博舍

ChatGPT:人工智能语言模型的革命性突破 人工智能自然语言处理应用在哪些领域中发展的

ChatGPT:人工智能语言模型的革命性突破

原标题:ChatGPT:人工智能语言模型的革命性突破

随着人工智能技术的快速发展,自然语言处理技术已经成为了人工智能领域中最热门的研究方向之一。而在这个领域中,最受欢迎的当属ChatGPT模型。最近,由OpenAI开发的ChatGPT模型在多个自然语言处理任务中取得了惊人的成绩,引起了全球范围内的关注。那么,这个模型究竟能为我们带来哪些变革呢?

首先,ChatGPT的出现彻底改变了我们与计算机交互的方式。目前,大多数自然语言处理系统都需要用户输入特定的指令或关键词才能得到相应的回应。而ChatGPT则能够理解自然语言并进行对话,使得我们可以像与人类一样与计算机进行交流。这意味着我们可以使用更加自然、流畅的语言来表达自己的想法和需求,从而提高工作效率和用户体验。

其次,ChatGPT的应用范围非常广泛。除了在个人用户中的应用外,它还可以被用于各种商业场景中,例如智能客服、智能问答系统、自动翻译等等。据统计,全球有超过50%的公司正在考虑使用自然语言处理技术来改善他们的业务流程和服务体验。因此,ChatGPT的出现将为这些公司带来巨大的商业机会和竞争优势。

最后,ChatGPT的成功也表明了人工智能技术的潜力和发展前景。在未来几年内,我们可以预见到更多的自然语言处理技术和应用将会涌现出来,这将进一步推动人工智能技术的进步和发展。同时,也会带来一些新的挑战和问题,例如数据隐私、伦理道德等方面的问题需要我们认真思考和解决。

总之,ChatGPT的出现标志着人工智能技术的又一次重大突破。它的成功不仅为自然语言处理领域的发展带来了新的思路和方法,也为我们展示了人工智能技术的无限可能。相信在未来的日子里,ChatGPT将继续发挥其强大的作用,为我们的生活和工作带来更多的便利和创新。返回搜狐,查看更多

责任编辑:

自然语言处理的应用前景

云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

自然语言处理(NLP)的定义

自然语言处理(NLP)是人工智能技术的一个分支,它使计算机能够像人们一样理解、处理和生成语言,并且在商业中的应用正在迅速增长。

虽然自然语言处理(NLP)这一术语最初指的是人工智能系统的阅读能力,但它后来成为所有计算语言学的一种通俗说法。其子类别包括自然语言生成(NLG)(计算机自行创建通信的能力)和自然语言理解(NLU)(理解俚语、错误发音、拼写错误以及其他语言变体的能力)。

自然语言处理(NLP)的工作原理

自然语言处理通过机器学习(ML)进行。机器学习系统像其他任何形式的数据一样存储单词及其组合方式。将短语、句子,有时甚至整本书的内容都输入机器学习引擎,并根据语法规则和人们的现实语言习惯(或两者兼而有之)进行处理。然后,计算机使用这些数据来查找模式并推断出下一步的工作。以翻译软件为例:在法语中,“我要去公园”是“Jevaisauparc”,因此机器学习预测“我要去商店”也将以“Jevaisau”开头。

自然语言处理应用

机器翻译是更好的自然语言处理(NLP)应用程序之一,但它并不是最常用的一种。人们每次在Google或Bing搜索引擎中查找内容时,都将数据输入到系统中。当单击搜索结果时,搜索引索会将其视为对找到的结果正确的确认,并在以后使用这个信息更好地进行搜索。

聊天机器人的工作方式与其相同:它们与Slack、MicrosoftMessenger和其他聊天程序集成在一起,可以在其中读取人们所说的语言,然后在说出触发词语时将其打开。当Siri和Alexa等语音助手听到“Hey,Alexa”之类的短语时,它们就会进行响应。这就是批评者指责这些程序一直在监听的原因:如果不是,它们永远不会知道人们何时需要它们。除非人们自己打开应用程序,否则自然语言处理程序将在后台运行,等待短语的出现。

自然语言处理(NLP)对人们的利大于弊。人们可以想象一下没有谷歌搜索或者拼写检查程序的生活。它使用自然语言处理(NLP)将输入的单词与字典中的单词进行比较。通过比较这两个数据集,拼写检查程序可以找出问题并提供建议。

