博舍

人工智能的历史、现状和未来 人工智能对未来工作将会产生什么影响

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能在未来会对社会带来哪些影响

原标题:人工智能在未来会对社会带来哪些影响

AI作为一种新型的颠覆性技术,正在释放科技革命和产业变革所积聚的巨大能量,深刻改变着人类的生产生活方式和思维方式,对经济发展和社会进步产生重大而深远的影响。全世界各国都非常重视人工智能的发展,我国也把新一代人工智能作为科技跨越、产业优化升级和生产力全面提升的驱动力。因此,有必要对人工智能的发展过程进行深入的理解和把握,并对人工智能的发展趋势进行研究。

与传统计算机技术根据已建立的程序进行计算或控制等任务不同,人工智能具有自学习、自组织、自适应和生物智能自适应等特点。人工智能的本质,可以说,就是“赋予机器人类智慧”。第一,人工智能是面向对象的,不涉及具体的技术。AI的目标就是在某种程度上使机器具有与人相同的智能,达到这个目标就称为人工智能,具体的技术路线可以有很多种,许多技术类型和路线都被纳入人工智能的范畴。举例来说,在图灵测试法中,人类通过文字沟通无法区分智能机器和人类,那么机器就可以被认为具有人类智能。第二,人工智能是对人的智力和生理结构的模拟;第三,人工智能的发展涉及到许多因素,包括数学和统计,软件,数据,硬件,甚至外部环境。首先,人工智能自身的发展,需要算法研究、训练数据集、人工智能芯片等跨创新链的多学科协调发展;而人工智能与经济的融合,则需要对外部环境如法律法规、伦理道德、基础设施、社会舆论等进行适应性调整,涉及的外部环境范围很广。当人工智能与经济深度融合后,它所涉及的外部环境范围将进一步扩大,并且它们之间的相互作用和影响也将日益复杂。

总体而言,人工智能将会风起云涌。目前,人工智能正处于这一波发展的高峰。这一波人工智能的兴起,主要是由于数据、算力和算法的飞跃。第一,移动互联网带来的大数据爆发,第二,云计算带来的计算能力的飞跃和计算成本的持续下降,第三,机器学习在互联网领域的推广应用。但是,人工智能技术的成熟和大规模的商业化应用可能仍然会受到影响。从人工智能的发展历史来看,每一次人工智能的发展浪潮都面临着技术瓶颈的限制,导致其难以实现商业化应用,最终又陷入低潮。这一波的人工智能,无论是技术上限还是商业化潜力都远远超过了以往,部分专用人工智能可能会取得重大进展,但是很多行业专家认为,目前的人工智能从机制上还不具备向通用人工智能转化的可能,人工智能的大规模商业化仍将是一个漫长而曲折的过程。AI的发展还处于初期阶段,在可预见的未来,它仍将主要发挥辅助人而不是替代人的作用,与此同时,高度依赖于数据输入和计算能力的人工智能与真正的人的智能还存在着巨大的差距。

人工智能是继互联网之后的新一代“通用目的技术”,其影响可能遍及整个经济社会,产生了许多新的技术形态。国际社会普遍认为人工智能将对未来经济发展产生重大影响。

首先,人工智能将成为未来经济增长的主要驱动力。应用人工智能技术可以提高生产力水平,进而推动经济增长。很多商业研究机构都在预测人工智能对经济的影响,主要的预测指标有GDP增长率,市场规模,劳动生产率,产业增长等等。大多数主要的商业研究机构认为,总体而言,世界各国都会从人工智能中获益,实现经济的快速增长。下一个十年(2030年),人工智能将推动约12%的全球生产总值增长。与此同时,人工智能将会产生数千亿美元甚至万亿美元的产业。AI对全球经济的推动和牵引有三种形式和途径。第一,它创造了一种新的虚拟劳动力,能够解决复杂的任务,即“智能自动化”,需要适应性和灵活性;第二,人工智能可以有力地补充和提升现有劳动力和实物资产,增强员工能力,提高资本效率;第三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,为经济增长开辟新空间。

人工智能取代劳动的速度、广度和深度将是前所未有的。很多经济学家相信,让机器开始具备人脑功能的人工智能,将会以全新的方式取代人类劳动,对许多以前受技术进步影响不大的行业产生冲击,而替代劳动的速度、广度和深度将大大超过以前的技术进步。但是他们同时指出,技术应用存在着社会、法律、经济等方面的障碍,发展速度较慢,技术代替劳动很难迅速实现;劳动者可以转化技术禀赋;新技术的需求也会带来新的就业机会。

