云计算,在感知智能、计算智能和认知智能方面具有强大的处理能力。它以更高水平接近人的智能形态存在,主要特点包括:①从人工知识表达到大数据驱动的知识学习技术。②从多媒体数据的子类处理到跨媒体交互。③从追求智能机器到高层人机协作。④从关注个人智能到基于网络的群体智能。⑤从拟人机器人到更广泛的智能自我处理系统。

内容由凡默谷小编查阅文献选取,排版与编辑为原创。如转载,请尊重劳动成果,注明来源于凡默谷公众号。

2

人工智能在医药研发领域的应用现状

本文为全面了解目前研究现状以及关注热点,借鉴杨超凡等[12]的方法,通过Scrapy(爬虫),在百度学术以“artificialintelligenceanddrugdiscovery/research”为关键词进行英文文献搜索,得到共361篇英文文献,爬取到了每一篇文献中摘要、关键词、研究点分析以及发表时间。在进行文献搜集时只搜集了英文文献,因为一方面,人工智能在药物研发领域国外研究起步较早且研究体系相对成熟,形成对比的是国内在该方面领域研究较少;另一方面,本文要爬取信息并对文本进行分词处理,英文由标点符号、空格、单词组成,所以只用根据空格和标点符号便可将词语分开,进行处理时更为便捷和精确。

作为抽象信息的视觉表达手段,信息可视化可用于文档处理和数据挖掘。本文主要使用Python的Pandas数据分析软件包进行文献的可视化处理和可视化分析,为了符合科学的测量原理,使研究结论更加具有时间敏感性,首先需要进行数据清理。为了更形象、更直观地展现出人工智能在医药研发方面的发展趋势,将对本文年度发表文章数使用Matplotlib绘图库进行绘图分析。通过数据清洗后,分析年度相关发表论文量与发表文章数量趋势,见图1和图2。

通过以上可视化分析,可以清楚了解到人工智能在医药研发方面的研究发展趋势,与上文分析人工智能发展趋势基本一致,同时也能发现近5年人工智能在医药研发方面研究趋于减少乃至于停滞,亟须整个行业进一步投入以及寻找发展新活力。为了确认人工智能在医药研发重点应用领域,利用Python对爬取到的数据中关键词、摘要、研究点分析进行了系统的词频统计,见表1。

从上述表1关键词频可以直观看到,关键词词频数越大,说明该主题在人工智能医药研发方面中的关注度越高,研究越热。高频词中机器学习(MachineLearning)、药物研发(DrugDiscovery)、医疗保健(HealthCare)、数据库(Databases)、数据挖掘(Datamining)、数据分析(DataAnalysis)、数据可视化(DataVisualization)、数据交流(DataCommunication)、归纳逻辑编程(Inductivelogicprogramming)、癌症(Cancer)、神经网络(NeuralNetworks)、药物制剂(PharmaceuticalPreparations)、计算机科学(Computerscience)、医药制造业(PharmaceuticalIndustry)由于研究内容过于宽泛抑或与在医药研发方面的研究相关性不足所以被剔除。通过词频分析、清洗无关研究领域的词汇、综合近义词汇后最终确定了7个频次靠前的人工智能在医药研发重点研究领域:靶点药物研发(DrugTargetsDevelopment)、药物挖掘(DrugMining)、化合物筛选(CompoundScreening)、预测ADMET性质(PredicationofADMETProperties)、药物晶型预测(CrystalStructurePrediction)、病理生物学研究(Pathophysiology)、药物重定位/药物再利用(DrugRepurposing)。人工智能的主要应用领域包括机器学习、进化计算、图像识别、自然语言处理、认知计算,7个频次靠前的人工智能在医药研发重点研究领域在这5个主要应用领域各有涉及,具体关系如图3所示。

