博舍

新职业——人工智能工程技术人员就业景气现状分析报告 人工智能近几年的发展情况报告

新职业——人工智能工程技术人员就业景气现状分析报告

一、产生背景

目前,人工智能已成为国家重要战略,也是我国供给侧改革的创新引擎。党的十九大报告提出,要“加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合”。人工智能已连续三年被写入政府工作报告。加快人工智能深度应用,培育壮大人工智能产业和人才供给,满足全球新一轮科技革命和产业变革趋势下人工智能人才需求,进而服务于科教兴国、创新驱动和人才强国等国家战略,已成为我国经济发展的重要支撑。

近三年来,国务院、国家发展改革委、工业和信息化部等多次颁布《新一代人工智能发展规划》《促进新一代人工智能产业发展三年行动计划(2018-2020)》等战略性和指导性文件共同推动人工智能的发展。《三年行动计划》提出,五个保障措施之一就是要加快人才培养,即要“吸引和培养人工智能高端人才和创新创业人才,支持一批领军人才和青年拔尖人才成长,支持加强人工智能相关学科专业建设,引导培养产业发展急需的技能型人才。”

由此可见,我国政府高度重视人工智能发展,将新一代人工智能技术的产业化和集成应用作为发展重点。同时,也强调培养人工智能技能型人才的重要性。

二、职业定义

人工智能工程技术人员定义:从事与人工智能相关算法、深度学习等多种技术的分析、研究、开发,并对人工智能系统进行设计、优化、运维、管理和应用的工程技术人员。

人工智能工程技术人员主要工作任务:

1.分析、研究人工智能算法、深度学习等技术并加以应用;

2.研究、开发、应用人工智能指令、算法;

3.规划、设计、开发基于人工智能算法的芯片;

4.研发、应用、优化语言识别、语义识别、图像识别、生物特征识别等人工智能技术;

5.设计、集成、管理、部署人工智能软硬件系统;

6.设计、开发人工智能系统解决方案。

三、当前就业人群分析

(一)人工智能企业总量与分布状况

人工智能企业可划分为基础层、技术层和应用层。基础层以AI芯片、计算机语言、算法架构等研发为主;技术层以计算机视觉、智能语言、自然语言处理等应用算法研发为主;应用层以AI技术集成与应用开发为主。

据艾瑞咨询发布资料显示,2018年我国人工智能相关公司总数达到2167家,其中应用层占比达到77.7%,技术层和基础层企业占比相对较小,两者之和仅占到22.3%;从技术类型分布来看,涉及机器学习的公司最多,占比25.3%,其次大数据、云计算、机器人技术和计算机视觉的公司紧跟其后,整体分布相对均匀。具体分布如图:

(二)人工智能产业市场规模

近几年,人工智能技术在实体经济中寻找落地应用场景成为核心要义,人工智能技术与传统行业经营模式及业务流程产生实质性融合,智能经济时代的全新产业版图初步显现,2019年人工智能核心产业规模预计突破570亿元。目前,安防和金融领域市场份额最大,工业、医疗、教育等领域具有爆发潜力。

 

(三)人工智能产业人才供需现状

随着人工智能概念的持续火爆,大批求职者主动向人工智能相关岗位靠近。根据《2017年全球人工智能人才白皮书》,过去几年中,我国期望在AI领域工作的求职者正以每年翻倍的速度迅猛增长,特别是偏基础层面的Al职位,如算法工程师,供应增幅达到150%以上。

为了对比国内AI人才供需情况,《白皮书》引入供需指数,该指数根据在特定时间段内的行业整体招聘需求量、活跃求职者存量以及招聘求职活跃度四个指标建模得出。从结果上看,目前国内AI人才供需指数逐年走高。2017年,国内AI人才供需较2015年提升11个百分点,表面上看人工智能人才供需已基本平衡,然而相关人才质量参差不齐。在对人才各项参数进行详细分析后得出,近三成期望在人工智能领域大展身手的求职者与Al雇主所要求的各项指标相距甚远,这部分人或为低学历求职者,或为初出茅庐仅对基础编程略知、缺乏实际AI技能的初级程序员。说明我国AI人才不但严重紧缺,且这种趋势正由于人工智能企业增多而变得愈发严重,部分核心类岗位,如语音识别、图像识别工程师等,人才供需缺口更大。而且,由于合格AI人才培养所需时间远高于一般IT人才,人才缺口很难在短期内得到有效填补。