目前,在人工智能对经济的影响这一领域,相关研究已取得了一定的成果,但这方面的研究尚处于初步探索阶段,理论与实证分析框架尚不成熟。然而,学术界已达成了一些基本共识:在短期内,人工智能的发展将对我国经济产生显著的推动作用;在长期内,其发展路径和速度难以预测。所以,我们需要继续关注人工智能加速发展所带来的世界经济发展模式的改变。返回搜狐,查看更多

责任编辑:

人工智能何以促进未来教育发展

原标题:人工智能何以促进未来教育发展

自工业革命以来,人类社会的发展总是在技术与教育的角逐互动中前行。技术作为推动人类历史发展的核心推进力,与教育这一“人力资本发动机”竞相成为推动经济社会发展的主力。人工智能作为第四次工业革命的显著标签,其飞速发展正在逐步塑造社会、经济、生活等领域的业务新形态,也不断带来颠覆性、丰富性、创新性的新业态。面对人工智能技术对整个社会发展的刺激,教育如何发展,成为值得思考的重要问题。

人工智能凸显创新人才发展挑战

作为引发第四次科技革命的核心技术,人工智能促进社会经济和科技的指数级发展,对人力资本的质量与供给产生了新的需求,人工智能与人力资源之间的相互依存关系产生了前所未有的张力,教育的超前性更是受到前所未有的挑战。第一,知识增长的指数发展使得未来人才需要哪些方面的准备具有极大的不确定性。第二,智力劳动者比重增加,创新人才成为时代发展的刚需。人工智能技术与生产过程的深度融合,会极大压缩生产领域的从业者需求,特别是那些人工智能胜出的领域。第三,人工智能技术的兴起引发高技术产业、新兴产业、新型服务行业更广阔的发展空间,从而使得创新型人才、复合型人才、高技术人才等在劳动力结构中需求激增。人工智能技术无法取代的创造性、灵活性、人文性等能力将成为智能化时代人才竞争的关键。教育肩负培养创新人才、为未来人才提前布局的使命。回溯历史,我们可以得到的经验是,只有教育领先于技术的发展步伐,为技术推进的社会提前做好人力资源的布局,社会的发展才有后劲。因此,在人工智能推进社会更飞速发展的今天,必须回答好什么样的教育才能承载提前布局人力资源的使命,以应对未知社会的人才挑战这一问题。

人工智能催生新的知识生产方式

在人工智能的影响下,人类知识生产加剧变化,知识增量呈现指数级态势。教育的传承性发展将不再局限于知识的传授与继承,而强调知识创造与创新,人工智能的介入更是催生了新的知识生产方式。其一,人工智能强大的知识发现能力缩短了知识生产周期。随着深度学习、强化学习等新的机器学习算法的发展,人工智能除了可以加快知识的生产、访问和利用,还可以从数据中提取隐含的、未知的、潜在的、有用的信息(知识),从而扩展知识创造的能力。其二,人机协同的智能模式扩大了知识创造的机会与可能性。人工智能技术不仅促进人的群智协同创新,而且可以实现人类与人工智能代理协同,后者所具有的超强计算能力,可以极大加速知识生产,催生知识的众创,以及人机协同知识创新。人工智能催生的新的知识生产方式对教育的挑战是,教育不再局限于知识传承,而更是知识的创新。未来学校教育必须教会学生如何与人工智能技术协同合作,呵护学习者“能学”,以及高度重视学生辨析知识能力的培养,召唤学习者“会学”,促进学习者在人机交互中实现知识更新与创造。

人工智能变革学习方式带来创造力与活力释放可能

人工智能已经引发了诸多领域与行业的深刻变革,对教育的系统性变革更是呼之欲出,为学习方式的变革带来了可能。首先,人工智能技术带来规模化教育的个性化可能。人工智能构建的智慧学习环境不仅创造灵活的学习空间,还能感知学习情境、识别学生特征,为学生提供个性学习支持。其次,人工智能技术带来标准化教育下的适应性可能。人工智能通过动态学习诊断、反馈与资源推荐的自适应学习机制,可以适应学生动态变化的学习需求,从而打破标准化的教育限制,释放出学生的创造力与活力。最后,人工智能改善结构化的授导方式,释放教师的创造力与教学活力而专注于人性化的学习设计。教师烦琐重复性的工作能够被智能机器所替代,智能分析技术能为教师精准定位学生的学习问题与需求,教师的角色将转向更加优秀的学习设计师,专注于“如何让学生学好”,注重培养学生的能力和思维,将更多时间用于学习活动设计以及与学生的个性化互动交流,为学生提供个性化学习支持服务。人工智能的发展以及与教育教学的深度融合,给教育的改革创新带来了更多选择,教育需要发挥技术的赋能、增能、使能优势满足教育的功用性追求,也要坚守教育的育人初心和使命传递人文性价值,以学生的成长发展为前提探索可以实践的学习方式、学习设计,通过人工智能释放出教育的更大活力。

