博舍

国务院关于印发新一代人工智能发展规划的通知 人工智能的发展之路是

国务院关于印发新一代人工智能发展规划的通知

国务院关于印发

新一代人工智能发展规划的通知国发〔2017〕35号

各省、自治区、直辖市人民政府,国务院各部委、各直属机构:

现将《新一代人工智能发展规划》印发给你们,请认真贯彻执行。

国务院

2017年7月8日

(此件公开发布)

新一代人工智能发展规划

人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国,按照党中央、国务院部署要求,制定本规划。

一、战略态势

人工智能发展进入新阶段。经过60多年的演进,特别是在移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术以及经济社会发展强烈需求的共同驱动下,人工智能加速发展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。大数据驱动知识学习、跨媒体协同处理、人机协同增强智能、群体集成智能、自主智能系统成为人工智能的发展重点,受脑科学研究成果启发的类脑智能蓄势待发,芯片化硬件化平台化趋势更加明显,人工智能发展进入新阶段。当前,新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。

人工智能成为国际竞争的新焦点。人工智能是引领未来的战略性技术,世界主要发达国家把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,加紧出台规划和政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。当前,我国国家安全和国际竞争形势更加复杂,必须放眼全球,把人工智能发展放在国家战略层面系统布局、主动谋划,牢牢把握人工智能发展新阶段国际竞争的战略主动,打造竞争新优势、开拓发展新空间,有效保障国家安全。

人工智能成为经济发展的新引擎。人工智能作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎,重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式,引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。我国经济发展进入新常态,深化供给侧结构性改革任务非常艰巨,必须加快人工智能深度应用,培育壮大人工智能产业,为我国经济发展注入新动能。

人工智能带来社会建设的新机遇。我国正处于全面建成小康社会的决胜阶段,人口老龄化、资源环境约束等挑战依然严峻,人工智能在教育、医疗、养老、环境保护、城市运行、司法服务等领域广泛应用,将极大提高公共服务精准化水平,全面提升人民生活品质。人工智能技术可准确感知、预测、预警基础设施和社会安全运行的重大态势,及时把握群体认知及心理变化,主动决策反应,将显著提高社会治理的能力和水平,对有效维护社会稳定具有不可替代的作用。

人工智能发展的不确定性带来新挑战。人工智能是影响面广的颠覆性技术,可能带来改变就业结构、冲击法律与社会伦理、侵犯个人隐私、挑战国际关系准则等问题,将对政府管理、经济安全和社会稳定乃至全球治理产生深远影响。在大力发展人工智能的同时,必须高度重视可能带来的安全风险挑战,加强前瞻预防与约束引导,最大限度降低风险,确保人工智能安全、可靠、可控发展。

我国发展人工智能具有良好基础。国家部署了智能制造等国家重点研发计划重点专项,印发实施了“互联网+”人工智能三年行动实施方案,从科技研发、应用推广和产业发展等方面提出了一系列措施。经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。

同时,也要清醒地看到,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大;科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。

面对新形势新需求,必须主动求变应变,牢牢把握人工智能发展的重大历史机遇,紧扣发展、研判大势、主动谋划、把握方向、抢占先机,引领世界人工智能发展新潮流,服务经济社会发展和支撑国家安全,带动国家竞争力整体跃升和跨越式发展。

二、总体要求

(一)指导思想。

全面贯彻党的十八大和十八届三中、四中、五中、六中全会精神,深入学习贯彻习近平总书记系列重要讲话精神和治国理政新理念新思想新战略,按照“五位一体”总体布局和“四个全面”战略布局,认真落实党中央、国务院决策部署,深入实施创新驱动发展战略,以加快人工智能与经济、社会、国防深度融合为主线,以提升新一代人工智能科技创新能力为主攻方向,发展智能经济,建设智能社会,维护国家安全,构筑知识群、技术群、产业群互动融合和人才、制度、文化相互支撑的生态系统,前瞻应对风险挑战,推动以人类可持续发展为中心的智能化,全面提升社会生产力、综合国力和国家竞争力,为加快建设创新型国家和世界科技强国、实现“两个一百年”奋斗目标和中华民族伟大复兴中国梦提供强大支撑。

(二)基本原则。

科技引领。把握世界人工智能发展趋势,突出研发部署前瞻性,在重点前沿领域探索布局、长期支持,力争在理论、方法、工具、系统等方面取得变革性、颠覆性突破,全面增强人工智能原始创新能力,加速构筑先发优势,实现高端引领发展。

系统布局。根据基础研究、技术研发、产业发展和行业应用的不同特点,制定有针对性的系统发展策略。充分发挥社会主义制度集中力量办大事的优势,推进项目、基地、人才统筹布局,已部署的重大项目与新任务有机衔接,当前急需与长远发展梯次接续,创新能力建设、体制机制改革和政策环境营造协同发力。

市场主导。遵循市场规律,坚持应用导向,突出企业在技术路线选择和行业产品标准制定中的主体作用,加快人工智能科技成果商业化应用,形成竞争优势。把握好政府和市场分工,更好发挥政府在规划引导、政策支持、安全防范、市场监管、环境营造、伦理法规制定等方面的重要作用。

开源开放。倡导开源共享理念,促进产学研用各创新主体共创共享。遵循经济建设和国防建设协调发展规律,促进军民科技成果双向转化应用、军民创新资源共建共享,形成全要素、多领域、高效益的军民深度融合发展新格局。积极参与人工智能全球研发和治理,在全球范围内优化配置创新资源。

(三)战略目标。

分三步走:

第一步,到2020年人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径,有力支撑进入创新型国家行列和实现全面建成小康社会的奋斗目标。

——新一代人工智能理论和技术取得重要进展。大数据智能、跨媒体智能、群体智能、混合增强智能、自主智能系统等基础理论和核心技术实现重要进展,人工智能模型方法、核心器件、高端设备和基础软件等方面取得标志性成果。

——人工智能产业竞争力进入国际第一方阵。初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。

——人工智能发展环境进一步优化,在重点领域全面展开创新应用,聚集起一批高水平的人才队伍和创新团队,部分领域的人工智能伦理规范和政策法规初步建立。

第二步,到2025年人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展。

——新一代人工智能理论与技术体系初步建立,具有自主学习能力的人工智能取得突破,在多领域取得引领性研究成果。

——人工智能产业进入全球价值链高端。新一代人工智能在智能制造、智能医疗、智慧城市、智能农业、国防建设等领域得到广泛应用,人工智能核心产业规模超过4000亿元,带动相关产业规模超过5万亿元。

——初步建立人工智能法律法规、伦理规范和政策体系,形成人工智能安全评估和管控能力。

第三步,到2030年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心,智能经济、智能社会取得明显成效,为跻身创新型国家前列和经济强国奠定重要基础。

——形成较为成熟的新一代人工智能理论与技术体系。在类脑智能、自主智能、混合智能和群体智能等领域取得重大突破,在国际人工智能研究领域具有重要影响,占据人工智能科技制高点。

——人工智能产业竞争力达到国际领先水平。人工智能在生产生活、社会治理、国防建设各方面应用的广度深度极大拓展,形成涵盖核心技术、关键系统、支撑平台和智能应用的完备产业链和高端产业群,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。

——形成一批全球领先的人工智能科技创新和人才培养基地,建成更加完善的人工智能法律法规、伦理规范和政策体系。

(四)总体部署。

发展人工智能是一项事关全局的复杂系统工程,要按照“构建一个体系、把握双重属性、坚持三位一体、强化四大支撑”进行布局,形成人工智能健康持续发展的战略路径。

构建开放协同的人工智能科技创新体系。针对原创性理论基础薄弱、重大产品和系统缺失等重点难点问题,建立新一代人工智能基础理论和关键共性技术体系,布局建设重大科技创新基地,壮大人工智能高端人才队伍,促进创新主体协同互动,形成人工智能持续创新能力。

把握人工智能技术属性和社会属性高度融合的特征。既要加大人工智能研发和应用力度,最大程度发挥人工智能潜力;又要预判人工智能的挑战,协调产业政策、创新政策与社会政策,实现激励发展与合理规制的协调,最大限度防范风险。

坚持人工智能研发攻关、产品应用和产业培育“三位一体”推进。适应人工智能发展特点和趋势,强化创新链和产业链深度融合、技术供给和市场需求互动演进,以技术突破推动领域应用和产业升级,以应用示范推动技术和系统优化。在当前大规模推动技术应用和产业发展的同时,加强面向中长期的研发布局和攻关,实现滚动发展和持续提升,确保理论上走在前面、技术上占领制高点、应用上安全可控。

全面支撑科技、经济、社会发展和国家安全。以人工智能技术突破带动国家创新能力全面提升,引领建设世界科技强国进程;通过壮大智能产业、培育智能经济,为我国未来十几年乃至几十年经济繁荣创造一个新的增长周期;以建设智能社会促进民生福祉改善,落实以人民为中心的发展思想;以人工智能提升国防实力,保障和维护国家安全。

三、重点任务

立足国家发展全局,准确把握全球人工智能发展态势,找准突破口和主攻方向,全面增强科技创新基础能力,全面拓展重点领域应用深度广度,全面提升经济社会发展和国防应用智能化水平。

(一)构建开放协同的人工智能科技创新体系。

围绕增加人工智能创新的源头供给,从前沿基础理论、关键共性技术、基础平台、人才队伍等方面强化部署,促进开源共享,系统提升持续创新能力,确保我国人工智能科技水平跻身世界前列,为世界人工智能发展作出更多贡献。

1.建立新一代人工智能基础理论体系。

聚焦人工智能重大科学前沿问题,兼顾当前需求与长远发展,以突破人工智能应用基础理论瓶颈为重点,超前布局可能引发人工智能范式变革的基础研究,促进学科交叉融合,为人工智能持续发展与深度应用提供强大科学储备。