(四)人工智能工程技术人员薪资水平现状

根据各大招聘网站的数据来看,人工智能行业的高薪主要分布在京津、长三角、珠三角及部分内陆省会城市。北京、上海、深圳及杭州的薪水位列第一方阵,月薪在1.8万左右;苏州、南京、广州及厦门位列第二方阵,月薪在1.4万左右;其他沿海及内陆省会城市,如成都、重庆、长沙及济南等位于第三方阵,月薪在1.3万左右。

注:图片引用于北风网

其中,TOP热门职位:深度学习算法工程师月薪可以达到2.2万;职位量方面,算法工程师需求遥遥领先。

注:图片引用于北风网

根据测算,我国人工智能人才目前缺口超过500万,国内的供求比例为1:10,供需比例严重失衡。不断加强人才培养,补齐人才短板,是我国的当务之急。

中国人工智能人才存在较大“缺口”,中美差距较大。国外企业ElementAI发布的《2019年度全球AI人才报告》显示,中国成为全球最“吸金”的国家。由于国内的创业环境、政府支持和大数据沉淀,中国人工智能领域的投融资占到了全球的60%,吸引了较多拥有技术的海外留学生回国发展。即便如此,中国在人才培养和人才吸引方面仍然与美国存在较大差距。

数据显示,58%的中国高级研究员在美国攻读研究生,35%在中国读研究生,7%在其他国家(澳大利亚和英国)读研究生。

在毕业于美国院校的中国高级研究员中,78%留在美国研究机构工作,仅有21%回到中国研究机构工作。该报告还显示,全球吸引人工智能人才的国家中,排名前五的是美国、中国、英国、德国、加拿大,共占据了72%的人工智能人才。中国虽然位列前列,但数量上仅为美国的四分之一,与美国存在较大差距。如果不加强人才培养,采取“规模化生产”的人才模式,到2025年人才缺口将会突破1000万。

四、职业发展通道

人工智能工程技术人员在企业中的最终角色是CTO,其职业通道大致可分为初级工程技术人员、中级工程技术人员、高级工程技术人员。

初级工程技术人员在企业扮演的角色为:负责功能的实现方案设计、编码实现、疑难BUG分析诊断、攻关解决。

中级工程技术人员在企业扮演的角色为:开发工作量评估、开发任务分配;代码审核、开发风险识别/报告/协调解决;代码模板研发与推广、最佳实践规范总结与推广、自动化研发生产工具研发与推广。

高级工程技术人员在企业扮演的角色为:组建平台研发部,搭建公共技术平台,方便上面各条产品线开发;通过技术平台、通过高一层的职权,管理和协调各个产品线组。现在每个产品线都应该有合格的研发Leader和高级程序员。

CTO在企业扮演的角色为:业绩达成,洞察客户需求,捕捉商业机会,规划技术产品,通过技术产品领导业务增长,有清晰的战略规划、主攻方向,带领团队实现组织目标。前沿与平台:到这个研发规模规模级别了,一定要有专门的团队做技术应用创新探索和前沿技术预研,而且要和技术平台团队、应用研发团队形成很好的联动作用,让创新原型试点能够很平滑地融入商业平台,再让应用研发线规模化地使用起来。研发过程管理:站在全局立场来端到端改进业务流程,为业务增长提供方便。组织与人才建设:公司文化和价值观的传承;研发专业族团队梯队建制建设、研发管理族团队梯队建制建设;创建创新激发机制,激发研发人创新向前发展,激发黑马人脱颖而出。

