什么是人工智能 (AI)
哪些因素在阻碍企业释放AI潜力?尽管AI具有广阔的前景,但许多公司仍然无法充分发挥机器学习和其他AI功能的潜力。其原因在于,然而,讽刺的是,这一问题在很大程度上是人自己造成的,正是低效的工作流阻碍了公司充分发挥AI的价值。
例如,数据科学家有时无法获得构建机器学习模型所需的资源和数据,无法与同事有效开展协作,需要管理许多不同的开源工具。而应用开发人员有时需要对数据科学家开发的模型进行完全重新编码,然后才能将这些模型嵌入到其应用中。
此外,随着开源AI工具不断涌现,IT团队要花费更多的时间来持续更新工作环境,以此为数据科学团队提供支持。在很多情况下,由于数据科学团队工作方式不够标准化,这个问题还会变得更加复杂。
最终,高管层可能无法看到AI投资的价值,自然也就不会提供充足的支持和资源来构建AI成功所需要的协作和集成式生态系统。
AI人工智能概念简介
1、人工智能、机器学习、深度学习的关系image.png大关系。
image.png发展历史关系。
image.png内容关系。1.1什么是人工智能人工智能(ArtificialIntelligence),英文缩写为AI。是计算机科学的一个分支。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具。
人工智能实际应用:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。人工智能目前也分为:强人工智能(BOTTOM-UPAI)和弱人工智能(TOP-DOWNAI),有兴趣大家可以自行查看下区别。
1.2什么是机器学习机器学习(MachineLearning,ML),是人工智能的核心,属于人工智能的一个分支。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。所以机器学习的核心就是数据,算法(模型),算力(计算机运算能力)。机器学习应用领域十分广泛,例如:数据挖掘、数据分类、计算机视觉、自然语言处理(NLP)、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用等。机器学习就是设计一个算法模型来处理数据,输出我们想要的结果,我们可以针对算法模型进行不断的调优,形成更准确的数据处理能力。但这种学习不会让机器产生意识。机器学习的工作方式
选择数据:将你的数据分成三组:训练数据、验证数据和测试数据。
模型数据:使用训练数据来构建使用相关特征的模型。
验证模型:使用你的验证数据接入你的模型。
测试模型:使用你的测试数据检查被验证的模型的表现。
使用模型:使用完全训练好的模型在新数据上做预测。
调优模型:使用更多数据、不同的特征或调整过的参数来提升算法的性能表现。
image.png机器学习的分类
基于学习策略的分类
1、机械学习(Rotelearning)
2、示教学习(Learningfrominstruction或Learningbybeingtold)
3、演绎学习(Learningbydeduction)
4、类比学习(Learningbyanalogy)
5、基于解释的学习(Explanation-basedlearning,EBL)
6、归纳学习(Learningfrominduction)
基于所获取知识的表示形式分类
1、代数表达式参数
2、决策树
3、形式文法
4、产生式规则
5、形式逻辑表达式
6、图和网络
7、框架和模式(schema)
8、计算机程序和其它的过程编码
9、神经网络
10、多种表示形式的组合
综合分类
1、经验性归纳学习(empiricalinductivelearning)
2、分析学习(analyticlearning)
3、类比学习
4、遗传算法(geneticalgorithm)
5、联接学习
6、增强学习(reinforcementlearning)
学习形式分类
1、监督学习(supervisedlearning)
2、非监督学习(unsupervisedlearning)
注:细分的话还有半监督学习和强化学习。当然,后面的深度学习也有监督学习、半监督学习和非监督学习的区分。监督学习(SupervisedLearning)是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。也就是我们输入的数据是有标签的样本数据(有一个明确的标识或结果、分类)。例如我们输入了50000套房子的数据,这些数据都具有房价这个属性标签。
监督学习就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的)。再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。就像我输入了一个人的信息,他是有性别属性的。我们输入我们的模型后,我们就明确的知道了输出的结果,也可以验证模型的对错。
举个例子,我们从小并不知道什么是手机、电视、鸟、猪,那么这些东西就是输入数据,而家长会根据他的经验指点告诉我们哪些是手机、电视、鸟、猪。这就是通过模型判断分类。当我们掌握了这些数据分类模型,我们就可以对这些数据进行自己的判断和分类了。在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。
监督式学习的常见应用场景如分类问题和回归问题。常见监督式学习算法有决策树(ID3,C4.5算法等),朴素贝叶斯分类器,最小二乘法,逻辑回归(LogisticRegression),支持向量机(SVM),K最近邻算法(KNN,K-NearestNeighbor),线性回归(LR,LinearRegreesion),人工神经网络(ANN,ArtificialNeuralNetwork),集成学习以及反向传递神经网络(BackPropagationNeuralNetwork)等等。
image.png非监督学习(UnsupervisedLearing)是另一种研究的比较多的学习方法,它与监督学习的不同之处,在于我们事先没有任何训练样本,而需要直接对数据进行建模。是否有监督(Supervised),就看输入数据是否有标签(Label)。输入数据有标签(即数据有标识分类),则为有监督学习,没标签则为无监督学习(非监督学习)。在很多实际应用中,并没有大量的标识数据进行使用,并且标识数据需要大量的人工工作量,非常困难。我们就需要非监督学习根据数据的相似度,特征及相关联系进行模糊判断分类。半监督学习(Semi-supervisedLearning)是有标签数据的标签不是确定的,类似于:肯定不是某某某,很可能是某某某。是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性。
image在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。半监督学习有两个样本集,一个有标记,一个没有标记。分别记作Lable={(xi,yi)},Unlabled={(xi)},并且数量,L
人工智能技术应用的领域主要有哪些
随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?
什么是人工智能?人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。
##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。
1、深度学习深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。
深度学习的技术原理:
1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;
2、计算机视觉计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……
计算机视觉的技术原理:
计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。
3、语音识别语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。
语音识别技术原理:
1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;
4、虚拟个人助理说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。
虚拟个人助理技术原理:(以Siri为例)
1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。
5、语言处理自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。
语言处理技术原理:
1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;
6、智能机器人智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。
智能机器人技术原理:
人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。
智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。
Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。
引擎推荐技术原理:
推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。
关于人工智能的展望除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。
当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。
转自:http://www.arduino.cn/thread-45848-1-1.html