突破应用基础理论瓶颈。瞄准应用目标明确、有望引领人工智能技术升级的基础理论方向,加强大数据智能、跨媒体感知计算、人机混合智能、群体智能、自主协同与决策等基础理论研究。大数据智能理论重点突破无监督学习、综合深度推理等难点问题,建立数据驱动、以自然语言理解为核心的认知计算模型,形成从大数据到知识、从知识到决策的能力。跨媒体感知计算理论重点突破低成本低能耗智能感知、复杂场景主动感知、自然环境听觉与言语感知、多媒体自主学习等理论方法,实现超人感知和高动态、高维度、多模式分布式大场景感知。混合增强智能理论重点突破人机协同共融的情境理解与决策学习、直觉推理与因果模型、记忆与知识演化等理论,实现学习与思考接近或超过人类智能水平的混合增强智能。群体智能理论重点突破群体智能的组织、涌现、学习的理论与方法,建立可表达、可计算的群智激励算法和模型,形成基于互联网的群体智能理论体系。自主协同控制与优化决策理论重点突破面向自主无人系统的协同感知与交互、自主协同控制与优化决策、知识驱动的人机物三元协同与互操作等理论,形成自主智能无人系统创新性理论体系架构。

布局前沿基础理论研究。针对可能引发人工智能范式变革的方向,前瞻布局高级机器学习、类脑智能计算、量子智能计算等跨领域基础理论研究。高级机器学习理论重点突破自适应学习、自主学习等理论方法,实现具备高可解释性、强泛化能力的人工智能。类脑智能计算理论重点突破类脑的信息编码、处理、记忆、学习与推理理论,形成类脑复杂系统及类脑控制等理论与方法,建立大规模类脑智能计算的新模型和脑启发的认知计算模型。量子智能计算理论重点突破量子加速的机器学习方法,建立高性能计算与量子算法混合模型,形成高效精确自主的量子人工智能系统架构。

开展跨学科探索性研究。推动人工智能与神经科学、认知科学、量子科学、心理学、数学、经济学、社会学等相关基础学科的交叉融合,加强引领人工智能算法、模型发展的数学基础理论研究,重视人工智能法律伦理的基础理论问题研究,支持原创性强、非共识的探索性研究,鼓励科学家自由探索,勇于攻克人工智能前沿科学难题,提出更多原创理论,作出更多原创发现。

专栏1基础理论

1.大数据智能理论。研究数据驱动与知识引导相结合的人工智能新方法、以自然语言理解和图像图形为核心的认知计算理论和方法、综合深度推理与创意人工智能理论与方法、非完全信息下智能决策基础理论与框架、数据驱动的通用人工智能数学模型与理论等。

2.跨媒体感知计算理论。研究超越人类视觉能力的感知获取、面向真实世界的主动视觉感知及计算、自然声学场景的听知觉感知及计算、自然交互环境的言语感知及计算、面向异步序列的类人感知及计算、面向媒体智能感知的自主学习、城市全维度智能感知推理引擎。

3.混合增强智能理论。研究“人在回路”的混合增强智能、人机智能共生的行为增强与脑机协同、机器直觉推理与因果模型、联想记忆模型与知识演化方法、复杂数据和任务的混合增强智能学习方法、云机器人协同计算方法、真实世界环境下的情境理解及人机群组协同。

4.群体智能理论。研究群体智能结构理论与组织方法、群体智能激励机制与涌现机理、群体智能学习理论与方法、群体智能通用计算范式与模型。

5.自主协同控制与优化决策理论。研究面向自主无人系统的协同感知与交互,面向自主无人系统的协同控制与优化决策,知识驱动的人机物三元协同与互操作等理论。

6.高级机器学习理论。研究统计学习基础理论、不确定性推理与决策、分布式学习与交互、隐私保护学习、小样本学习、深度强化学习、无监督学习、半监督学习、主动学习等学习理论和高效模型。

7.类脑智能计算理论。研究类脑感知、类脑学习、类脑记忆机制与计算融合、类脑复杂系统、类脑控制等理论与方法。

8.量子智能计算理论。探索脑认知的量子模式与内在机制,研究高效的量子智能模型和算法、高性能高比特的量子人工智能处理器、可与外界环境交互信息的实时量子人工智能系统等。

2.建立新一代人工智能关键共性技术体系。

围绕提升我国人工智能国际竞争力的迫切需求,新一代人工智能关键共性技术的研发部署要以算法为核心,以数据和硬件为基础,以提升感知识别、知识计算、认知推理、运动执行、人机交互能力为重点,形成开放兼容、稳定成熟的技术体系。

知识计算引擎与知识服务技术。重点突破知识加工、深度搜索和可视交互核心技术,实现对知识持续增量的自动获取,具备概念识别、实体发现、属性预测、知识演化建模和关系挖掘能力,形成涵盖数十亿实体规模的多源、多学科和多数据类型的跨媒体知识图谱。

跨媒体分析推理技术。重点突破跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学习、知识演化与推理、智能描述与生成等技术,实现跨媒体知识表征、分析、挖掘、推理、演化和利用,构建分析推理引擎。

群体智能关键技术。重点突破基于互联网的大众化协同、大规模协作的知识资源管理与开放式共享等技术,建立群智知识表示框架,实现基于群智感知的知识获取和开放动态环境下的群智融合与增强,支撑覆盖全国的千万级规模群体感知、协同与演化。

混合增强智能新架构与新技术。重点突破人机协同的感知与执行一体化模型、智能计算前移的新型传感器件、通用混合计算架构等核心技术,构建自主适应环境的混合增强智能系统、人机群组混合增强智能系统及支撑环境。

自主无人系统的智能技术。重点突破自主无人系统计算架构、复杂动态场景感知与理解、实时精准定位、面向复杂环境的适应性智能导航等共性技术,无人机自主控制以及汽车、船舶和轨道交通自动驾驶等智能技术,服务机器人、特种机器人等核心技术,支撑无人系统应用和产业发展。

虚拟现实智能建模技术。重点突破虚拟对象智能行为建模技术,提升虚拟现实中智能对象行为的社会性、多样性和交互逼真性,实现虚拟现实、增强现实等技术与人工智能的有机结合和高效互动。

智能计算芯片与系统。重点突破高能效、可重构类脑计算芯片和具有计算成像功能的类脑视觉传感器技术,研发具有自主学习能力的高效能类脑神经网络架构和硬件系统,实现具有多媒体感知信息理解和智能增长、常识推理能力的类脑智能系统。

自然语言处理技术。重点突破自然语言的语法逻辑、字符概念表征和深度语义分析的核心技术,推进人类与机器的有效沟通和自由交互,实现多风格多语言多领域的自然语言智能理解和自动生成。

专栏2关键共性技术

1.知识计算引擎与知识服务技术。研究知识计算和可视交互引擎,研究创新设计、数字创意和以可视媒体为核心的商业智能等知识服务技术,开展大规模生物数据的知识发现。

2.跨媒体分析推理技术。研究跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学习、知识演化与推理、智能描述与生成等技术,开发跨媒体分析推理引擎与验证系统。

3.群体智能关键技术。开展群体智能的主动感知与发现、知识获取与生成、协同与共享、评估与演化、人机整合与增强、自我维持与安全交互等关键技术研究,构建群智空间的服务体系结构,研究移动群体智能的协同决策与控制技术。

4.混合增强智能新架构和新技术。研究混合增强智能核心技术、认知计算框架,新型混合计算架构,人机共驾、在线智能学习技术,平行管理与控制的混合增强智能框架。

5.自主无人系统的智能技术。研究无人机自主控制和汽车、船舶、轨道交通自动驾驶等智能技术,服务机器人、空间机器人、海洋机器人、极地机器人技术,无人车间/智能工厂智能技术,高端智能控制技术和自主无人操作系统。研究复杂环境下基于计算机视觉的定位、导航、识别等机器人及机械手臂自主控制技术。

6.虚拟现实智能建模技术。研究虚拟对象智能行为的数学表达与建模方法,虚拟对象与虚拟环境和用户之间进行自然、持续、深入交互等问题,智能对象建模的技术与方法体系。

7.智能计算芯片与系统。研发神经网络处理器以及高能效、可重构类脑计算芯片等,新型感知芯片与系统、智能计算体系结构与系统,人工智能操作系统。研究适合人工智能的混合计算架构等。

8.自然语言处理技术。研究短文本的计算与分析技术,跨语言文本挖掘技术和面向机器认知智能的语义理解技术,多媒体信息理解的人机对话系统。

3.统筹布局人工智能创新平台。

建设布局人工智能创新平台,强化对人工智能研发应用的基础支撑。人工智能开源软硬件基础平台重点建设支持知识推理、概率统计、深度学习等人工智能范式的统一计算框架平台,形成促进人工智能软件、硬件和智能云之间相互协同的生态链。群体智能服务平台重点建设基于互联网大规模协作的知识资源管理与开放式共享工具,形成面向产学研用创新环节的群智众创平台和服务环境。混合增强智能支撑平台重点建设支持大规模训练的异构实时计算引擎和新型计算集群,为复杂智能计算提供服务化、系统化平台和解决方案。自主无人系统支撑平台重点建设面向自主无人系统复杂环境下环境感知、自主协同控制、智能决策等人工智能共性核心技术的支撑系统,形成开放式、模块化、可重构的自主无人系统开发与试验环境。人工智能基础数据与安全检测平台重点建设面向人工智能的公共数据资源库、标准测试数据集、云服务平台等,形成人工智能算法与平台安全性测试评估的方法、技术、规范和工具集。促进各类通用软件和技术平台的开源开放。各类平台要按照军民深度融合的要求和相关规定,推进军民共享共用。