五、未来市场需求

IDC和Forrester发布了2020年及以后的人工智能(AI)预测。Forrester表示,虽然外部“市场”可能会让企业对人工智能持谨慎的态度,但那些“勇敢”的企业将继续投资并扩大AI的布局。以下是Forrester的调查:

53%的全球决策者表示,他们已经实施、正在实施、或正在扩大人工智能的布局。

29%的全球开发人员在过去一年中从事过AI/机器学习软件工作。

在全球实施边缘计算的公司中,54%的决策人员表示,边缘计算为他们处理当前和未来的AI需求提供了很大的灵活性。

16%的全球B2C营销决策者计划今年将数据和分析技术(包括人工智能)的支出增加10%及以上。

IDC预测,到2022年,75%的企业将把智能自动化嵌入到技术和流程开发中,使用基于人工智能的软件来指导创新。到2024年,人工智能将整合到企业的每一个部分,在“结果即服务”(outcomes-a-service)的人工智能解决方案上,25%的总投资将用于推动规模创新和卓越的业务价值。人工智能将成为新的用户界面,并且重新定义用户体验。在未来几年,我们将看到人工智能和计算机视觉、自然语言处理和手势等新兴用户界面嵌入到每一种产品和设备中。

六、专家观点

中国科学技术协会党组书记、常务副主席、中国科学院院士怀进鹏:当前人工智能还面临许多基础理论和关键技术瓶颈,有许多难题有待破解。特别是在理论算法、平台系统等方面有待突破,这是丰富技术和产业的源头供给。“业以才兴”,人才是第一资源,人才队伍的质量、水平和规模决定也制约着产业的高度和发展,要探索产学合作,国内国际合作,跨界跨领域合作的合同育才机制,营造人才成长与培养的沃土,推动构建和完善既有利于发展人才独创能力,又能有效调动潜力的平台条件。我们要为未来做好准备。

国家发展改革委副主任、上海推进科技创新中心建设办公室主任林念修:中国将重点实施好三大行动,其中包括实施人工智能开放发展行动,深化与世界各国在人工智能技术、标准、产业、法规、伦理等领域的全面合作,共商人工智能治理规则,共建人工智能重大项目,共享人工智能发展成果。其他两大行动包括:一是实施人工智能创新伙伴行动,以一百家人工企业智能技术企业和应用企业为重点,支持开展协作研发、协同生产和协力推广,制定融合标准,解决共性技术,促进人工智能和实体经济深度融合。二是实施人工智能资源共享行动,建设人工智能产业创新中心,完善开源平台体系,深化政务信息系统整合和信息资源共享,出台推动新型基础设施发展的指导意见,打造人工智能产业生态。

工业和信息化部科技司司长胡燕:近年来我国人工智能产业呈现出了蓬勃发展的良好态势。一是部分关键应用技术特别是图象识别、语音识别等技术,处于全球相对领先的水平,人工智能论文总量和高倍引用的论文数量,也处在第一梯队,据全球相对前列。二是产业整体实力显著增强。全国人工智能产业超过一千家,覆盖技术平台、产品应用等多环节,已经形成了比较完备的产业链。京津冀、长三角、珠三角等地区的人工智能产业急剧发展的格局已经初步形成。三是与行业融合应用不断深入。人工智能凭借其强大的赋能性,正在成为促进传统行业转型升级的重要驱动力量,各领域智能+的新技术、新模式、新业态不断涌现,辐射溢出的效应也在持续增强,但也要看到,在快速发展过程当中,我国人工智能的基础技术,还有较大欠缺,能够真正创造商业价值的还比较少。传统行业与人工智能的融合还存在较高门槛,有数据显示,今年人工智能领域投融资比前两年特别是跟去年相比,也有比较大幅度的下调。

