人工智能图像标注类型有哪些 图像 人工智能
人工智能图像标注类型有哪些
语义分割语义分割是指根据物体的属性,对复杂不规则图片进行进行区域划分,并标注对应上属性,以帮助训练图像识别模型,常应用于自动驾驶、人机交互、虚拟现实等领域。矩形框标注矩形框标注又叫拉框标注,是目前应用最广泛的一种图像标注方法,能够以一种相对简单、便捷的方式在图像或视频数据中,迅速框定指定目标对象。多边形标注多边形标注是指在静态图片中,使用多边形框,标注出不规则的目标物体,相对于矩形框标注,多边形标注能够更精准地框定目标,同时对于不规则物体,也更具针对性。关键点标注关键点标注是指通过人工的方式,在规定位置标注上关键点,例如人脸特征点、人体骨骼连接点等,常用来训练面部识别模型以及统计模型。点云标注点云是三维数据的一种重要表达方式,通过激光雷达等传感器,能够采集到各类障碍物以及其位置坐标,而标注员则需要将这些密集的点云分类,并标注上不同属性,常应用于自动驾驶领域。3D立方体标注与点云标注不同,3D立方体标注还是基于二维平面图像的标注,标注员通过对立体物体的边缘框定,进而获得灭点,测量出物体之间的相对距离。2D/3D融合标注2D/3D融合标注是指同时对2D和3D传感器所采集到的图像数据进行标注,并建立关联。该方法能够标注出物体在平面和立体中的位置和大小,帮助自动驾驶模型增强视觉和雷达感知。目标追踪目标追踪是指在动态的图像中,进行抽帧标注,在每一帧图片中将目标物体标注出来,进而描述它们的运动轨迹,这类标注常应用于训练自动驾驶模型以及视频识别模型。属性判别性判别是指通过人工或机器配合的方式,识别出图像中的目标物体,并将其标注上对应属性。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。