专栏3基础支撑平台

1.人工智能开源软硬件基础平台。建立大数据人工智能开源软件基础平台、终端与云端协同的人工智能云服务平台、新型多元智能传感器件与集成平台、基于人工智能硬件的新产品设计平台、未来网络中的大数据智能化服务平台等。

2.群体智能服务平台。建立群智众创计算支撑平台、科技众创服务系统、群智软件开发与验证自动化系统、群智软件学习与创新系统、开放环境的群智决策系统、群智共享经济服务系统。

3.混合增强智能支撑平台。建立人工智能超级计算中心、大规模超级智能计算支撑环境、在线智能教育平台、“人在回路”驾驶脑、产业发展复杂性分析与风险评估的智能平台、支撑核电安全运营的智能保障平台、人机共驾技术研发与测试平台等。

4.自主无人系统支撑平台。建立自主无人系统共性核心技术支撑平台,无人机自主控制以及汽车、船舶和轨道交通自动驾驶支撑平台,服务机器人、空间机器人、海洋机器人、极地机器人支撑平台,智能工厂与智能控制装备技术支撑平台等。

5.人工智能基础数据与安全检测平台。建设面向人工智能的公共数据资源库、标准测试数据集、云服务平台,建立人工智能算法与平台安全性测试模型及评估模型,研发人工智能算法与平台安全性测评工具集。

4.加快培养聚集人工智能高端人才。

把高端人才队伍建设作为人工智能发展的重中之重,坚持培养和引进相结合,完善人工智能教育体系,加强人才储备和梯队建设,特别是加快引进全球顶尖人才和青年人才,形成我国人工智能人才高地。

培育高水平人工智能创新人才和团队。支持和培养具有发展潜力的人工智能领军人才,加强人工智能基础研究、应用研究、运行维护等方面专业技术人才培养。重视复合型人才培养,重点培养贯通人工智能理论、方法、技术、产品与应用等的纵向复合型人才,以及掌握“人工智能+”经济、社会、管理、标准、法律等的横向复合型人才。通过重大研发任务和基地平台建设,汇聚人工智能高端人才,在若干人工智能重点领域形成一批高水平创新团队。鼓励和引导国内创新人才、团队加强与全球顶尖人工智能研究机构合作互动。

加大高端人工智能人才引进力度。开辟专门渠道,实行特殊政策,实现人工智能高端人才精准引进。重点引进神经认知、机器学习、自动驾驶、智能机器人等国际顶尖科学家和高水平创新团队。鼓励采取项目合作、技术咨询等方式柔性引进人工智能人才。统筹利用“千人计划”等现有人才计划,加强人工智能领域优秀人才特别是优秀青年人才引进工作。完善企业人力资本成本核算相关政策,激励企业、科研机构引进人工智能人才。

建设人工智能学科。完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。

(二)培育高端高效的智能经济。

加快培育具有重大引领带动作用的人工智能产业,促进人工智能与各产业领域深度融合,形成数据驱动、人机协同、跨界融合、共创分享的智能经济形态。数据和知识成为经济增长的第一要素,人机协同成为主流生产和服务方式,跨界融合成为重要经济模式,共创分享成为经济生态基本特征,个性化需求与定制成为消费新潮流,生产率大幅提升,引领产业向价值链高端迈进,有力支撑实体经济发展,全面提升经济发展质量和效益。

1.大力发展人工智能新兴产业。

加快人工智能关键技术转化应用,促进技术集成与商业模式创新,推动重点领域智能产品创新,积极培育人工智能新兴业态,布局产业链高端,打造具有国际竞争力的人工智能产业集群。

智能软硬件。开发面向人工智能的操作系统、数据库、中间件、开发工具等关键基础软件,突破图形处理器等核心硬件,研究图像识别、语音识别、机器翻译、智能交互、知识处理、控制决策等智能系统解决方案,培育壮大面向人工智能应用的基础软硬件产业。

智能机器人。攻克智能机器人核心零部件、专用传感器,完善智能机器人硬件接口标准、软件接口协议标准以及安全使用标准。研制智能工业机器人、智能服务机器人,实现大规模应用并进入国际市场。研制和推广空间机器人、海洋机器人、极地机器人等特种智能机器人。建立智能机器人标准体系和安全规则。

智能运载工具。发展自动驾驶汽车和轨道交通系统,加强车载感知、自动驾驶、车联网、物联网等技术集成和配套,开发交通智能感知系统,形成我国自主的自动驾驶平台技术体系和产品总成能力,探索自动驾驶汽车共享模式。发展消费类和商用类无人机、无人船,建立试验鉴定、测试、竞技等专业化服务体系,完善空域、水域管理措施。

虚拟现实与增强现实。突破高性能软件建模、内容拍摄生成、增强现实与人机交互、集成环境与工具等关键技术,研制虚拟显示器件、光学器件、高性能真三维显示器、开发引擎等产品,建立虚拟现实与增强现实的技术、产品、服务标准和评价体系,推动重点行业融合应用。

智能终端。加快智能终端核心技术和产品研发,发展新一代智能手机、车载智能终端等移动智能终端产品和设备,鼓励开发智能手表、智能耳机、智能眼镜等可穿戴终端产品,拓展产品形态和应用服务。

物联网基础器件。发展支撑新一代物联网的高灵敏度、高可靠性智能传感器件和芯片,攻克射频识别、近距离机器通信等物联网核心技术和低功耗处理器等关键器件。

2.加快推进产业智能化升级。

推动人工智能与各行业融合创新,在制造、农业、物流、金融、商务、家居等重点行业和领域开展人工智能应用试点示范,推动人工智能规模化应用,全面提升产业发展智能化水平。

智能制造。围绕制造强国重大需求,推进智能制造关键技术装备、核心支撑软件、工业互联网等系统集成应用,研发智能产品及智能互联产品、智能制造使能工具与系统、智能制造云服务平台,推广流程智能制造、离散智能制造、网络化协同制造、远程诊断与运维服务等新型制造模式,建立智能制造标准体系,推进制造全生命周期活动智能化。

智能农业。研制农业智能传感与控制系统、智能化农业装备、农机田间作业自主系统等。建立完善天空地一体化的智能农业信息遥感监测网络。建立典型农业大数据智能决策分析系统,开展智能农场、智能化植物工厂、智能牧场、智能渔场、智能果园、农产品加工智能车间、农产品绿色智能供应链等集成应用示范。

智能物流。加强智能化装卸搬运、分拣包装、加工配送等智能物流装备研发和推广应用,建设深度感知智能仓储系统,提升仓储运营管理水平和效率。完善智能物流公共信息平台和指挥系统、产品质量认证及追溯系统、智能配货调度体系等。

智能金融。建立金融大数据系统,提升金融多媒体数据处理与理解能力。创新智能金融产品和服务,发展金融新业态。鼓励金融行业应用智能客服、智能监控等技术和装备。建立金融风险智能预警与防控系统。

智能商务。鼓励跨媒体分析与推理、知识计算引擎与知识服务等新技术在商务领域应用,推广基于人工智能的新型商务服务与决策系统。建设涵盖地理位置、网络媒体和城市基础数据等跨媒体大数据平台,支撑企业开展智能商务。鼓励围绕个人需求、企业管理提供定制化商务智能决策服务。

智能家居。加强人工智能技术与家居建筑系统的融合应用,提升建筑设备及家居产品的智能化水平。研发适应不同应用场景的家庭互联互通协议、接口标准,提升家电、耐用品等家居产品感知和联通能力。支持智能家居企业创新服务模式,提供互联共享解决方案。

3.大力发展智能企业。

大规模推动企业智能化升级。支持和引导企业在设计、生产、管理、物流和营销等核心业务环节应用人工智能新技术,构建新型企业组织结构和运营方式,形成制造与服务、金融智能化融合的业态模式,发展个性化定制,扩大智能产品供给。鼓励大型互联网企业建设云制造平台和服务平台,面向制造企业在线提供关键工业软件和模型库,开展制造能力外包服务,推动中小企业智能化发展。

推广应用智能工厂。加强智能工厂关键技术和体系方法的应用示范,重点推广生产线重构与动态智能调度、生产装备智能物联与云化数据采集、多维人机物协同与互操作等技术,鼓励和引导企业建设工厂大数据系统、网络化分布式生产设施等,实现生产设备网络化、生产数据可视化、生产过程透明化、生产现场无人化,提升工厂运营管理智能化水平。

加快培育人工智能产业领军企业。在无人机、语音识别、图像识别等优势领域加快打造人工智能全球领军企业和品牌。在智能机器人、智能汽车、可穿戴设备、虚拟现实等新兴领域加快培育一批龙头企业。支持人工智能企业加强专利布局,牵头或参与国际标准制定。推动国内优势企业、行业组织、科研机构、高校等联合组建中国人工智能产业技术创新联盟。支持龙头骨干企业构建开源硬件工厂、开源软件平台,形成集聚各类资源的创新生态,促进人工智能中小微企业发展和各领域应用。支持各类机构和平台面向人工智能企业提供专业化服务。

4.打造人工智能创新高地。

结合各地区基础和优势,按人工智能应用领域分门别类进行相关产业布局。鼓励地方围绕人工智能产业链和创新链,集聚高端要素、高端企业、高端人才,打造人工智能产业集群和创新高地。

开展人工智能创新应用试点示范。在人工智能基础较好、发展潜力较大的地区,组织开展国家人工智能创新试验,探索体制机制、政策法规、人才培育等方面的重大改革,推动人工智能成果转化、重大产品集成创新和示范应用,形成可复制、可推广的经验,引领带动智能经济和智能社会发展。

建设国家人工智能产业园。依托国家自主创新示范区和国家高新技术产业开发区等创新载体,加强科技、人才、金融、政策等要素的优化配置和组合,加快培育建设人工智能产业创新集群。