全国人大代表、中国信息通信研究院院长刘多:新一代人工智能以燎原之势在全球快速发展,将对经济、社会、军事等各领域发展产生重大而深远的影响。在抓住人工智能这一重要发展机遇的同时,世界各国政府、企业和学术界也高度重视对人工智能发展中各种新问题和挑战的研究和防范,尤其是与人们生活和安全息息相关的风险和威胁,如伦理道德侵犯、算法偏见和歧视、隐私泄露等等。当前,我国人工智能产业和应用发展态势良好,处于全球第一梯队。下一步,在推动实体经济高质量发展过程中,人工智能仍将发挥其赋能型技术和关键基础设施的重大作用。为确保人工智能安全、可靠、可控发展和广泛应用,建议从推动人工智能与实体经济深度融合、行业和企业自律、立法、治理构架和标准制定、监测和监管手段建设等方面全方位、分层次打造生态安全体系。

科技部战略规划司副司长张旭:中国人工智能应用具有领域广、渗透深的特点,在产业化方面具有独特优势,但也面临巨大挑战,尤其是在基础理论和算法方面,原始创新能力不足,在高端芯片、关键部件等方面基础薄弱,高水平人才也不足。随着全球人工智能加速发展,各国在认知智能、机器学习、智能芯片等方面将不断取得突破。

人工智能在医学图像处理中的研究进展与展望

自伦琴1895年发现X射线以来,医学图像已经成为诊断人体疾病的重要医学检查手段。如今,计算机断层扫描(CT)、磁共振成像(MRI)和超声等医学图像都是疾病诊断最直接、最常用的方法。然而,大量的医学图像需要临床医生和影像科医生花费很多时间和精力进行阅片分析,并且还可能会因医生个人主观经验或疲劳出现阅片错误,导致疾病错诊、漏诊和误诊等问题,因此,亟须有数字化、智能化的软件和程序来解决这个问题,提高阅片速度和效率,减少医生错诊、漏诊和误诊的出现概率。

人工智能(artificialintelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学,通常是指通过计算机程序来呈现人类智能的技术。根据2017年中华人民共和国国务院印发的《新一代人工智能发展规划》,人工智能已经成为我国科技的重要发展战略方向,其在我国各行各业都有重要体现。近年来,随着深度学习的发展,人工智能技术在医学领域取得了很多突破性进展,尤其体现在医学图像处理方面[1-2],前期主要包括CT、MRI和超声图像中病灶的智能识别、自动分割、三维重建和三维量化,以及后期的疾病智能诊断和预后评估。本述评将从人工智能辅助医学图像分割和三维重建、疾病的智能诊断和预后评估三个方面探讨人工智能在医学图像处理中的研究进展,并对今后的医学人工智能的研究方向进行展望。

1人工智能辅助医学图像分割

从MRI、CT、超声等多种模态的医学图像中,我们能够获取人体器官和病灶的二维生理学和形态学图像信息,但想要更直观地观察疾病病灶的三维形态和空间毗邻关系,实现对疾病的精准量化,为患者提供更准确的疾病信息、疾病诊断和最优治疗方案,则需要借助医学图像分割和三维重建技术,获得病灶及毗邻结构的三维数字化模型。传统医学图像的分割与三维图像重建主要依靠人工进行,存在耗时、繁琐、主观偏差(不同人员对知识的掌握与理解不同,导致分割与重建的误差)等缺点。