人工智能引发领域与行业变革催生教育生态升级

人工智能对其他领域与行业的变革影响也会延伸到教育领域,因为教育是关乎社会发展全局的事业。一方面,人工智能所发挥的增强、替代、改善、变革等作用,突出体现在对社会生产和生活各个领域所产生的行业重塑作用,以及对人力的释放。另一方面,这些重塑作用和人力的释放,引发了社会领域与行业的变革,促使了社会人才需求的转向;而教育是社会人才资源输出的重要领地,需要为此作出有力回应,从而催生教育生态升级。人工智能加速了教育深化改革的进程,推动了系统内部的更新再造。数字技术已经对教师学生、课程、教学方式、学习体验、评价、管理等教育要素产生了深刻影响,并通过逐步的再造教育流程,变革着教育生态。而人工智能则在进一步加速这一过程,以一种颠覆性创新的态势,拓展系统内各要素的内涵,改善和延展系统内部关系,重塑教育系统功能与形态。人工智能拓展了教育边界,助推未来学校建设。未来学校将借助技术的力量,把校外学习场所(如科技馆、博物馆)和线上学习场所都纳入“学校”的范畴,整合社会各领域的教育资源,形成一种全新的育人环境。同时,数字孪生等新技术促进现实空间与虚拟空间的交互融合,通过创建人、物、环境数字孪生体,实现物理空间与数字空间的双向映射、动态交互和实时连接。对教育系统内部的升级改造以及空间资源的拓展,能够使其更好地与社会领域衔接,更好地提供适应未来生活和工作的创新人才成长场所。

人工智能关乎强国战略目标实现

教育应服务于国家战略布局,为抢占人工智能发展先机,构筑先发优势;为国际竞争、社会发展输出创新人才,支持科学技术的自主研发。当前,世界各国纷纷把发展人工智能上升到国家战略的高度,以抢占新一轮科技革命的机遇高点以及全球竞争中的主动权。《新一代人工智能发展规划》提出我国要“成为世界主要人工智能创新中心”的战略目标,全局部署了经济、教育、科技、社会发展和国家安全等重要方面。教育强国战略是科教兴国战略、人才强国战略和创新驱动发展战略等重要战略的逻辑起点,人工智能对教育的人才培养能力提出更高要求。近年来,世界各国在发展人工智能的同时也面临巨大挑战,如创新人才问题、高新技术自主可控问题等。人工智能的国际竞争本质是人才的较量,这需要教育从战略层面予以回应。因此,教育在战略上起引领作用,就要既充分发挥智能技术优势推动教育生态系统升级,又谋篇布局为国家发展提供人才支撑。立足技术与教育在角逐中互为塑造的视角,对人工智能促进未来教育发展的探索,更需要在战略上把握先机,通过教育为社会各领域输出创新人才,支撑社会各领域转型升级以及人工智能等高新科技的创新发展,为强国战略注入持续活力与能量。

教育在与技术的角逐中共同推动社会的发展。教育具有超前性、人文性、传承性、战略性及生态性等特点。在人工智能技术的指数式发展面前,教育的超前性变得难以维系;需要慢工出细活的人文性与满足社会用人需求的工具性之间呈现时空拉锯和矛盾;对人类知识的传承则变身为历史传承、人际共创以及人机共创的多重特征。随着人工智能技术推动的发展加速,教育的发展战略、前瞻性谋划,是一个时不我待、任重道远的重要课题。

(作者:顾小清,系国家社科基金重大项目“人工智能促进未来教育发展研究”首席专家、华东师范大学教育信息技术学系教授)

(责编:郝孟佳、孙竞)

分享让更多人看到

人工智能将如何影响中国劳动力市场

原标题:人工智能将如何影响中国劳动力市场?