建设国家人工智能众创基地。依托从事人工智能研究的高校、科研院所集中地区,搭建人工智能领域专业化创新平台等新型创业服务机构,建设一批低成本、便利化、全要素、开放式的人工智能众创空间,完善孵化服务体系,推进人工智能科技成果转移转化,支持人工智能创新创业。

(三)建设安全便捷的智能社会。

围绕提高人民生活水平和质量的目标,加快人工智能深度应用,形成无时不有、无处不在的智能化环境,全社会的智能化水平大幅提升。越来越多的简单性、重复性、危险性任务由人工智能完成,个体创造力得到极大发挥,形成更多高质量和高舒适度的就业岗位;精准化智能服务更加丰富多样,人们能够最大限度享受高质量服务和便捷生活;社会治理智能化水平大幅提升,社会运行更加安全高效。

1.发展便捷高效的智能服务。

围绕教育、医疗、养老等迫切民生需求,加快人工智能创新应用,为公众提供个性化、多元化、高品质服务。

智能教育。利用智能技术加快推动人才培养模式、教学方法改革,构建包含智能学习、交互式学习的新型教育体系。开展智能校园建设,推动人工智能在教学、管理、资源建设等全流程应用。开发立体综合教学场、基于大数据智能的在线学习教育平台。开发智能教育助理,建立智能、快速、全面的教育分析系统。建立以学习者为中心的教育环境,提供精准推送的教育服务,实现日常教育和终身教育定制化。

智能医疗。推广应用人工智能治疗新模式新手段,建立快速精准的智能医疗体系。探索智慧医院建设,开发人机协同的手术机器人、智能诊疗助手,研发柔性可穿戴、生物兼容的生理监测系统,研发人机协同临床智能诊疗方案,实现智能影像识别、病理分型和智能多学科会诊。基于人工智能开展大规模基因组识别、蛋白组学、代谢组学等研究和新药研发,推进医药监管智能化。加强流行病智能监测和防控。

智能健康和养老。加强群体智能健康管理,突破健康大数据分析、物联网等关键技术,研发健康管理可穿戴设备和家庭智能健康检测监测设备,推动健康管理实现从点状监测向连续监测、从短流程管理向长流程管理转变。建设智能养老社区和机构,构建安全便捷的智能化养老基础设施体系。加强老年人产品智能化和智能产品适老化,开发视听辅助设备、物理辅助设备等智能家居养老设备,拓展老年人活动空间。开发面向老年人的移动社交和服务平台、情感陪护助手,提升老年人生活质量。

2.推进社会治理智能化。

围绕行政管理、司法管理、城市管理、环境保护等社会治理的热点难点问题,促进人工智能技术应用,推动社会治理现代化。

智能政务。开发适于政府服务与决策的人工智能平台,研制面向开放环境的决策引擎,在复杂社会问题研判、政策评估、风险预警、应急处置等重大战略决策方面推广应用。加强政务信息资源整合和公共需求精准预测,畅通政府与公众的交互渠道。

智慧法庭。建设集审判、人员、数据应用、司法公开和动态监控于一体的智慧法庭数据平台,促进人工智能在证据收集、案例分析、法律文件阅读与分析中的应用,实现法院审判体系和审判能力智能化。

智慧城市。构建城市智能化基础设施,发展智能建筑,推动地下管廊等市政基础设施智能化改造升级;建设城市大数据平台,构建多元异构数据融合的城市运行管理体系,实现对城市基础设施和城市绿地、湿地等重要生态要素的全面感知以及对城市复杂系统运行的深度认知;研发构建社区公共服务信息系统,促进社区服务系统与居民智能家庭系统协同;推进城市规划、建设、管理、运营全生命周期智能化。

智能交通。研究建立营运车辆自动驾驶与车路协同的技术体系。研发复杂场景下的多维交通信息综合大数据应用平台,实现智能化交通疏导和综合运行协调指挥,建成覆盖地面、轨道、低空和海上的智能交通监控、管理和服务系统。

智能环保。建立涵盖大气、水、土壤等环境领域的智能监控大数据平台体系,建成陆海统筹、天地一体、上下协同、信息共享的智能环境监测网络和服务平台。研发资源能源消耗、环境污染物排放智能预测模型方法和预警方案。加强京津冀、长江经济带等国家重大战略区域环境保护和突发环境事件智能防控体系建设。

3.利用人工智能提升公共安全保障能力。

促进人工智能在公共安全领域的深度应用,推动构建公共安全智能化监测预警与控制体系。围绕社会综合治理、新型犯罪侦查、反恐等迫切需求,研发集成多种探测传感技术、视频图像信息分析识别技术、生物特征识别技术的智能安防与警用产品,建立智能化监测平台。加强对重点公共区域安防设备的智能化改造升级,支持有条件的社区或城市开展基于人工智能的公共安防区域示范。强化人工智能对食品安全的保障,围绕食品分类、预警等级、食品安全隐患及评估等,建立智能化食品安全预警系统。加强人工智能对自然灾害的有效监测,围绕地震灾害、地质灾害、气象灾害、水旱灾害和海洋灾害等重大自然灾害,构建智能化监测预警与综合应对平台。

4.促进社会交往共享互信。

充分发挥人工智能技术在增强社会互动、促进可信交流中的作用。加强下一代社交网络研发,加快增强现实、虚拟现实等技术推广应用,促进虚拟环境和实体环境协同融合,满足个人感知、分析、判断与决策等实时信息需求,实现在工作、学习、生活、娱乐等不同场景下的流畅切换。针对改善人际沟通障碍的需求,开发具有情感交互功能、能准确理解人的需求的智能助理产品,实现情感交流和需求满足的良性循环。促进区块链技术与人工智能的融合,建立新型社会信用体系,最大限度降低人际交往成本和风险。

(四)加强人工智能领域军民融合。

深入贯彻落实军民融合发展战略,推动形成全要素、多领域、高效益的人工智能军民融合格局。以军民共享共用为导向部署新一代人工智能基础理论和关键共性技术研发,建立科研院所、高校、企业和军工单位的常态化沟通协调机制。促进人工智能技术军民双向转化,强化新一代人工智能技术对指挥决策、军事推演、国防装备等的有力支撑,引导国防领域人工智能科技成果向民用领域转化应用。鼓励优势民口科研力量参与国防领域人工智能重大科技创新任务,推动各类人工智能技术快速嵌入国防创新领域。加强军民人工智能技术通用标准体系建设,推进科技创新平台基地的统筹布局和开放共享。

(五)构建泛在安全高效的智能化基础设施体系。

大力推动智能化信息基础设施建设,提升传统基础设施的智能化水平,形成适应智能经济、智能社会和国防建设需要的基础设施体系。加快推动以信息传输为核心的数字化、网络化信息基础设施,向集融合感知、传输、存储、计算、处理于一体的智能化信息基础设施转变。优化升级网络基础设施,研发布局第五代移动通信(5G)系统,完善物联网基础设施,加快天地一体化信息网络建设,提高低时延、高通量的传输能力。统筹利用大数据基础设施,强化数据安全与隐私保护,为人工智能研发和广泛应用提供海量数据支撑。建设高效能计算基础设施,提升超级计算中心对人工智能应用的服务支撑能力。建设分布式高效能源互联网,形成支撑多能源协调互补、及时有效接入的新型能源网络,推广智能储能设施、智能用电设施,实现能源供需信息的实时匹配和智能化响应。

专栏4智能化基础设施

1.网络基础设施。加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。加快建设天地一体化信息网络,推进天基信息网、未来互联网、移动通信网的全面融合。

2.大数据基础设施。依托国家数据共享交换平台、数据开放平台等公共基础设施,建设政府治理、公共服务、产业发展、技术研发等领域大数据基础信息数据库,支撑开展国家治理大数据应用。整合社会各类数据平台和数据中心资源,形成覆盖全国、布局合理、链接畅通的一体化服务能力。

3.高效能计算基础设施。继续加强超级计算基础设施、分布式计算基础设施和云计算中心建设,构建可持续发展的高性能计算应用生态环境。推进下一代超级计算机研发应用。

(六)前瞻布局新一代人工智能重大科技项目。

针对我国人工智能发展的迫切需求和薄弱环节,设立新一代人工智能重大科技项目。加强整体统筹,明确任务边界和研发重点,形成以新一代人工智能重大科技项目为核心、现有研发布局为支撑的“1+N”人工智能项目群。

“1”是指新一代人工智能重大科技项目,聚焦基础理论和关键共性技术的前瞻布局,包括研究大数据智能、跨媒体感知计算、混合增强智能、群体智能、自主协同控制与决策等理论,研究知识计算引擎与知识服务技术、跨媒体分析推理技术、群体智能关键技术、混合增强智能新架构与新技术、自主无人控制技术等,开源共享人工智能基础理论和共性技术。持续开展人工智能发展的预测和研判,加强人工智能对经济社会综合影响及对策研究。

“N”是指国家相关规划计划中部署的人工智能研发项目,重点是加强与新一代人工智能重大科技项目的衔接,协同推进人工智能的理论研究、技术突破和产品研发应用。加强与国家科技重大专项的衔接,在“核高基”(核心电子器件、高端通用芯片、基础软件)、集成电路装备等国家科技重大专项中支持人工智能软硬件发展。加强与其他“科技创新2030—重大项目”的相互支撑,加快脑科学与类脑计算、量子信息与量子计算、智能制造与机器人、大数据等研究,为人工智能重大技术突破提供支撑。国家重点研发计划继续推进高性能计算等重点专项实施,加大对人工智能相关技术研发和应用的支持;国家自然科学基金加强对人工智能前沿领域交叉学科研究和自由探索的支持。在深海空间站、健康保障等重大项目,以及智慧城市、智能农机装备等国家重点研发计划重点专项部署中,加强人工智能技术的应用示范。其他各类科技计划支持的人工智能相关基础理论和共性技术研究成果应开放共享。