人工智能技术的运用对于医学图像分割具有重大的意义和应用价值,特别是基于深度学习的卷积神经网络算法有助于提高分割效率、缩短分割时间、减少主观偏差,可以将医生的精力从图像分割中解放出来。近几年一些研究表明,通过对经典卷积神经网络模型的改进可以在医学图像上对一些复杂组织结构达到很好的分割效果。香港中文大学LI等[3]于2018年提出的混合密集连接网络(H-DenseUNet)在肝脏分割方面取得了非常好的效果,很好地解决了同时分割肝脏和病灶的问题。同年,ZHAO等[4]研究团队通过将全卷积神经网络(fullyconvolutionalneuralnetworks,FCNN)和条件随机场(conditionalrandomfields,CRF)集成到统一框架中,开发了一种新的脑肿瘤分割方法,获得了具有外观和空间一致性的较好的分割结果。2019年巴西西拉联邦大学的ARAÚJO等[5]通过细胞分割深度学习技术的细胞学分析计算工具,在没有预分割的情况下排除包含异常细胞的低概率图像,从而提升了Pap测试检验效率,比现有的方法运行得更快,而且检测精准度不会受白细胞和其他污染物存在的影响。2020年山东师范大学XUE等[6]在快速采集的梯度回波图像上开发出一种基于深度学习的网络检测和分割方法,通过Dice测量自动和手动分割结果之间的重叠,证明该网络可以自动准确地对脑转移肿瘤病灶进行检测和分割,敏感性为(0.96±0.03),特异性为(0.99±0.0002),Dice值为(0.85±0.080)。在分割存在较大难度的肌肉组织方面,加拿大西蒙弗雷泽大学工程科学学院的DABIRI等[7]于2020年利用深度学习算法设计出包含第三腰椎(L3)轴向切片定位网络和肌肉-脂肪分割网络,将其运用在腹部CT图像上,实现了L3切片定位,其平均误差在(0.87±2.54),完成了骨骼肌、皮下脂肪组织、内脏脂肪组织和肌肉间脂肪组织的自动分割,其平均Jaccard得分为97%、98%、97%、83%,定位和分割网络性能表明该方法具有高精度的全自动身体成分分析的潜力。2021年中国北京大学第一医院神经内科的YANG等[8]构建了卷积神经网络,用于分割MRI图像下肌肉结构,以获得肌肉在人体结构中的比值,用于诊断肌营养不良障碍,该深度模型在鉴别肌营养不良症患者方面表现出良好的准确性和敏感性,并通过与3名放射科医生对比,证明了该模型通过MRI图像诊断肌营养不良症方面存在潜在应用。

2人工智能辅助疾病的智能诊断

医学疾病的诊断对患者预后评估以及治疗方案的选择至关重要,然而,医生对医学影像的准确解读需要较长时间专业经验的积累,有经验医生的培养周期相对较长。因此,人工智能辅助疾病的智能诊断非常重要和关键,不仅可以提高对医学图像的检测效率和检测精度,减少主观因素带来的误判,提高医生诊断速度,帮助年轻医生对比学习和快速成长,还能帮助缺少医疗资源的偏远地区、基层医院及体检中心提高筛查诊断的水平。这方面研究主要包括医学图像上疾病病灶的识别与分类,特别是在皮肤癌、肺癌、肝癌等常见疾病的诊断方面有突出进展。

早在2017年斯坦福大学的研究者[9]已经成功训练了一个可以诊断照片或皮肤镜下皮肤癌的深度学习算法,该算法不仅可以区分角质形成细胞癌和良性脂溢性角化病,还能准确识别出恶性黑色素瘤和普通的痣,该研究设计的深度卷积神经网络在测试时都达到了专家的水平。人工智能的皮肤癌鉴定水平已经达到了皮肤科医生水平,预计在不久的将来,具有该皮肤癌诊断算法的移动设备可以让皮肤科医生的诊断拓展到诊室之外,实现低成本的皮肤病重要诊断。

人工智能辅助肺癌的识别和诊断可显著减少过度诊断,主要的应用是在医学影像的基础上通过区分良性和恶性结节来改善肺癌的早期检测,因为早期识别恶性肺结节对于肺癌后期的手术、放化疗等治疗至关重要,同时决定了肺癌的预后。2019年ZHAO等[10]探索了利用最先进的深度卷积神经网络的3种策略包括修改一些最先进的卷积神经网路(convolutionalneuralnetworks,CNN)架构,集成不同的CNN构架和采用迁移学习,对CT图像上的恶性和良性肺结节进行分类,最后证明迁移学习的效果最佳。BONAVITA等[11]使用3D卷积神经网络评估肺结节恶性程度,并将其集成到自动化的端到端的现有肺癌检测流程中,提高了肺癌的预测效果。另外,美国德克萨斯大学西南医学中心WANG等[12]认为深度学习算法还将会影响肺癌的数字病理智能检测的发展。随着技术的进步,深度学习包括多任务学习、转移学习和模型解释等,都会对肺癌的诊断起着积极的影响效果。

