博舍

从事人工智能行业,推荐的几本书籍 人工智能了解多少本书

从事人工智能行业,推荐的几本书籍

随着人工智能行业的崛起,越来越多的人才涌入,不少产品经理们也在寻找进入人工智能行业、成为AI产品经理的契机。

下面是书单内的8本书,每本都有自己的侧重点,不同的书适合于不同方向的AI产品经理,适合想在相关领域深入学习、探索的同学研究。

1.《学习opencv》

该书适合于图像处理,视觉识别方向的产品经理。

本文作者在一线开发人员的角度,用通俗易懂的语言解释了OpenCV的缘起和计算机视觉基础结构,演示了如何用OpenCV和现有的自由代码为各种各样的机器进行编程,这些都有助于读者迅速入门并渐入佳境,兴趣盎然地深入探索计算机视觉领域。

《人工智能:一种现代的方法》(第3版)

这种在智能决策,搜索算法相对来说比较综合类的书籍。适合有技术背景的产品经理读。

这是最权威、最经典的人工智能教材,堪称AI界的圣经,已被全世界100多个国家的1200多所大学用作教材。

书中清晰地定义了什么是人工智能,介绍了人工智能的基本概念、思想和算法,不仅描述了其各个研究方向最前沿的进展,同时收集整理了详实的历史文献与事件,让读者兼具过去和未来两个维度来了解人工智能。

3.《智能web算法》

本书面向的是广大普通读者,所以对于读者的知识背景并没有过多的要求。更适合一些引流,获取,转化用户的产品经理。书中涵盖了五类重要的智能算法:搜索、推荐、聚类、分类和分类器组合,并结合具体的案例讨论了它们在Web应用中的角色及要注意的问题。

《语音与语言处理》

这本书比较适做合聊天类机器人的产品经理读。本书是第一本从各个层面全面介绍语言技术的书,在语言技术上使用了实证的方法,自第1版出版以来,一直好评如潮,被国外许多著名大学选为自然语言处理和计算语言学课程的主要教材。

《PATTERNRECOGNITIONANDMACHINELEARNING》

对推理,对概率有兴趣,想提升对AI技术了解深度的产品经理,可以读一下这本书。这本书在技术上全面覆盖了各种机器学习主题,包括回归、线性分类、神经网络、核方法和图模型,对我们概率分布,图模型这方面的知识进行了补充。

《游戏人工智能编程案例精粹》

本书适合做游戏策划,游戏美术,游戏与人工智能相结合的产品经理。

在现今游戏界被视为AI入门必读年。书中首先介绍游戏角色的基本属性(包括速度、质量等物理属性)及常用数学方法。接着,深入探讨游戏智能体状态机的实现,通过简单足球游戏实例,给出用状态机实现游戏AI的例子。在图论部分,详细介绍图在游戏中的用途及各种不同的图搜索算法。

7.《模式分类》

该书是模式识别和场景分析领域奠基性的经曲名著,被哈佛,斯坦福,剑桥等120多所大学采用作为教材。在第2版中,除了保留了第1版的关于统计模式识别和结构模式识别的主要内容以外,读者将会发现新增了许多近25年来的新理论和新方法,其中包括神经网络、机器学习、数据挖掘、进化计算、不变量理论、隐马尔可夫模型、统计学习理论和支持向量机等。

作者还为未来25年的模式识别的发展指明了方向。书中包含许多实例,各种不同方法的对比,丰富的图表,以及大量的课后习题和计算机练习。

《NeualNetworksforPatternRecongnition》

这本书提供了第一个综合治疗的前馈神经网络的统计模式识别的角度。在介绍了模式识别的基本概念,书中描述的概率密度函数建模技术,并讨论了多层感知器和径向基函数神经网络模型的属性和相对优点。这也促使各种形式的误差函数的使用,并回顾了主要算法的误差函数最小化。在神经网络的学习和泛化提供了详细的讨论。

1.人工智能时代,AI人才都有哪些特征?http://www.duozhishidai.com/article-1792-1.html2.大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html3.人工智能,机器学习和深度学习之间,主要有什么差异http://www.duozhishidai.com/article-15858-1.html

多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

人工智能及其应用(第三版)

人工智能是解决复杂工程问题的重要工具,是当前许多高新技术产品中的核心技术。读者通过学习本书,能够掌握人工智能的基本内容,了解人工智能研究的一些前沿技术,为进一步学习与研究人工智能理论与应用奠定基础。王万良编*的《人工智能及其应用(第3版高等学校教材)》共11章,分别为人工智能的基本概念与主要研究领域、知识表示、确定性推理方法、不确定性推理方法、搜索求解策略、进化算法(包括遗传算法、差分进化算法、量子进化算法)、群智能算法(包括粒子群算法、量子粒子群算法、蚁群算法)、人工神经网络(包括卷积神经网络)、机器学习(包括深度学习)、专家系统、自然语言处理。附录中给出了本书习题的简要解答和实验指导书。本书主要作为计算机、自动化、电气、电子信息、机械等类专业本科生、研究生学习人工智能课程的教材。由于书中几大部分内容相对独立,可以容易地根据课程计划学时选择部分内容学习,仍可保持课程体系结构的完整性。本书也可供希望掌握人工智能技术的研究人员与工程技术人员学习参考。书中增加了“扫一扫”,能够观看相应内容的讲课录像和实验的参考程序,很方便读者自学。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