2.1人工智能技术在医药研发的应用现状概述

2.1.1靶点药物研发

研究和开发新药的关键是寻找、确定和制备药物筛选目标分子药物靶点。靶点药物是指药物在体内的结合位点,包括生物大分子,比如基因座、受体、酶、离子通道和核酸等,而识别新的有效的药物靶点是新药开发的重中之重,因此发现和验证大量分子靶标所涉及的工作极大增加了药物开发的负担[13]。利用机器学习算法可以组合设计并评估编码的深层知识,从而可以完全应用于旧时的单目标药物发现项目[14]。研究人员首先研究了靶点选择性结合均衡小分子的可能性来确定那些最易于化学处理的靶点,对于双特异性小分子,设计过程类似于单一目标药物。关键的区别在于功效必须同时满足2个不同的目标。初创公司Exscientia是AI公司这方面的典型代表,Exscientia针对这些靶点药物通过AI药物研发平台为GSK公司的10个疾病靶点开发创新小分子药物,来发现临床候选药物[15]。Exscientia系统可以从每个设计周期的现有数据资源和实验数据中学习,这些原理近似于人类自我学习的过程,但AI在识别多种微妙和复杂的变化以平衡药效方面更具效率。Exscientia首席执行官霍普金斯表示,其人工智能系统已经可以用传统方法的1/4时间和成本得到新的候选药物[16]。目前,公司已与众多国际知名制药公司建立了战略合作关系,如Merck公司、Sunovion公司、Sanof公司、Evotec公司、强生公司。

2.1.2药物挖掘

医学、物理学或材料科学领域的专业论文非常广泛,但这些专业论文中有大量独立的专业知识和研究结果,快速且有针对性地组织和连接这些知识和发现的能力对于药物挖掘是极其重要的。使用人工智能可以从大量的科学论文、专利、临床试验信息和非结构化信息中生成有用的信息。通过自然语言处理算法的深度学习优化,分析和理解上下文信息,然后进一步学习、探索、创建和翻译它所学到的知识以产生独特结论。该技术通过寻找可能遗漏的连接使以前不可能的科学发现成为可能:可以自动提取药学与医学知识,找出相关关系并提出相应的候选药物,进一步筛选对某些疾病有效的分子结构,使科学家们能够更有效地开发新药。2016年BenevolentAI公司曾通过人工智能算法在1周内确定了5种假造药物,用于治疗肌萎缩侧索硬化。BenevolentAI使用AI算法建模来确认化合物对睡眠的潜在影响,这是解决帕金森病相关嗜睡症状的一大机会。该公司目前的药物研发产品组合表明,它可以将早期药物研发的时间缩短4年,并有可能在整个药物研发过程中将药物研发的平均效率提高60%[17]。

2.1.3化合物筛选

化合物筛选是指通过标准化实验方法从大量化合物或新化合物中选择对特定靶标具有较高活性的化合物方法,这样通常需要很长的时间和较多的成本,因为要从数万种化合物分子中选择与活性指数相匹配的化合物。Atomwise是硅谷的一家人工智能公司,开发了人工智能分子筛选(AIMS)项目,该项目计划通过分析每种疾病的数百万种化合物来加速拯救生命药物的开发。同时,该公司开发了基于卷积神经网络的AtomNet系统,该系统已经学习了大量的化学知识和研究数据。该系统分析化合物的构效关系,确定药物化学中的基本模块,并用于新药发现和新药风险评估。目前,AtomNet系统已经掌握了很多化学知识和研究资料,2015年AtomNet只用1周时间已经可以模拟2种有希望用于埃博拉病毒治疗的化合物[18]。

2.1.4预测ADMET性质

ADMET性质是衡量化合物成药性最重要的参考指标[19-20],化合物ADMET预测是当代药物设计和药物筛选中十分重要的方法。药物的早期ADMET特性主要使用人或人源化组织功能蛋白作为药物靶点,体外研究技术结合计算机模拟研究药物与体内生物物理和生物化学屏障因子之间的相互作用。为了进一步提高ADMET性质预测的准确性,部分企业通过深度神经网络算法探索了结构特征(包括处理小分子和蛋白质结构)的有效提取,加快了药物的早期检测和筛选过程,并大大减少了研发投入和风险。典型的公司包括晶泰科技等[21]。