随着越来越多研究的发表,人工智能技术在肝病诊断和治疗方面的应用也越来越多。CHOI等[13]利用来自7461例患者的大量CT图像数据集,开发了一个用于对肝纤维化进行分期的CNN模型,其性能优于放射科医生以及氨基转移酶-血小板比指数和纤维化-4指数等血液生化学指标,证明人工智能可以实现在CT图像上准确地诊断肝纤维化并对其进行分期。YASAKA等[14]使用来自460例患者的肝脏CT图像训练的CNN模型在肝脏肿块鉴别诊断中表现出较高的诊断性能。NAYAK等[15]开发了一种新的基于深度学习的肝脏三维分割和肝细胞癌(hepatocellularcarcinoma,HCC)检测系统,用于对肝硬化和HCC进行诊断分类,效果较好。HAMM等[16]使用434例HCC患者的MRI图像建立了一个CNN分类器对6个类别的具有典型成像特征的肝脏病变进行诊断分类,测试集性能显示平均敏感性为90%,特异性为98%,每个病变的计算时间为5.6ms。这些研究都表明人工智能深度学习可作为放射科医生最终决策支持工具的潜力,以及其能以省时的方式整合到临床工作流程的可行性。肝活检是目前检测、风险分级和监测非酒精性脂肪肝患者的标准,美国纽约州西奈山的伊坎医学院肝病科DINANI等[17]认为人工智能给诊断非酒精性脂肪肝及其表型风险分级带来希望,利用人工智能可以提高识别有非酒精性脂肪肝和晚期纤维化风险患者的能力,客观地评估肝脏疾病诊断并改进肝组织的组织学评估不足之处。

此外,人工智能在辅助膀胱癌的诊断上也有一些应用进展。2019年美国加州斯坦福大学医学院泌尿外科SHKOLYAR等[18]通过研究发现将人工智能中的深度学习算法用于增强的膀胱镜检查,可以改善肿瘤的定位精准度、肿瘤的识别率、术中导航效果和膀胱癌的手术切除效果。2020年德国美因茨大学医学中心病理学研究所WOERL等[19]尝试利用人工智能深度学习单独从传统的组织形态学中检测肿瘤组织外观,进而诊断侵袭性膀胱癌分子亚型,发现其诊断效果良好,类似或优于病理学专家,表明人工智能用于预测侵袭性膀胱癌的重要分子特征,有可能显著改善该疾病的诊断和临床管理。