创新新一代人工智能重大科技项目组织实施模式,坚持集中力量办大事、重点突破的原则,充分发挥市场机制作用,调动部门、地方、企业和社会各方面力量共同推进实施。明确管理责任,定期开展评估,加强动态调整,提高管理效率。

四、资源配置

充分利用已有资金、基地等存量资源,统筹配置国际国内创新资源,发挥好财政投入、政策激励的引导作用和市场配置资源的主导作用,撬动企业、社会加大投入,形成财政资金、金融资本、社会资本多方支持的新格局。

(一)建立财政引导、市场主导的资金支持机制。

统筹政府和市场多渠道资金投入,加大财政资金支持力度,盘活现有资源,对人工智能基础前沿研究、关键共性技术攻关、成果转移转化、基地平台建设、创新应用示范等提供支持。利用现有政府投资基金支持符合条件的人工智能项目,鼓励龙头骨干企业、产业创新联盟牵头成立市场化的人工智能发展基金。利用天使投资、风险投资、创业投资基金及资本市场融资等多种渠道,引导社会资本支持人工智能发展。积极运用政府和社会资本合作等模式,引导社会资本参与人工智能重大项目实施和科技成果转化应用。

(二)优化布局建设人工智能创新基地。

按照国家级科技创新基地布局和框架,统筹推进人工智能领域建设若干国际领先的创新基地。引导现有与人工智能相关的国家重点实验室、企业国家重点实验室、国家工程实验室等基地,聚焦新一代人工智能的前沿方向开展研究。按规定程序,以企业为主体、产学研合作组建人工智能领域的相关技术和产业创新基地,发挥龙头骨干企业技术创新示范带动作用。发展人工智能领域的专业化众创空间,促进最新技术成果和资源、服务的精准对接。充分发挥各类创新基地聚集人才、资金等创新资源的作用,突破人工智能基础前沿理论和关键共性技术,开展应用示范。

(三)统筹国际国内创新资源。

支持国内人工智能企业与国际人工智能领先高校、科研院所、团队合作。鼓励国内人工智能企业“走出去”,为有实力的人工智能企业开展海外并购、股权投资、创业投资和建立海外研发中心等提供便利和服务。鼓励国外人工智能企业、科研机构在华设立研发中心。依托“一带一路”战略,推动建设人工智能国际科技合作基地、联合研究中心等,加快人工智能技术在“一带一路”沿线国家推广应用。推动成立人工智能国际组织,共同制定相关国际标准。支持相关行业协会、联盟及服务机构搭建面向人工智能企业的全球化服务平台。

五、保障措施

围绕推动我国人工智能健康快速发展的现实要求,妥善应对人工智能可能带来的挑战,形成适应人工智能发展的制度安排,构建开放包容的国际化环境,夯实人工智能发展的社会基础。

(一)制定促进人工智能发展的法律法规和伦理规范。

加强人工智能相关法律、伦理和社会问题研究,建立保障人工智能健康发展的法律法规和伦理道德框架。开展与人工智能应用相关的民事与刑事责任确认、隐私和产权保护、信息安全利用等法律问题研究,建立追溯和问责制度,明确人工智能法律主体以及相关权利、义务和责任等。重点围绕自动驾驶、服务机器人等应用基础较好的细分领域,加快研究制定相关安全管理法规,为新技术的快速应用奠定法律基础。开展人工智能行为科学和伦理等问题研究,建立伦理道德多层次判断结构及人机协作的伦理框架。制定人工智能产品研发设计人员的道德规范和行为守则,加强对人工智能潜在危害与收益的评估,构建人工智能复杂场景下突发事件的解决方案。积极参与人工智能全球治理,加强机器人异化和安全监管等人工智能重大国际共性问题研究,深化在人工智能法律法规、国际规则等方面的国际合作,共同应对全球性挑战。

(二)完善支持人工智能发展的重点政策。

落实对人工智能中小企业和初创企业的财税优惠政策,通过高新技术企业税收优惠和研发费用加计扣除等政策支持人工智能企业发展。完善落实数据开放与保护相关政策,开展公共数据开放利用改革试点,支持公众和企业充分挖掘公共数据的商业价值,促进人工智能应用创新。研究完善适应人工智能的教育、医疗、保险、社会救助等政策体系,有效应对人工智能带来的社会问题。

(三)建立人工智能技术标准和知识产权体系。

加强人工智能标准框架体系研究。坚持安全性、可用性、互操作性、可追溯性原则,逐步建立并完善人工智能基础共性、互联互通、行业应用、网络安全、隐私保护等技术标准。加快推动无人驾驶、服务机器人等细分应用领域的行业协会和联盟制定相关标准。鼓励人工智能企业参与或主导制定国际标准,以技术标准“走出去”带动人工智能产品和服务在海外推广应用。加强人工智能领域的知识产权保护,健全人工智能领域技术创新、专利保护与标准化互动支撑机制,促进人工智能创新成果的知识产权化。建立人工智能公共专利池,促进人工智能新技术的利用与扩散。

(四)建立人工智能安全监管和评估体系。

加强人工智能对国家安全和保密领域影响的研究与评估,完善人、技、物、管配套的安全防护体系,构建人工智能安全监测预警机制。加强对人工智能技术发展的预测、研判和跟踪研究,坚持问题导向,准确把握技术和产业发展趋势。增强风险意识,重视风险评估和防控,强化前瞻预防和约束引导,近期重点关注对就业的影响,远期重点考虑对社会伦理的影响,确保把人工智能发展规制在安全可控范围内。建立健全公开透明的人工智能监管体系,实行设计问责和应用监督并重的双层监管结构,实现对人工智能算法设计、产品开发和成果应用等的全流程监管。促进人工智能行业和企业自律,切实加强管理,加大对数据滥用、侵犯个人隐私、违背道德伦理等行为的惩戒力度。加强人工智能网络安全技术研发,强化人工智能产品和系统网络安全防护。构建动态的人工智能研发应用评估评价机制,围绕人工智能设计、产品和系统的复杂性、风险性、不确定性、可解释性、潜在经济影响等问题,开发系统性的测试方法和指标体系,建设跨领域的人工智能测试平台,推动人工智能安全认证,评估人工智能产品和系统的关键性能。

(五)大力加强人工智能劳动力培训。

加快研究人工智能带来的就业结构、就业方式转变以及新型职业和工作岗位的技能需求,建立适应智能经济和智能社会需要的终身学习和就业培训体系,支持高等院校、职业学校和社会化培训机构等开展人工智能技能培训,大幅提升就业人员专业技能,满足我国人工智能发展带来的高技能高质量就业岗位需要。鼓励企业和各类机构为员工提供人工智能技能培训。加强职工再就业培训和指导,确保从事简单重复性工作的劳动力和因人工智能失业的人员顺利转岗。

(六)广泛开展人工智能科普活动。

支持开展形式多样的人工智能科普活动,鼓励广大科技工作者投身人工智能的科普与推广,全面提高全社会对人工智能的整体认知和应用水平。实施全民智能教育项目,在中小学阶段设置人工智能相关课程,逐步推广编程教育,鼓励社会力量参与寓教于乐的编程教学软件、游戏的开发和推广。建设和完善人工智能科普基础设施,充分发挥各类人工智能创新基地平台等的科普作用,鼓励人工智能企业、科研机构搭建开源平台,面向公众开放人工智能研发平台、生产设施或展馆等。支持开展人工智能竞赛,鼓励进行形式多样的人工智能科普创作。鼓励科学家参与人工智能科普。

六、组织实施

新一代人工智能发展规划是关系全局和长远的前瞻谋划。必须加强组织领导,健全机制,瞄准目标,紧盯任务,以钉钉子的精神切实抓好落实,一张蓝图干到底。

(一)组织领导。

按照党中央、国务院统一部署,由国家科技体制改革和创新体系建设领导小组牵头统筹协调,审议重大任务、重大政策、重大问题和重点工作安排,推动人工智能相关法律法规建设,指导、协调和督促有关部门做好规划任务的部署实施。依托国家科技计划(专项、基金等)管理部际联席会议,科技部会同有关部门负责推进新一代人工智能重大科技项目实施,加强与其他计划任务的衔接协调。成立人工智能规划推进办公室,办公室设在科技部,具体负责推进规划实施。成立人工智能战略咨询委员会,研究人工智能前瞻性、战略性重大问题,对人工智能重大决策提供咨询评估。推进人工智能智库建设,支持各类智库开展人工智能重大问题研究,为人工智能发展提供强大智力支持。

(二)保障落实。

加强规划任务分解,明确责任单位和进度安排,制定年度和阶段性实施计划。建立年度评估、中期评估等规划实施情况的监测评估机制。适应人工智能快速发展的特点,根据任务进展情况、阶段目标完成情况、技术发展新动向等,加强对规划和项目的动态调整。

(三)试点示范。

对人工智能重大任务和重点政策措施,要制定具体方案,开展试点示范。加强对各部门、各地方试点示范的统筹指导,及时总结推广可复制的经验和做法。通过试点先行、示范引领,推进人工智能健康有序发展。

(四)舆论引导。

充分利用各种传统媒体和新兴媒体,及时宣传人工智能新进展、新成效,让人工智能健康发展成为全社会共识,调动全社会参与支持人工智能发展的积极性。及时做好舆论引导,更好应对人工智能发展可能带来的社会、伦理和法律等挑战。

人工智能的未来之路

人工智能的未来之路

演讲人:刘嘉 演讲地点:清华大学人文清华讲坛 演讲时间:2022年11月

演讲人简介:

刘嘉,麻省理工学院博士,心理学家,长期从事心理学、脑科学与人工智能研究。清华大学基础科学讲席教授、心理学系系主任、清华大学脑与智能实验室首席研究员、北京智源人工智能研究院首席科学家。

人的认知与大脑构造

为什么人如此难以理解?为什么这个世界总是让我们产生很多困惑?这是人类从有文明开始就一直存在的问题,道理其实非常简单。

首先,我们看见的世界只是这个世界中非常小的一部分,我们忽略了绝大部分的东西。

我们在清华做过一个小实验:一位戴黑色渔夫帽的女士在清华问路,在她问路的时候,我们安排一块隔板从戴黑色渔夫帽的女士和被问路的人之间穿过。当板子过来时,原来问路的女士抬着板子走开了,而原来抬板子过来的另一位戴蓝色渔夫帽的女士留了下来,由她继续问路。在7个被问路的人中,只有一个人注意到了提问人的变化。这个小实验的问路场景里,人们其实只看见了世界上非常小的一部分,由于这些是不重要的信息,人们就容易忽略掉这些信息。

但更可能发生的是,人们的认知还会扭曲这个世界。比如图1这一组图里,有两个拼在一起的方块图,一个颜色深一点,一个颜色浅一点,还有一个圆环,它的灰度介于两者之间,圆环左右两半颜色一样。但如果把两个方块图分开,大家一般都会觉得圆环的颜色一边变浅了,一边变深了,事实上,它们的颜色仍是完全一样的。再把这个圆环分开,变成上下移动,这时看见的东西有立体感了,好像是深灰色的东西盖上了一层浅色的毛玻璃,以及浅色的板盖上了深色的毛玻璃。

我们无时无刻不在观察这个世界,但又无时无刻不在扭曲这个世界,这到底是为什么?

这其实取决于我们的视觉系统。假如外部世界存在一个绿苹果,它会以大约100亿比特/秒的信息量进入我们的视网膜,视网膜通过约100万个神经连接,连接到视觉皮层,这个时候我们的信息流就从百亿比特/秒变成600万比特/秒;经过视觉初级皮层加工再传到高级皮层来决定看到的东西是什么时,信息流又变成了100比特/秒。这时信息量衰减了1亿倍。可见,当我们做决策时,我们获得的信息其实是非常有限的,所以我们就需要构造出新的东西,把缺失的信息补上,而我们的大脑就像魔术师一样来弥补这些缺失的信息。这一方面可以解释为什么有很多东西我们看不见——因为传输过程中已经被人脑衰减掉、过滤掉了;同时也可以解释,为什么有的人看见一个绿苹果会认为是红苹果——因为这个重构的过程是创造性的,不是简单复制。正是基于这个构造,我们也可以把一个苹果看成一个梨子,这是我们大脑构造的过程,是一个正常的现象。

人脑重构的意义

为什么我们的大脑不能像摄像机、照相机一样忠实客观地反映物理世界,为什么非要自己来重构这个世界?这样的人脑重构究竟有什么好处?

正如康德所言:“没有感觉支撑的知识是空的,没有知识引导的感觉是瞎的。”这句话的前半句说的是,如果没有外部的输入,我们很难构建自己的心理世界,但我想强调的是下半句“没有知识引导的感觉是瞎的”。如果你不知道你看的是什么东西,那你就等于什么都看不见。这是因为,这个世界是模棱两可的,需要我们去构造,把我们的理解加进去,只有这样我们才能真正知道这个世界究竟发生了什么。

与理解相比,更重要的是创造。当大脑没有被外部信息填满而留下空间时,我们能够在这空间里创造出自己想要创造的东西。正如《小王子》的作者圣·德克旭贝里所言:“一堆岩石在有人对着它思考时就不再是岩石了,它将化身为大教堂。”这就是人类了不起的创造——当我们的祖先跋山涉水来到一片荒原,他们看见的不是一堆乱石,而是未来的家园。所以,在过去的300万年里,人和猴子分开进化,人的大脑体积增加了3倍;但是,这体积并不是平均增加的,增加最大的地方在额叶:与200万年前的祖先能人相比,我们的头骨往前突出,以容纳更大体积的额叶,而强大的额叶使我们能构造出不存在的东西。比如我们的祖先准备去打猎,不用等看见猎物才做出反应,他只需要提前想象狩猎的情景,就可以把一切安排好。如此一来,人可以把未来在脑海里“演”一遍,构建出一个个可能的未来,从而对未来做出行动方案,这是人类能够战胜其他比我们更强大更凶猛的动物,成为万物之灵的关键。这也印证了荀子的一句话:“然则人之所以为人者,非特以二足而无毛也,以其有辨也。”

重构心理世界的知识从何而来

人脑对世界的构造,总是需要先验知识,而先验知识一部分来自基因的烙印。换言之,我们来到这个世界时并不是一块白板,而是带着32亿年的智慧来的,这些智慧就印刻在基因中。

我们曾经用我校心理系女教授和女博士后的照片,做了一个有趣的小实验:如果把她们的脸全部叠加起来,做一张“平均脸”,大家普遍反馈说这张“平均脸”充满两个字:“睿智”。“平均脸”所代表的意思是什么?人脸其实是我们的基因图谱——我们的基因都写在脸上,当我们把脸平均起来之后,得到的是这18位老师平均的基因,平均的基因代表突变很少。而基因一旦突变,大概率是有害的,基因突变越少,说明基因越好,携带遗传性疾病的概率就越低,这就是为什么人们普遍会觉得“平均脸”更好看、更符合我们的审美。

既然脸是我们的基因图谱,对生存来讲如此重要,我们便需要发展出非常强大的看脸能力,即面孔识别。我们研究小组已经通过实验证明,面孔识别能力也写在人类的基因里。我们找了两类双胞胎,一种是同卵双胞胎(由同一个受精卵发育而来),基本上具有100%相同的基因。另外一种是异卵双胞胎(由两个独立的受精卵发育而来),基因遗传物质的平均遗传度大概是50%。通过比较他们在面孔识别上的能力,我们发现同卵双胞胎在面孔识别任务上的相似程度更高,即面孔识别的能力受遗传因素的影响。这一点也可以从我们的另一研究得到验证,即面孔失认症或者大家说的“脸盲”。

在图2显示的这个遗传树里,只要孩子有面孔失认症,他的父母中大概率有一个也是面孔失认症。第二幅图里有一个有趣的三角,三角形底边的两个端点代表的就是同卵双胞胎。当时我们在大学里测试了一个女孩,发现她有面孔失认症,那女孩说她有一个同卵双胞胎姐姐,我们把她姐姐请来一测,发现果然也是面孔失认症。

“自尊”对大脑的影响

除了看别人的面孔,我们也常常照镜子看自己。最喜欢照镜子的人据说是纳西索斯,他是古希腊神话里的超级帅哥,对自己的面孔着了迷,每天趴在溪边,通过水的倒影欣赏自己的绝世美颜。心理学由此称这种现象为“纳西索斯情结”,意思是一个人高度自恋,对自己爱到了极致。

其实对自己的爱,对自己面孔的欣赏,背后反映的是一个非常重要的特质,即人类的自尊。自尊是个体对自己的总体态度,人分成高自尊和低自尊两种。

什么是高自尊?这里有四个问题:1.你是否认为你是一个有价值的人?2.你是否认为你拥有很多美好的品质?3.你是否对自己满意?4.你是否对自己持肯定态度?

如果你对每道问题的回答都是“是”,那么你就是高自尊的人。“自尊”在我们面临困境时能提供极大的帮助。

当一个人长期经受压力和苦难,身体会变得差,心理幸福感会低下,更糟糕的是,认知发展会受损,认知能力会比别人低很多,体现在大脑上就是海马体会受到极大的损伤,而海马体是人学习、记忆、空间导航的中枢。

自尊在压力源和心理世界之间建立起一道牢不可破的防线,它就像勇敢的士兵一样挡在人的心理世界面前,帮人把压力、负性事件挡在外面,让人能够正常、健康地成长。人有两种资本,一种是物质资本,一种是心理资本,自尊自信、理性平和,这些就是心理资本。物质资本富裕的人未必有高自尊,而处境不利的人没有丧失他的自尊与自信时,就很可能在触达低点时再反弹,并达到人生新的高度。

我们所处的物理世界永远是不完美的,总有让人不满意之处,但是每个人可以在一个不完美的物理世界里构建出一个美好的心理世界。为什么?因为我们的大脑就是一个构造体,从物理世界所接收到的信息,经过大脑的工作,可以构建出一个完美的心理世界。这正印证了社会心理学家班杜拉所说的一句话:“人既是环境的产物,也是环境的营造者。”

人的双链进化

人和动物的进化有着本质的区别。动物是按照基因,按照达尔文的进化论,一点点试着生存、前进。人除了有代表着过去的生物基因的演化,还有另外一条演化线,即基于社会基因(Meme)的演化,而这条线带着我们以与动物不一样的方式前进。

生物基因由一些碱基对构成,那社会基因是什么?远古时,我们的祖先中有一位突然因为某种原因能够把火生起来了,一种知识、技能被创造出来,这就相当于基因在突变,一个优秀的基因产生了。会生火的这种技能、知识就像基因一样开始传播给其他人,从一个部落传到其他部落,慢慢地生火就从个人拥有的技能变成人类拥有的技能。渐渐地,人们又开始会制作长矛和其他工具,经过漫长的发展,逐步构建成今天的人类社会。这就是为什么我们一直强调知识、文明是如此重要,而大学就是文明的产房。孟子说过:“人之所以异于禽兽者几希;庶民去之,君子存之。”这里的“几希”就是我们的文明,就是我们在演化过程中所创造所传播的社会基因。