2.1.5药物晶型预测

多晶型现象是一种物质可以存在于2种或更多种不同晶体结构中的现象,对于化学药物,几乎所有固体药物都具有多态性。由于晶型的变化可以改变固体化学药物的许多物理性质和化学性质,因此存在几种由于晶型问题而导致上市失败的药物,因此,晶型预测在制药工业中具有重要意义。使用人工智能有效地动态配置药物晶型可以完全预测小分子药物的所有可能的晶型,与传统的药物晶型研发相比,制药公司不必担心缺少重要的晶型。此外,晶型预测技术大大缩短了晶体的发展周期,更有效地选择了合适的药物晶型,缩短了开发周期并且降低了成本[22]。

2.1.6病理生物学研究

病理生物学是一门研究疾病发生、发展和结果的规律和机制的科学。它是传播临床医学和基础医学的“桥梁”学科。病理生物学研究是医学研究和发展的基础。肌萎缩侧索硬化症(ALS,也称为渐冻症)是一种毁灭性的神经退行性疾病,确切的发病机制尚不清楚。ALS的突出病理特征是一些RNA结合蛋白(RBPs)在ALS中发生突变或异常分布。人类基因组中至少有1542个RBPs,并且仅发现了与ALS相关的17个RBPs。IBMWatson是认知计算系统和技术平台的杰出代表。IBMWatson基于相关文献中的广泛学习,构建模型以预测RBPs和ALS相关性。2013—2017年Watson对引起突变的4个RBPs进行了高度评价,证明了该模型的有效性,然后Watson筛选了基因组中的所有RBPs,成功鉴定了5个ALS中发生变化的新RBPs[23]。

2.1.7药物重定位

多年来,研究人员逐渐认识到,提高疗效的最佳策略是基于现有药物治疗某些疾病,发现新的适应证并用于治疗另一种疾病。Visanji博士与IBMWatsonforDrugDiscovery合作,使用Watson强大的文献阅读和认知推理技巧,在几分钟内筛选出3500种药物,并按最佳匹配顺序排列。然后研究人员根据这个“药物排名表”提出了6种候选药物,并在实验室进行了测试。第一种药物(已经得到FDA批准,但该适应证不包括帕金森病)已经在动物实验中初步验证[24]。

2.2人工智能技术

在医药研发方面国内发展现状我国在这方面起步相比于国外较晚,2015年百度公司和北京协和医院开展了癌症研究,结合北京协和医院医学研究优势与百度大数据、人工智能技术,找到了一个重要标志物用于早期诊断与中国大样本密切相关的食管癌,为食管癌提供早期筛查和诊断,为食管癌药物的开发提供靶标,这是中国医学研究和发展领域的重要一步[25],这是我国人工智能在医药研发领域迈出的重要一步。

目前国内相关研究企业数量较少,仍处于起步状态。比较著名的企业有晶泰科技和深度智耀及冰州石生物技术公司。晶泰科技是谷歌与腾讯两大科技巨头共同投资的第一家人工智能公司,它也是中国第一家宣布与世界顶级制药公司进行战略合作的人工智能药物算法公司。该公司在过去严重依赖于实验和误差的一些药物研发步骤上使用药物晶型预测,以极其准确和快速的算法预测结果,帮助制药公司提高研发效率,最后加速药物开发。深度智耀是以人工智能为基础的药物研发和决策平台,以“决策大脑”为核心产品,同时公司已推出10款产品,并于近日发布了新一代人工智能药物合成系统,该系统通过大量学习公共专利和论文数据库,大大提高了科学家的工作效率[26-27]。

另外,深度智耀还推出智能化医学写作,是在自然语言处理等助力下,自动写作绝大多数药物注册类文档。冰洲石生物科技(AccutarBiotech)利用人工智能针对生物药进行药物筛选,已经利用人工智能平台进行了药物设计,其中一款药物针对乳腺癌,适用于乳腺癌常用药物tamoxifen后3~5年复发的患者,已经经过了细胞验证和初步小鼠动物实验,正在美国申请相关专利,并计划推进新药临床研究申请。

但人工智能在我国医药研发方面仍存在部分难点:

其一人才支持是一大问题,全世界大约有22000名具有博士或以上学历的人工智能从业者和研究人员,而在中国只有约600名。另外,国内人工智能人才几乎被几家主要的龙头企业所垄断。数据显示,未来中国人工智能人才缺口高达500万[28]。人才集中是任何行业进一步发展的重要基础,也是人工智能在医药行业应用的关键因素。