3人工智能辅助疾病的预后评估

通过患者信息和图像分析,提取肿瘤的大小、部位、形态、边界、质地等特征,预测疾病治疗反应,评估疾病的预后,可以帮助医生更好地选择合适的治疗方式,这方面的研究在不断发展,这也是医生和患者都关心的问题。2018年香港中文大学重点肿瘤实验室CHAN等[20]通过回顾性研究,分析3903例接受手术切除的早期肝细胞癌患者,构建了两个统计模型,用于预测切除后早期HCC的复发风险,模型经过广泛验证被证明适用于国际环境,临床医生使用后能够估计个别患者复发的风险,对指导监测随访和切除后辅助治疗试验的设计很有价值。通过近几年的发展,影像组学在肿瘤诊断、分期、预后以及预测治疗反应等方面也取得很多进展[21-22]。南京医科大学第一附属医院放射科的XU等[23]于2019年回顾性分析了总共495例肝癌手术切除的患者,构建的综合影像组学模型显示肿瘤大小和瘤内不均匀性与肿瘤微血管浸润相关,表明结合大规模的临床影像和影像组学特征构建模型,不仅能够有效预测HCC微血管侵犯风险,并可对患者术后复发及生存进行评估。2020年广州中山大学第一附属医院超声科LIU等[24]基于2008-2016年共419例患者(包括射频消融和外科手术切除患者)的肝脏对比增强超声,建立人工智能影像组学模型,预测射频消融和手术切除的无进展生存期,结果显示基于深度学习的影像组学模型可以实现无进展生存期的术前准确预测,可以促进极早期或早期肝细胞癌患者的最优化治疗方式选择。不仅如此,此研究团队还利用基于人工智能的影像组学方法在超声造影中准确预测肝细胞癌患者对经动脉化疗栓塞的反应,并在不同验证集中表现出高度可重复性[25]。由此可见,结合深度学习和影像组学的优势,可以更大程度地对疾病进行治疗反应预测和预后评估。2021年美国加利福尼亚州斯坦福大学医学院放射肿瘤科JIN等[26]通过多任务深度学习方法,充分利用治疗的动态变化信息,成功预测新辅助化疗后直肠癌出现病理完全缓解的可能性,在160例和141例患者的多中心验证中获得的受试者工作特征曲线下面积(areaundercurve,AUC)分别达到0.95和0.92,结合肿瘤血清标记物后,该模型的预测精度进一步得到提高,这项研究可用于改进治疗反应的评估和疾病监测,并有可能为个性化医疗提供信息。

4展望

近年来,随着社会的数字化和智能化发展,虽然由于医学的严谨性和复杂性,人工智能在医学上的产品并不多,但是人工智能已在医学的研究上广泛普及。通过本述评对近几年国内外医学人工智能的研究和应用的分析,我们认为,医学院校的人工智能辅助医学图像处理方面的研究可主要聚焦于以下几个方面。

4.1医学影像和病理图像的智能分割

人体正常结构和病灶详细信息的精准获取来源于人体结构的边界精准分割,而且人体结构三维图像和三维形态学参数的获取更依赖于二维影像学和病理学图像的分割,图像分割是后期疾病诊断、预后评估、治疗决策的基础,但是分割会花费医生大量的时间和精力。因此,亟须通过人工智能算法或工具,来解决手工分割耗时长、精度差、精度依赖于医生个体经验的问题。

目前,基于人工智能的深度学习算法常用于医学影像学图像如CT、MRI、超声和病理学图像的分析。一般在图像中选择一些具有一定准确几何形态规律的、相互变异较小的、边界比较清楚的人体组织结构,来进行深度学习算法或软件的训练,比如人体大脑、小脑、肝、肺、肾、脾、乳腺、甲状腺、骨骼肌等,尤其目前的研究在肝癌、肺癌等常见病、多发病的体现最多,往后的研究会逐渐向适合深度学习的而又为常见病多发病的实质性脏器疾病发展,如胰腺癌、食管癌、腮腺肿瘤等。然而,对于一些变异较大的结构如小肠、静脉,就不大适合使用深度学习算法进行分割,反而阈值法和区域扩增等传统算法可能会更加适合,因为目前的深度学习算法大多属于监督学习,需要医生的精准标注进行训练,而标注这些变异较大的结构会大大增加医生的工作量。因而,肉眼能识别和分割出来的结构,人工智能分割实施效果会较好,肉眼难以准确识别的结构,人工智能算法效果也会欠佳。因此,目前开展人工智能进行医学图像分割研究需要选择合适的分割结构和合适的临床疾病,但随着人工智能方法的不断更新,非监督学习的发展,医学图像的分割难题可能会得到解决。