题记:本文采编自2020年第一期《ChinaEconomicJournal》的一篇论文,原论文作为者为中国人民大学劳动人事学院周广肃副教授,百度公司集团战略部高级顾问褚高斯、北大国发院李力行教授、香港中文大学经济系孟岭生副教授。《ChinaEconomicJournal》是国家发展研究院/中国经济研究中心的学术刊物,由英国Taylor&Francis出版集团下属的著名RoutledgeJournals出版并面向全球发行。

随着互联网+、大数据、云计算等相关技术的发展,人工智能很有可能会引发新一轮的科技革命浪潮,并对经济社会发展的各个方面产生重要影响。本文着重研究中国人工智能行业迅猛发展可能给劳动力市场带来的影响。有两个主要推论:

1.人工智能与自动化技术对劳动力市场的影响有两面性:一方面会替代很多劳动力,引起失业;另一方面也会创造新的工作岗位需求,促进就业。由于人工智能对就业市场的总数量影响取决于两种作用的相对大小,但确实存在结构上的差异性效果——相对弱势的劳动者更容易被替代,这种非同质化的影响可能会导致就业市场相关的一系列其他社会问题。

2.根据模型预测,到2049年中国将有2.78亿劳动力被人工智能替代,在这2.78亿人中,女性、老年人、受教育程度低和低收入劳动力被替代的概率和范围相对更大,政策制定要提前加强有针对性的职业教育和培训,并通过补贴等手段调整分配模式,以维持社会平等、保障社会和谐。

对劳动力市场的整体影响有异质性

为了抓住人工智能经济带来的新发展机会,多国都出台一系列刺激人工智能发展的规划纲要或政策文件,中国也希望成为世界主要的人工智能创新中心。随着人工智能在中国的不断发展,其对劳动力市场将产生一系列潜在影响,并关系到居民收入、平等与社会稳定。

首先,人工智能无疑是一种技术进步,能够对劳动力产生明显的替代性作用。然而与工业革命以来的“机器代替体力劳动”的替代模式不同,人工智能正逐渐将“智能”融入生产过程。它不仅要求机器的灵巧性逐渐接近人类的能力,更重要的是,使机器逐渐具备作为人类“思考”的能力,这使得人工智能可以对劳动者产生更大程度的替代。

然而,人工智能对劳动就业也有积极一面的影响。例如,云计算支持了网购平台的蓬勃发展,使得与网络购物紧密相关的快递等行业走向繁荣并带动了大量就业,这就是“互补效应”的典例。再如,随着人工智能行业的发展,会创造一些新的岗位,如需要劳动力进行数据标注,以用于人工智能模型的监督学习(supervisedlearning)训练,这就属于“创造效应”的典例。

总体而言,人工智能对于就业产生的总影响还有待进一步计算,但人工智能对劳动者的替代作用确实存在且不同质,一些相对弱势的劳动者更容易被新技术替代,这将会加剧收入的不平等程度。已有的研究为上述观点提供了一些证据,如Autor、Dorn和Hanson(2015)研究了1980年至2007年贸易和技术对美国劳动力市场的影响,发现引入计算机后,未显著减少净就业,但是对不同特征的劳动力影响存在明显差异。这一研究也是主要关注人工智能对劳动力的替代效应,尤其关注人工智能对不同特征的劳动者的替代效应是否有所不同。

不同行业和职业的替代概率不同

接下来,通过分析和计算人工智能应用率,并结合Frey&Osborne(2017)估计的人工智能理论替代概率,估算人工智能对中国各种职业的实际替代概率。

展开全文

结果显示,到2049年中国将有2.78亿劳动力(不同应用率下结果是2.01亿至3.33亿)被人工智能替代,占中国当前就业人数的35.8%。

就不同特征的劳动力而言,人工智能的替代效应也各不相同。研究发现人工智能对女性、老年人、受教育程度低和低收入的劳动力有较大替代作用。这一结论表明,人工智能对劳动力市场所带来的替代效应并不是中性的,而是对劳动力市场中的相对弱势群体产生了更大的影响,这很有可能会进一步加剧他们的弱势地位。

接下来,该研究还预测了城市和农村各个行业中被人工智能替代的就业人数,其中,中国将有1.42亿城市劳动力被人工智能替代,占城市总就业人数(4.34亿)的32.7%。同时,中国农村劳动力中将有1.35亿人被取代,占农村劳动力总数(3.42亿)的39.5%。具体而言,城市中就业替代数量最大的三个行业是制造业,交通运输、仓储和邮政业,以及农林牧渔业。中国农村中就业替代数量最大的三个行业是农林牧渔业、制造业和建筑业。

应当注意的是,这一研究仅仅对人工智能对中国劳动力的替代效果进行了预测,这一预测并没有考虑人工智能可能带来的其他贡献,包括在中国应对人口老龄化、促进和创造就业等方面可能发挥的互补效应和创造效应。但是本研究对替代效应的预测仍然为研究自动化和人工智能对中国劳动力市场的影响提供了第一手实证证据:尤其应当考虑人工智能对不同特征的劳动力的不同影响,以制定更加合适的政策。