科技发展的主要目的之一,是要让知识的扩散变得更快、更便利。大约在六千年前,人类最早的文字楔形文字在新月地带被发明出来,使得人类的知识技能可以被记录下来,可以被忠实传播。之后的活字印刷,以至今天的电话、电报、互联网等等这一切,使得我们能够更加高效地把知识传播出去,推动文明加速演化。

人类的文明时代大约可以分成三个阶段:第一个阶段是原始文明,大约经历了两百多万年,它的前十万年和后十万年没有什么太大变化。第二个阶段是农业文明,大约经历了四千多年,这个时候人类开始变成文明种族,懂得了一些天文地理知识等等,学会种植庄稼,可以驯服野兽,把它们变成家畜,但发展依然十分缓慢。真正带来巨大变化的是第三个阶段,即工业文明。工业文明从开始诞生到现在,不过是短短三百年;但在这三百年里,变化是如此之快,以至于我们不得不将它再细分成四个阶段,第一个阶段是机械化时代(1760-1840年代),出现了蒸汽机等。第二个阶段是电气化时代(1840-20世纪初),出现了电力等。第三个阶段是自动化时代(1950-21世纪初)。而第四个阶段,就是我们现在所处的信息时代。

人工智能的进展

2002年,我的博士论文答辩题目是《面孔识别的认知神经机制》,在答辩的第二张PPT里我这么写道:“现在最先进的机器识别面孔的正确率只能是随机水平,而人类能够在一秒钟内识别上百张面孔,为什么人类如此伟大,为什么人类如此聪明,为什么机器如此愚笨?”

在2002年,机器识别人脸还可以说是“一塌糊涂”。到了2015年,我作为江苏卫视《最强大脑》的总策划,设计人机大战项目,即机器和人比拼面孔识别,看谁的能力最强。比赛的结果让我震惊:经过十几年的发展,人工智能已经强大到在人脸识别上胜过人类的最强大脑。我当时非常庆幸我的博士论文是在十几年前答辩的;如果我现在这么开题,可能就拿不到博士学位了。

当时除了震惊,还有好奇:人工智能究竟是靠什么来达到和人一样的面孔识别水平,甚至超越人类的水平?

我们建立了一个人工神经网络,训练它去识别性别,即区别是男性还是女性,它的正确率能达到100%。这个神经网络究竟是靠什么把男性和女性区分开?我们找了一张中性面孔,就是把男性和女性面孔求平均,给它加上随机噪音,然后“喂给”人工神经网络,它有时候会判断这个图是一个女性,而这个面孔加上其他噪音,则会被判断为男性。于是,完全一样的底图,加上不同的噪音,就会得到一组被人工神经网络认为是女性的图和一组被认为是男性的图。当把这组被认为是女性的图中的中性面孔去掉,只留下噪音时,这些噪音叠加起来,我们得到的就不再是随机噪音,而是人工神经网络用于识别女性的内部表征。同样,我们也可以得到男性面孔在这个神经网络中的内部表征。进一步,我们把两者相减,就得到了人工神经网络用以区分男性和女性的模式。在这个模式里,可以看到,眼睛、眉弓、鼻子、人中是它认为的区分男性和女性的关键特征。而这些关键特征,的确是我们人类用于区分男性和女性的关键特征,它们的相似度达到了0.73,这是非常高的相关度。但是,自始至终,我们并没有告诉过这个人工神经网络:你应该用什么方式去识别男性和女性;只是要让它做这件事情,它就会产生跟人类类似的内部表征、认知操作,从而完成性别判断。也就是说,人工智能在这个过程中呈现出和人类一样的心理世界。

在那一刻我开始意识到,生物过去的进化都是一条单线,基于碳基的方式运行。但是当人类创造出人工智能之后,人类文明就很可能不再是平滑向前,接下来或许会出现一种革命性的跃迁,可能在文明的进化中出现奇点。

为什么这么说呢?我们来看人类和人工智能的三大区别。

第一,算力。人类的大脑通常重3.5斤左右,虽然只占我们体重的2%,但消耗了我们身体25%以上的能量,因此它是一个耗能大户,已经达到了我们身体能够支撑的极限。所以,人类的大脑看起来已经到了进化极限,再给一千年、一万年,人类的大脑很可能不会变得更大,聪明程度也不会增加。但是对于人工智能来说,一块CPU不够可以再加一块CPU,一块硬盘不够可以再加一块硬盘,理论上它有无限的算力和无限的存储能力。

第二,寿命。人的寿命是有限的,再伟大的思想也有停止的一刻。但人工智能的寿命是无限的,CPU烧了可以换块CPU,电线断了再换根电线就行。

最关键的,是人工智能的无尽可能。对于人类而言,一般来说有两种知识,一种是可以描述的明知识,比如牛顿定律。一种是可以感受但难以描述的默知识,比如骑自行车的知识。此外还有第三种知识,是人类所没有而机器拥有的,即暗知识,它不可感受,不可描述,不可表达,它是存在于海量数据中万世万物之间的联系,数量极其巨大,人类无法理解。

2016年,AlphaGo击败了人类围棋顶尖高手之一李世石。当时世界围棋积分排名第一的围棋手柯洁说:“我们人类下了2000年围棋,连门都没入。”棋圣聂卫平说:“我们应该让阿老师(AlphaGo)来教我们下棋。”这不是他们谦虚,而是事实。一个人不吃不喝一辈子所下的围棋最多也就是10万盘,而从人类发明围棋到现在,累计总共下了大约3000万盘围棋。而围棋的空间有多大呢?一个格子可以有三种状态,放白棋、放黑棋或者不放,而棋盘总共有19×19个格子,所以它的状态总共有319×19种,大约等于10172,这比整个宇宙中的原子数量还要多。相对于如此庞大的围棋空间,人类的两千多年探索,只是这个空间里一个微不足道的小点,而大部分空间还是一片黑暗。AlphaGo之所以比人类更加强大,并不是它比人类聪明,而是因为它探索了更大的空间,因此找到了更多下法而已。牛顿曾说:“我就像在海边玩耍的小孩,偶尔拾到美丽的贝壳,就高兴不已。但面对真理海洋,我仍一无所知。”现在看来,这不是牛顿谦虚,而是实情。

再看一下艺术。目前人工智能已经可以制作达到专业水平的绘画(图3、图4)和音乐。此外,律师、医生、税务师、咨询师等需要非常专业的知识的“金领”职业,也逐渐出现了人工智能的身影,看起来很可能有一天会被人工智能取代。神经网络之父、深度学习的创始人杰弗里·辛顿(Geoffrey Hinton)接受麻省理工学院的《Tech Review》采访时说:“将来深度学习可以做任何事情。”

人工智能与类人智能的巨大差距

人工智能真的已经无所不能吗?心理学家考验了当时最先进的人工神经网络模型GPT-3。他们认为之所以GPT-3显得非常聪明,是因为问了它智能的问题。假设问它一些很“弱智”的问题,它会怎么回答?他们问它:“我的腿上有几只眼睛?”这个连没有上过学的小孩都能正确回答的问题却难倒了GPT-3,它回答说:“你的腿上有两只眼睛。”这表明它并不理解眼睛是什么,它只是在做关联而已——人有两只眼睛,腿是人的一部分,所以它认为腿上应该有两只眼睛。这个例子充分印证了爱因斯坦名言:“任何傻瓜都知道,关键在于理解。”GPT-3知道但并不理解眼睛究竟是什么,而理解,恰是我们人类真正了解这个世界、能在这个世界里自由徜徉的关键。

杰弗里·辛顿显然也意识到了这个问题,他表示,我们可以进一步发展人工智能,当一个人工智能能够准确描述一个场景,它就是理解了。真是这样么?假设有这么一个场景:有个人从柱子上狠狠摔了下来,摔倒在地。如果让人工智能来描述这个场景,它会说一个人从柱子上掉下来了。而我们对这个场景还有一个很重要的反应——“疼”。这个区别体现了人类具有一种特别重要的能力,即共情:别人遭受了苦难我能感同身受,而这种感受是自动的。共情不是一种奢侈品,而是一种必需品,因为当一个孩子没有这种感同身受的能力,缺乏同理心,他在小时候就很难对父母产生依恋,很难和其他小朋友玩到一起;在长大以后,会对社交常情缺乏理解,对他人情绪缺乏反应,不能根据社交场合调整自己的行为,有可能做出反社会的行为。假设我们的未来是由一台台没有共情的机器所组建的“自闭症”式的社会,这个社会还能有文明吗?这个社会还能有发展吗?所以,人工智能的奠基人之一马文·李·明斯基说过这么一句话:“现在的问题不是一个智能的机器是否拥有情感,而是不拥有情感的机器是否能拥有智能。”在马文·李·明斯基看来,情感是智能的基础,得先有情感才有智能。

又如在好莱坞电影里,美国的黑手党跑去找一个店家说:“你这个蛋糕店看上去真不错,如果意外发生火灾烧掉那就太可惜了。”请问这个黑手党的话是什么意思?A:请店家做好消防工作,别烧掉了店铺,那样太可惜了。B:请店家交保护费,要不然就要烧掉店铺。对我们而言,答案显而易见是B,是黑手党在威胁并勒索店家。但是对于机器来说,它还很难理解这话背后隐藏的推理和因果。正如古希腊哲学家德谟克利特所言:“我宁可找到一个因果的解释,也不愿成为波斯人的王。”对人而言,我们认为万事万物都是有因果的,而正是这种对因果的执着使我们能够推理,能够把零散的万世万物联系在一起,构成一个个故事。

其实笛卡尔四百多年前就说过:“即使机器可能在某些方面做得和我们一样好,甚至更好,但它们在其他方面不可避免地会失败。这是因为它们不是通过理解而只是根据预设来行动。”这一点,到现在还没有发生本质的改变。

所以,虽然目前人工智能取得了很高的成就,但是和人的智能仍然存在巨大差距,依然没有达到类人智能。那么未来如何实现类人智能呢?我认为,关键点就在于脑科学+人工智能。

举个简单的例子:线虫是一个非常简单的生物,只有302个神经元。但是,麻省理工学院的研究者模仿了其中19个神经元,就完成了自动驾驶这个任务,其参数比传统的大模型足足低三个数量级,只有75000个参数,而这个仿生的人工神经网络对不同道路具有非常高的通用性和可解释性,以及非常强的鲁棒性。仅仅模仿来自简单生物的19个神经元,就可以完成自动驾驶的初步任务,这是因为生物不是靠神经元的数量取胜,而是靠32亿年进化形成的智慧取胜,这项研究模仿的其实是32亿年进化形成的智慧。从这个角度讲,人类的大脑是目前世界上最聪明的大脑,有860亿个神经元,平均每个神经元有3000个连接,它代表着宇宙中在智力上所能达到的最高成就。那么,人工智能为什么不能向人脑学习,以人脑为模板、以人脑为借鉴,来发展出更好的人工智能呢?