4.2人工智能辅助疾病诊断

疾病快速精准诊断是精准治疗的关键,传统的诊断存在医学诊断个体差异、耗时长、优势医疗资源相对匮乏等问题。人工智能辅助疾病诊断包括疾病病灶检测和疾病分类分期确诊,数据源主要来自人体影像学和病理学数据。在诊断效率上,人工智能在某些疾病的诊断上水平已经超过了医生,已经在临床上开始使用,比如肺癌、皮肤癌、乳腺癌等这几类都是常见的肿瘤,因为其训练样本达到了几千或几万病例。其他疾病如胶质细胞瘤、宫颈癌、直肠癌的智能诊断还处于发展阶段,主要原因是训练集样本量不够多,非多中心实验,这一部分研究仍可继续挖掘。还有一些如非肿瘤性的内科疾病比如感染性疾病、自身免疫性疾病等仍未作为研究的重点,这一部分的研究仍可继续开展。

人工智能辅助疾病诊断模型存在构建的通用性模型在特定任务中表现不理想的情况,如人体眼底彩色照片的眼底疾病的筛查和诊断中,使用通用性筛查模型往往在具体疾病的识别中表现就不够理想。同时,模型的构建,往往对图像的源数据质量要求比较高,如不同医院、不同医疗设备、不同操作技师所获取的数据就不一样,如果只用来自一家医院的数据,而不入组其他医院的,那么最后构建的模型,就不能精准智能诊断其他数据源的数据。因此,人工智能辅助诊断研究,早期可从单中心数据源选择入手,但在后期,则需要考虑多中心数据,这样,构建的智能诊断模型才能够具有通用性。

人工智能诊断疾病的技术路线要基于影像科或病理科医生,把他们的疾病诊断思路弄清楚、弄明白,才能更准确地让机器学习医生的诊断思路,进行智能诊断,从而达到疾病的精准诊断。如病理科医生诊断肿瘤,先判断细胞核的核分裂象和核异质性,再考虑细胞质的异常变化,另外皮肤科医师根据痣的大小、边界、颜色、质地均匀度、部位进行痣良恶性的判定,让机器按这样的思路学习才能事半功倍,实现精准诊断。

4.3人工智能辅助疾病预后评估

人工智能辅助疾病预后评估,目前为临床医生和患者及家属最关心的问题。通常采用回顾性的研究分析方法,构建疾病智能预后评估模型,进行预后风险性评估研究和手术、放疗以及新辅助化疗风险性评估。目前,这一部分的研究逐渐成为医生和医学家关注的重点,比例在增高,甚至部分领域高于目前的人工智能辅助诊断研究。

疾病预后评估智能模型的构建及研究,同样需要结合临床医生的思维和诊断流程,比如肺癌、肝癌的智能预后评估,危险性主要跟其结节大小、部位、边界、质地均一度、供应血管丰富程度、与重要脏器的毗邻关系、与重要血管的毗邻关系和病理学结果,这样才能让机器学习到相关性强的深层特征。

总之,医学人工智能是数字医学发展的新方向,为现代医学研究的主流热点,是未来医学发展的必然趋势。现在医学人工智能尚处于弱人工智能时代,不具备沟通的功能和能力,仍然需要人工智能技术的不断提高和完善,以期早日实现人机智能交流。同时,由于医学问题的因果关系链复杂、精准度要求高、病人个体差异大,所以对医学人工智能产品的要求很高,虽然研究成果多,但产品产出慢,耗时长,耗钱多,我们需要有足够的耐心等待其发展。因此,医学人工智能的研究往往需要针对某一种疾病,制定一个短期、中期和长期的计划。短期计划,即利用较小的训练集样本库,完成人工智能初步模型的构建,获得较好的测试验证结果;中期计划,利用至少几百例、甚至是多中心的大样本训练集,对人工智能模型进行优化完善,并在临床前瞻试验中得到验证;长期计划,在较完善训练集模型的基础上,继续扩大样本量至几千例,提升模型的泛化能力和兼容性,以提高诊断和预后评估的精度准,降低错诊、漏诊和误诊的概率,达到产品上市的条件。

医学人工智能时代已经来临,我们亟须紧跟数字医学和人工智能时代步伐,激流勇进,为未来医学的创新和改革做出贡献。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