目前,人工智能与药学的融合提升了对人才的需求。目前,高校培训与市场需求存在差距,产出人才远远少于市场需求。国家要重视复合型人才的培养,注重培养综合人工智能理论、方法、技术、产品和应用的垂直复合型人才,以及掌握经济、社会、管理、药学的复合型人才。当地政府也需要进一步加强产学研合作,鼓励高校、科研院所和企业合作开展人工智能学科建设,开展创新型专业人才的继续教育,建立公平合理的人才评估机制。

其二,国内创新药研发起步较晚,与国外相比,对于优质数据的积累还有一定距离。但利好消息是某些国内企业比如晶泰科技,在数据积累上颇为优秀。晶泰科技的数据来源是公共数据和私有数据结合,这其中包括晶泰科技在国内外工业、学术界的合作伙伴的积累。同时,晶泰科技通过量化计算算法也可以自行生成大量高质量的数据,这是其一大优势。总体大环境上,中国的医药大数据存在数据不完整、数据质量低、数据共享水平低等问题,医药数据的数量和质量将成为制药行业人工智能发展的主要障碍。

制药行业的专业门槛很高,而且链条很长。此外,中国长期的“多头管理”制度也是导致国内药品数据极度分散的重要原因。此外,医药领域的监管政策和体制改革也很频繁,使得获得连接历史药物数据变得困难。这些都会导致医药数据统计在完整度和精准度上的不足,从而影响相关决策。因此,国家应该在原有的标准管理体系框架内,加强信息和标准的整合,加强国家、行业现有相关标准的普及推广,并出台一系列激励和惩罚措施来推动标准的应用和落地。建立一套有效、完备、真实可靠的数据评估体系,进一步提升数据质量。同时应该加快完善数据共享开放机制,发挥数据应用价值,为人工智能在医药行业应用提供有质有量的数据支撑。

其三,与当前人工智能在医药领域发展火热形成鲜明对比的是政策法规的制定相对滞后。国内目前尚未有人工智能在医药研发方面的立法,但它已经受到学术界和医药行业的关注。2018年1月6日,第一届全国“人工智慧与未来法治”研讨会在西北政法大学举行。

参会者认为,未来人工智能将不能单独提出提供人性化的法律服务,仍然需要人们完成一些辅助工作。展望未来,人工智能法律建设将涉及人格权、知识产权、财产权、侵权责任认定、法律主体地位等方面[29]。目前,人工智能创作的知识产权归属问题、人工智能研发人员法律权利和义务定义问题、人工智能可能需要监管等,都没有明确的法律法规规定[30]。缺乏法律支撑的人工智能在医药行业的前景并不明朗。为了解决以上问题,国家应该加强人工智能知识产权保护,当前许多应用由医院、科研院所、人工智能企业等多方联合开发,最终知识产权归属需要进行明确。另外,建立追溯体系,保证算法的透明,使人工智能的行为及决策全程处于监管之下,明确研发者、运营者和使用者各自的权利和义务是重中之重。

3

人工智能在医药研发中的应用总结

由大数据支撑的广泛互联、高度智能、开放互动和可持续发展的医药产业,是未来发展的趋势,借助人工智能技术推动医药产业发展具有重要意义。虽然人工智能技术在医药产业各专业领域已有较多的应用研究,但总体上还停留在初级研究阶段,在可靠性与准确性方面仍存在部分问题,离实际广泛应用尚有差距。但是,人工智能技术为医药研发带来了无限可能,还需众多医药产业相关人员与政府能够紧抓历史机遇,积极投入,深入开展相关研究工作。

参考文献

详见中国新药杂志2020年第29卷第17期

免责声明

我们尊重原创作品。选取的文章已明确注明来源和作者,版权归原作者所有,如涉及侵权或其他问题,请联系我们进行删除。

内容由凡默谷小编查阅文献选取,排版与编辑为原创。如转载,请尊重劳动成果,注明来源于凡默谷公众号。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