在政策方面,首先要更加重视人力资本投资的重要性,不断提升中国劳动者的人力资本。中国应该采取更多措施,来帮助劳动力市场中相对弱势的群体(如女性、低教育程度、老年人和低收入群体),特别是通过职业教育或培训来提升其劳动技能和人力资本,从而尽可能地避免人工智能的负面影响。这一研究还建议关注人工智能对劳动者福利的影响,尽量减少由于就业机会减少和工资增长放缓导致的福利损失。

最后,政府还应该关注人工智能可能造成的社会两极分化和不平等现象。随着人工智能的发展,劳动力将至少分化为两个不同的群体——高技能群体和低技能群体,两者将面临完全不同的工作机会和收入水平,而这种社会分化将会进一步加剧不平等和社会矛盾的激化。为了解决这些问题,政府可以发挥税收和转移支付制度的作用。例如,对人工智能设备或机器人征税,补贴被替代的劳动者或者用以提高他们的工作技能。此外,此项税收也可用于解决老龄化造成的养老金短缺问题。

(本文采编:刘松瑞,北大国发院研究生)

论文信息:

GuangsuZhou,GaosiChu,LixingLi&LingshengMeng(2020)TheeffectofartificialintelligenceonChina’slabormarket,ChinaEconomicJournal,13:1,24-41。

论文作者简介:

周广肃:中国人民大学劳动人事学院副教授,研究重点关注劳动力市场、收入不平等、家庭经济决策等议题,曾获得刘诗白经济学奖、《经济学》(季刊)最佳论文奖、全国优秀财政理论研究成果二等奖等。

褚高斯,百度公司集团战略部高级顾问。

李力行:北京大学国家发展研究院教授、教育部青年长江学者,研究领域为发展经济学、人力资本、公共财政学等,曾获北京大学“黄廷芳/信和”青年杰出学者奖、北京大学方正奖教金、北京大学人文社会科学研究优秀成果奖、北京大学教学优秀奖等荣誉。

孟岭生:香港中文大学经济系副教授、马里兰大学经济学博士,研究领域涉及劳动经济学、中国经济等。返回搜狐,查看更多

责任编辑:

人工智能就业方向及前景合集

龙源期刊网

 http://www.qikan.com.cn 

人工智能技术的未来发展趋势分析

 

 

作者:吴海峰

 

来源:《科学导报

·

学术》

2019

年第

33

 

        

 ;

要:二十一世纪诸多科学技术的发展当中,人工智能技术占有重要的地位,目前,在

世界高端技术研发与应用领域,人工智能技术的重要性丝毫不亚于基因工程和纳米技术。在这

样的情况下,对人工智能技术实施发展趋势的分析,是目前很多人工智能技术研发领域工作人

员高度关注的问题。本文对人工智能技术内涵进行了阐述,分析了人工智能技术在各领域的应

用,探讨了人工智能技术的未来发展趋势,对人工智能技术进一步了解,希望能够为今后相关

内容的研究提供一定的参考依据。

 

        

关键词:人工智能

;

技术

;

未来

;

发展

;

趋势

;

分析

 

        

一、人工智能技术内涵的基本阐述

 

        

人工智能(

Artificial Intelligence

),常被缩写为

“AI”

,它并不是指具体的一种科学技术,

而是集研究、开发以及应用为一体的各种科学技术的在内的一门新型技术。人工智能技术的出

现,对社会的发展产生了十分深远的影响。从积极影响方面而言,人工智能的出现,提高了社

会生产的效率,为人们的生活、工作和学习等提供了便利。从消极影响方面来看,人工智能技

术的应用,在一定程度上取代了人类劳动,在生产的过程中更多地依靠智能、依靠技术进行生

产,降低了就业率。

 

        

二、目前人工智能技术的应用现状

 

        1

、在制造业中的应用

 

        

在制造业中,人工智能技术的应用,具有非常典型的特征,集中表现为智能控制、知识的

联想与记忆、多信息的应用等。最大的优点在于经验累积能力,正是经验累积能力超强,才可

以快速、有效地解决问题,而这正弥补了传统制造业生产的不足。

 

        2

、在交通运输业中的应用

 

        

人工智能技术在交通运输业中的应用,具体表现在智能交通系统。智能交通系统的形成,

有赖于人工智能技术的应用。在交通运输系统中,人工智能技术的应用,可以详细地掌握客货

流量的方向和大小,根据实际的情况,对运输系统参数进行调整,使得交通运输系统具有总体

自寻优化的特点。交通运输业中,人工智能技术的应用,其目的在于保证系统的安全性、畅通

性以及舒适性。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