博舍

【机器人3】图像雅可比矩阵原理与推导 阅读机器人原理

【机器人3】图像雅可比矩阵原理与推导

图像雅可比矩阵原理与推导

理想情况下,图像像素坐标系和图像物理坐标系无倾斜,则二者坐标转换关系如下,且两边求导:[uv1]=[1dx0u001dyv0001][xy1](1)egin{bmatrix}u\v\1end{bmatrix}=egin{bmatrix}frac{1}{d_x}&0&u_0\0&frac{1}{d_y}&v_0\0&0&1end{bmatrix}egin{bmatrix}x\y\1end{bmatrix} ag{1}​uv1​​=​dx​1​00​0dy​1​0​u0​v0​1​​​xy1​​(1){u˙=1dxx˙v˙=1dyy˙(2)egin{cases}dot{u}=frac{1}{d_x}dot{x}\dot{v}=frac{1}{d_y}dot{y}end{cases} ag{2}{u˙=dx​1​x˙v˙=dy​1​y˙​​(2)由小孔成像原理,空间一点的相机坐标和图像物理坐标转换关系如下,且两边求导:[xy1]=[fZc000fZc0001Zc][XcYcZc](3)egin{bmatrix}x\y\1end{bmatrix}=egin{bmatrix}frac{f}{Z_c}&0&0\0&frac{f}{Z_c}&0\0&0&frac{1}{Z_c}end{bmatrix}egin{bmatrix}X_c\Y_c\Z_cend{bmatrix} ag{3}​xy1​​=​Zc​f​00​0Zc​f​0​00Zc​1​​​​Xc​Yc​Zc​​​(3){x˙=f(X˙cZc−XcZ˙cZc2)=fX˙cZc−xZ˙cZcy˙=f(Y˙cZc−YcZ˙cZc2)=fY˙cZc−yZ˙cZc(4)egin{cases}dot{x}=f(frac{dot{X}_c}{Z_c}-frac{X_cdot{Z}_c}{Z_c^2})=frac{fdot{X}_c}{Z_c}-frac{xdot{Z}_c}{Z_c}\dot{y}=f(frac{dot{Y}_c}{Z_c}-frac{Y_cdot{Z}_c}{Z_c^2})=frac{fdot{Y}_c}{Z_c}-frac{ydot{Z}_c}{Z_c}end{cases} ag{4}{x˙=f(Zc​X˙c​​−Zc2​Xc​Z˙c​​)=Zc​fX˙c​​−Zc​xZ˙c​​y˙​=f(Zc​Y˙c​​−Zc2​Yc​Z˙c​​)=Zc​fY˙c​​−Zc​yZ˙c​​​(4)固定相机,移动空间点时,速度关系为:p˙c=cvp+cωp×pc(5)dot{oldsymbol{p}}_c=^coldsymbol{v}_p+^coldsymbol{omega}_p imesoldsymbol{p}_c ag{5}p˙​c​=cvp​+cωp​×pc​(5)固定空间点,移动相机时,速度关系为:p˙c=−cvc−cωc×pc(6)dot{oldsymbol{p}}_c=-^coldsymbol{v}_c-^coldsymbol{omega}_c imesoldsymbol{p}_c ag{6}p˙​c​=−cvc​−cωc​×pc​(6){X˙c=−cνc,x−cωc,yZc+cωc,zYcY˙c=−cνc,y−cωc,zXc+cωc,xZcZ˙c=−cνc,z−cωc,xYc+cωc,yXc(7)egin{cases}dot{X}_c=-{}^c u_{c,x}-{}^comega_{c,y}Z_c+{}^comega_{c,z}Y_c\dot{Y}_c=-{}^c u_{c,y}-{}^comega_{c,z}X_c+{}^comega_{c,x}Z_c\dot{Z}_c=-{}^c u_{c,z}-{}^comega_{c,x}Y_c+{}^comega_{c,y}X_cend{cases} ag{7}⎩⎨⎧​X˙c​=−cνc,x​−cωc,y​Zc​+cωc,z​Yc​Y˙c​=−cνc,y​−cωc,z​Xc​+cωc,x​Zc​Z˙c​=−cνc,z​−cωc,x​Yc​+cωc,y​Xc​​(7)将(7)代入(4),得:{x˙=−fZccvc,x+xZccvc,z+xyfcωc,x−f2+x2fcωc,y+ycωc,zy˙=−fZccvc,y+yZccvc,z+f2+y2fcωc,x−xyfcωc,y−xcωc,z(8)left{egin{array}{l}dot{x}=-frac{f}{Z_{c}}{}^{c}v_{c,x}+frac{x}{Z_{c}}{}^{c}v_{c,z}+frac{xy}{f}{}^{c}omega_{c,x}-frac{f^{2}+x^{2}}{f}{}^{c}omega_{c,y}+y^{c}omega_{c,z}\dot{y}=-frac{f}{Z_{c}}{}^{c}v_{c,y}+frac{y}{Z_{c}}{}^{c}v_{c,z}+frac{f^{2}+y^{2}}{f}{}^{c}omega_{c,x}-frac{xy}{f}{}^{c}omega_{c,y}-x^{c}omega_{c,z}end{array} ight. ag{8}{x˙=−Zc​f​cvc,x​+Zc​x​cvc,z​+fxy​cωc,x​−ff2+x2​cωc,y​+ycωc,z​y˙​=−Zc​f​cvc,y​+Zc​y​cvc,z​+ff2+y2​cωc,x​−fxy​cωc,y​−xcωc,z​​(8)即:[x˙y˙]=[−fZc0xZcxyf−f2+x2fy0−fZcyZcf2+y2f−xyf−x][cvc,xcvc,ycvc,zcωc,xcωc,ycωc,z](9)egin{bmatrix}dot{x}\dot{y}end{bmatrix}=egin{bmatrix}-frac{f}{Z_c}&0&frac{x}{Z_c}&frac{xy}{f}&-frac{f^2+x^2}{f}&y\0&-frac{f}{Z_c}&frac{y}{Z_c}&frac{f^2+y^2}{f}&-frac{xy}{f}&-xend{bmatrix}left[egin{array}{l}{}^{c}v_{c,x}\{}^{c}v_{c,y}\{}^{c}v_{c,z}\{}^{c}omega_{c,x}\{}^{c}omega_{c,y}\{}^{c}omega_{c,z}end{array} ight] ag{9}[x˙y˙​​]=[−Zc​f​0​0−Zc​f​​Zc​x​Zc​y​​fxy​ff2+y2​​−ff2+x2​−fxy​​y−x​]​cvc,x​cvc,y​cvc,z​cωc,x​cωc,y​cωc,z​​​(9)将(9)以及x=dx(u−u0)x=d_{x}left(u-u_{0} ight)x=dx​(u−u0​)和y=dy(v−v0)y=d_y(v-v_0)y=dy​(v−v0​)代入(2):[u˙v˙]=[−fdxZc0(u−u0)Zc(u−u0)dy(v−v0)f−f2+dx2(u−u0)2dxfdy(v−v0)dx0−fdyZc(v−v0)Zcf2+dy2(v−v0)2dyf−dx(u−u0)(v−v0)f−dx(u−u0)dy][cvc,xcvc,ycvc,zcωc,xcωc,ycωc,z](10)left[egin{array}{c}dot{u}\dot{v}end{array} ight]=left[egin{array}{cccccc}-frac{f}{d_{x}Z_{c}}&0&frac{left(u-u_{0} ight)}{Z_{c}}&frac{left(u-u_{0} ight)d_{y}left(v-v_{0} ight)}{f}&-frac{f^{2}+d_{x}^{2}left(u-u_{0} ight)^{2}}{d_{x}f}&frac{d_{y}left(v-v_{0} ight)}{d_{x}}\0&-frac{f}{d_{y}Z_{c}}&frac{left(v-v_{0} ight)}{Z_{c}}&frac{f^{2}+d_{y}^{2}left(v-v_{0} ight)^{2}}{d_{y}f}&-frac{d_{x}left(u-u_{0} ight)left(v-v_{0} ight)}{f}&-frac{d_{x}left(u-u_{0} ight)}{d_{y}}end{array} ight]left[egin{array}{l}{}^{c}v_{c,x}\{}^{c}v_{c,y}\{}^{c}v_{c,z}\{}^{c}omega_{c,x}\{}^{c}omega_{c,y}\{}^{c}omega_{c,z}end{array} ight] ag{10}[u˙v˙​]=​−dx​Zc​f​0​0−dy​Zc​f​​Zc​(u−u0​)​Zc​(v−v0​)​​f(u−u0​)dy​(v−v0​)​dy​ff2+dy2​(v−v0​)2​​−dx​ff2+dx2​(u−u0​)2​−fdx​(u−u0​)(v−v0​)​​dx​dy​(v−v0​)​−dy​dx​(u−u0​)​​​​cvc,x​cvc,y​cvc,z​cωc,x​cωc,y​cωc,z​​​(10)即:[u˙v˙]=Jimg[cvccuc](11)egin{bmatrix}dot{u}\dot{v}end{bmatrix}=J_{img}egin{bmatrix}^coldsymbol{v}_{c}\^coldsymbol{u}_{c}end{bmatrix} ag{11}[u˙v˙​]=Jimg​[cvc​cuc​​](11)可得图像雅可比矩阵:Jimg=[−fdxZc0(u−u0)Zc(u−u0)dy(v−v0)f−f2+dx2(u−u0)2dxfdy(v−v0)dx0−fdyZc(v−v0)Zcf2+dy2(v−v0)2dyf−dx(u−u0)(v−v0)f−dx(u−u0)dy](12)J_{img}=left[egin{array}{cccccc}-frac{f}{d_{x}Z_{c}}&0&frac{left(u-u_{0} ight)}{Z_{c}}&frac{left(u-u_{0} ight)d_{y}left(v-v_{0} ight)}{f}&-frac{f^{2}+d_{x}^{2}left(u-u_{0} ight)^{2}}{d_{x}f}&frac{d_{y}left(v-v_{0} ight)}{d_{x}}\0&-frac{f}{d_{y}Z_{c}}&frac{left(v-v_{0} ight)}{Z_{c}}&frac{f^{2}+d_{y}^{2}left(v-v_{0} ight)^{2}}{d_{y}f}&-frac{d_{x}left(u-u_{0} ight)left(v-v_{0} ight)}{f}&-frac{d_{x}left(u-u_{0} ight)}{d_{y}}end{array} ight] ag{12}Jimg​=​−dx​Zc​f​0​0−dy​Zc​f​​Zc​(u−u0​)​Zc​(v−v0​)​​f(u−u0​)dy​(v−v0​)​dy​ff2+dy2​(v−v0​)2​​−dx​ff2+dx2​(u−u0​)2​−fdx​(u−u0​)(v−v0​)​​dx​dy​(v−v0​)​−dy​dx​(u−u0​)​​​(12)如有不足之处欢迎指出~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