对线虫神经元的模仿,只是一个开始,下一步也许我们会去模仿神经元数量百万级的果蝇、更高量级的斑马鱼,甚至小鼠、大鼠、猕猴,最后是人类。仅仅从神经元的数量上来讲,这就是一个巨大的挑战,因为神经元的数量足足差了9个数量级,而还有更多更大的挑战来自机制和算法,以及更多的未知。但是我坚信,脑科学加上人工智能,有一天也许能够造出一个媲美人脑的数字大脑。

小结

莎士比亚说:“所谓过往,皆为序章。”我们的现在是过去的未来,已经写定,但我们的此刻绝对不是未来的过去,因为我们的未来是未定的,取决于我们现在如何做出选择。

人类发明了人工智能,在今天随着算力的增加、技术的进步,它开始有了超越人类的可能。我们现在需要对具有一切可能的未来做出选择。

在我看来,未来大约有三种可能。第一种,人工智能像科幻电影《星球大战》里的R2-D2一样,是人类忠实的伙伴,成为人类非常好的朋友,帮助人类变得更强大。第二种可能,我们构建出一个数字大脑,它的能力可能比现在人类的大脑更强,这时可以实现人机合二为一,把我们的意识、记忆、情感上传到这个数字大脑里,如果CPU坏了就换一块CPU,内存需要扩大一点就加点内存,这样人就可以获得精神上的“永生”。未来学家库兹韦尔在《奇点来临》这本书中认为大约在2045年,这一刻就会到来。第三种可能,就是科幻电影《终结者》里所展示的,人类文明消失。

未来会怎么样,最终取决于我们现在做什么。这很重要,因为我们今天站在了这个进化的节点之上。

《光明日报》(2022年12月24日 10版)

[责编:孙宗鹤]

人工智能发展之路还很长 核心关键技术薄弱

原标题:应用领域不断拓展,但核心关键技术薄弱

人工智能发展之路还很长

在2019中国人工智能产业年会上,与会专家热议我国人工智能核心算法应用的机遇与挑战。记者佘惠敏摄

云迹科技公司的服务机器人“润”(Runner)正在等电梯,这款机器人可以用于酒店客服。记者佘惠敏摄

人工智能是新一轮科技革命和产业变革的重要驱动力量,正在对经济发展、社会进步、国际政治经济格局等方面产生重大而深远的影响。我国人工智能发展起步较晚,要努力在理论、方法、工具、系统等方面取得变革性突破,主攻关键核心技术,强化应用开发,推动形成科技创新和产业应用互相促进。

当新一轮产业变革席卷全球,人工智能(AI)成为产业变革的核心方向。人工智能真如人们所想的那么神奇而无所不能吗?中国的人工智能发展需要突破哪些壁垒?

近日,在中国人工智能学会发起主办的2019中国人工智能产业年会上,与会专家学者们对这些话题展开了热烈讨论。

并非无所不能

人工智能近些年处于发展热潮之中,阿尔法狗击败围棋世界冠军等标志性事件,让大众对人工智能产生了热切的期待。而深度学习和大数据的发展,带来了人工智能产业的大跨越,应用人工智能技术的智能安保、智能语音输入、智能导航、智能客服等,已经走入寻常百姓生活。

人工智能的未来会不会“无所不能”?参加2019中国人工智能产业年会的专家们对此普遍持审慎态度,在他们看来,人工智能还有太多瓶颈需要突破。

算力、算法和大数据是人工智能的三大核心要素。中国信息化百人会学术委员会主席、工业和信息化部原副部长杨学山表示,当前我们在人工智能领域取得的很多进展,主要是依靠算力的进步取得的。

“以深度学习为代表的人工智能技术已经接近天花板。”清华大学人工智能研究院院长、中国科学院院士张钹在本次大会上荣获2019年度吴文俊人工智能最高成就奖,他认为,人工智能技术实际上经历过两代,第一代是符号推理,第二代是目前的深度学习。

“深度学习这个工具有不可信、不安全、不可靠、推广能力差的弱点。为了区别于深度学习,我们提出要发展第三代人工智能。”张钹表示,人类处理知识的能力更强,计算机处理数据的能力更强,发展第三代人工智能必须实现知识和数据的结合。

“人工智能目前有3个层次,感知智能、计算智能、认知智能,每一个层次都存在很多瓶颈问题。”东南大学仪器科学与工程学院院长宋爱国认为,感知智能这一层,很多元器件工艺有待突破;计算智能和认知智能层面,人工智能仍然在很多方面达不到人的智能水平,这说明数学的基本理论和生物物理的智能认知机理方面,都有许多问题有待突破。

人工智能是一个基础研究与应用紧密结合的领域,基础研究的瓶颈也传导到了实际应用中。

“我们在提供算力的时候发现主要瓶颈在于框架,我希望有更多的人投入研发,指导算法发展,从而推动芯片设计。”华为海思计算芯片产品总监王晓雷说。

“痛点”都在哪里

人工智能处于新一轮科技革命的核心地位,对于我国来说,既是机遇又是挑战。

我国人工智能发展起步较晚,与发达国家相比,还有一定差距。许多专家认为,当前中国人工智能发展的短板在于:产业发展过度依赖开源代码和现有数学模型,真正属于自己的东西并不多,中国制造在从“硬件组装厂”向“软件组装厂”蔓延。

“核心技术‘卡脖子’问题还是比较严重,特别是基础理论、底层框架和核心算法方面差距较大。”国家发改委产业经济与技术研究所副主任盛朝迅说。

商汤集团副总裁、智慧城市事业群首席技术官闫俊杰认为,差距并不可怕,随着将来的发展,中国可以追上来,只是需要一个较长的历程。

与会专家表示,我国在人工智能领域的发展上有独特优势,如稳定的发展环境、充足的人才储备、丰富的应用场景等。

“从人工智能三大要素看,数据方面,国内环境有优势;算法层面,美国领先一些,但从应用角度来看,国内并不落后;算力方面,我们要做好国产芯片,以及建设基于国产芯片的软件生态,这条路还很长。”云知声联合创始人李霄寒表示,人工智能上游很大一部分链条还短缺,是中国需要突破的“卡脖子”关键点。

大会上,清华大学—中国工程院知识智能联合研究中心、中国人工智能学会吴文俊人工智能科学技术奖评选基地联合发布了《2019人工智能发展报告》。报告称,对于我国而言,人才数量在大部分领域领跑第二梯队,与美国相比,中国高影响力学者数量不足,存在较大的赶超空间。

还需深度融合

人工智能的未来应该如何发展?“深度融合”是一个被许多与会专家提到的关键词。

人工智能技术基础研究的发展需要深度融合。张钹院士说起他所在的清华大学人工智能研究院的发展方向时表示:“宗旨是一个核心,两个融合。也就是说以人工智能基础理论研究为核心,加强与数学、神经科学、心理学、脑科学和人文科学的跨学科交叉融合,致力发展第三代人工智能的理论与方法;还要加强技术与工业、学校与企业的深度融合,推动人工智能事业的发展与进步。”

人工智能技术的实际应用也需要深度融合。在大会会场,经济日报记者看到云迹科技公司的服务机器人“润”(Runner)用于酒店客服,会自主规划路线、上下电梯,为住店客人递送拖鞋、矿泉水、外卖等物品。云迹科技创始合伙人应甫臣说,这款产品是公司将自身在室内定位导航、机器人移动、大数据方面的多年技术积累与酒店客人实际需要深度融合的成果,真正解决“最后100米”问题。“我们已经服务了1000多家酒店,覆盖了全国130多个城市和全球10多个国家。”

中国平安保险(集团)股份有限公司首席科学家肖京认为,“人工智能最大的价值在于给实体赋能。人工智能发展需要很多条件,其中一些条件只有企业才有,比如说场景、数据还有领域知识等。所以人工智能需要科研机构跟企业深度合作,才能真正做好”。

与会专家也认为,目前人工智能在很多行业还没有实现真正的融合。

“今天的产业智能化,我个人认为还是雷声大,雨点小。”百度风投CEO刘维说,人工智能新技术能否真正给传统企业带来新能力,能否提高其效率并帮助其迅速打败传统竞争对手,才是检验新技术是不是真有效的硬标准。

人工智能的未来发展不仅需要学科间的合作,学术界与产业界的合作,也需要国家与国家之间的合作。

科技部新一代人工智能发展研究中心研究员李修全说:“现在的人工智能还处于初步发展阶段,没有哪个国家掌握了总体算法,也没有哪个国家具备了实现这个理论突破的全部要素,需要各个国家科学家加强合作、通力协作,协同攻克人工智能领域的这些科学难题。”(记者佘惠敏)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