自然语言处理(NLP)示例

搜索引擎和拼写检查的应用如今非常普遍,人们经常将它们视为一种理所当然的技术,尤其是在自然语言处理(NLP)可以显著提高生产力的工作中。例如如果想知道还剩下多少假期?不必询问人力资源部门。可以采用聊天机器人Talla节省时间,它会搜索企业政策以寻找答案。打电话联系客户需要翻看手机所存的电话号码?可以采用语音提示,通过声音搜索启动SecondMind,将会给出所需的号码。这种集成的搜索工具可以加快员工与客户的沟通。

自然语言处理还可以帮助招聘者对简历进行分类,吸引各种应聘者并雇用更多合格的员工。对垃圾邮件进行检测可以使用自然语言处理(NLP),以阻止垃圾电子邮件进入人们的收件箱;此外,可以采用Outlook和Gmail等程序将某些人的邮件分类到创建的文件夹中。

诸如情绪分析之类的工具可帮助企业快速识别推文内容的好坏,从而可以了解客户的顾虑。情感分析不仅可以处理社交媒体上的文字,还可以分解词语出现的语境。对于分析机构Periscopic公司的数据可视化工具SkyeMorét来说,只有30%的英语单词是正面的,其余的是中性或负面的。因此,自然语言处理(NLP)可以帮助企业更全面地理解一个帖子:在这些中性词汇背后,消费者表达的情感是什么?

传统上,企业使用自然语言处理将反馈分为积极和消极两类。但是FleishmanHillard公司社会和创新业务的高级副总裁RyanSmith表示,当今的自然语言处理工具可以识别更精确的情绪,例如悲伤、愤怒和恐惧。

自然语言处理(NLP)软件

无论人们是要构建聊天机器人、语音助手、预测文本应用程序,还是以自然语言处理为核心的其他应用程序,企业都将需要采用工具。根据调查,最受欢迎的自然语言处理软件包括:

自然语言工具包(NLTK)。自然语言工具包(NLTK)是一个开放源代码框架,用于构建Python程序以使用人类语言数据。它是在宾夕法尼亚大学计算机和信息科学系开发的,为50多个语料库和词汇资源库、一个文本处理库、自然语言处理库和论坛提供接口。自然语言工具包(NLTK)是在Apache2.0许可下提供的。SpaCy。SpaCy是一个开放源代码库,用于高级自然语言处理,专门为生产目的而非研究目的而设计。SpaCy的设计充分考虑了高级数据科学,并允许深度数据挖掘。它是由麻省理工学院授权的。Gensim。Gensim是一个用于自然语言处理的开源Python库。独立于平台的库支持可扩展的统计语义、针对语义结构的纯文本文档分析以及检索语义相似文档的能力。可以在无需人工监督的情况下处理大量文本。AmazonComprehend。这项Amazon服务不需要机器学习的经验。它旨在帮助组织从电子邮件、客户评论、社交媒体、支持通知单和其他文本中获得见解。它使用情感分析、词性提取和标记化来分析单词背后的意图。IBMWatson音频分析器。这个基于云计算的解决方案旨在用于社交监听、聊天机器人集成和客户服务监控。它可以分析客户帖子中的情绪和语气,并监视客户服务电话和聊天对话。谷歌云翻译。这个API使用自然语言处理来检查源文本以确定语言,然后使用神经机器翻译将文本动态翻译为另一种语言。这个API允许用户将功能集成到他们自己的程序中。

自然语言处理(NLP)课程

有很多资源可用于学习创建和维护自然语言处理应用程序,其中许多是免费的资源。其中包括:

DataCamp中的Python自然语言处理。这门免费课程提供15个视频和51个练习文件,涵盖了使用Python处理自然语言的基础知识。它涵盖了如何识别和分隔单词,如何在文本中提取主题,以及如何构建自己的虚假新闻分类器。Udemy的自然语言处理(NLP)。这个入门课程提供使用Python和自然语言工具包处理和分析文本的实践经验。它包括三个小时的点播视频,三篇文章和16个可下载资源。该课程费用为19.99美元,并提供结业证书。使用Udemy的Python进行自然语言处理(NLP)。这个课程面向具有语言基础编程经验,理解面向对象编程的概念,具有基础到中级数学知识以及矩阵运算知识的个人。它完全基于项目,并且涉及构建文本分类器以实时预测推文的情绪,以及构建文章摘要器,该文章摘要器可以获取文章并提取摘要。该课程包括10.5小时的点播视频和8篇文章。该课程费用为19.99美元,并提供结业证书。edX的自然语言处理(NLP)。由微软公司通过edX提供的为期六周的课程概述了自然语言处理和经典机器学习方法的使用。它涵盖了统计机器翻译和深度语义相似性模型(DSSM)及其应用。它还涵盖了在自然语言处理和视觉语言多模式智能中应用的深度强化学习技术。这是一门高级课程,完成该课程学习的人员只需支付99美元即可获得认证证书。Coursera公司提供的自然语言处理。本课程是Coursera公司高级机器学习专业化的一部分,涵盖自然语言处理任务,包括情感分析、摘要、对话状态跟踪等。Coursera公司表示,这是一门高级课程,需要学习五个星期,每个星期需要学习四到五个小时。

自然语言处理为社会公益提供支持

除了帮助企业处理数据外,情绪分析还可以帮助人们了解社会动态。例如,Periscopic已将自然语言处理(NLP)与视觉识别结合使用,创建了特朗普表情计算器(TrumpEmoticoaster),这是一种处理语言和面部表情的数据引擎,目的是了解美国特朗普总统的情绪状态。

类似的技术也可以防止校园枪击事件:在哥伦比亚大学,研究人员已经处理了9000名暴力倾向的年轻人发布的200万条推文,并在寻找问题的答案:随着青少年越来越倾向采用暴力,那么其语言是如何改变的?

Coursera公司项目总监DesmondPatton博士说,“有问题的内容会随着时间的推移而发展。”随着一些年轻人越来越接近危险的边缘,他们会通过语言表达。然后,自然语言处理会标记出有问题的情绪,以便社会工作者可以进行干预。

与Periscopic一样,Columbia公司将情感分析与图像识别结合使用,以提高准确性。Patton说,计算机视觉将推文上的图片进行分解,然后机器学习将它们与语言一起处理,以告诉“图片的真实情感”。这个图像是关于悲伤的吗?这是有关威胁的图片吗?这些图像中还发生了什么,可以帮助人们更好地理解?”除校园枪击事件之外,哥伦比亚计划还希望采用这种技术防止团伙暴力。

自然语言处理(NLP)以提高个人水平

自然语言处理(NLP)还可以帮助人们监控自己的情绪状态。Woebot是一种电子治疗师,可通过FacebookMessenger聊天机器人或独立应用程序与用户联系。不过,目前还没有高级的情感分析技术,Woebot实际上只能跟踪那些抑郁和焦虑,可能表明用户面临紧急情况的词汇。

【云栖号在线课堂】每天都有产品技术专家分享!课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!【云栖号在线课堂社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-24作者:TerenaBell本文来自:“51CTO”,了解相关信息可以关注“51CTO”

NLP(自然语言处理)领域的现状与展望|中美AI大师巅峰对话

2、词义消歧

词义消歧包括多义词消歧和指代消歧。多义词是自然语言中非常普遍的现象;指代消歧是指正确理解代词所代表的⼈或事物。例如,在复杂交谈环境中,“他”、“it”到底指代谁。词义消歧还需要对文本上下文、交谈环境和背景信息等有正确的理解,目前还无法对此进行清晰的建模。

3、个性化识别

自然语言处理要面对个性化问题,自然语言常常会出现模凌两可的句子,而且同样一句话,不同的人使用时可能会有不同的说法和不同的表达。这种个性化、多样化的问题非常难以解决。

DanRoth表示:在各种专业应用中,必须要选择正确的自然语言模型,没有任何单一模型可以解决自然语言领域中所遇到的所有问题,自然语言处理没有一个可以解决所有问题的魔术盒子存在,你必须要把所有相关的知识库放进盒子里,选择对的算法,并且针对性的处理特定问题,那么这个盒子最后才有作用。这种现状加大了技术落地的难度。

2018年,我们可以期待NLP取得哪些进展?

对于自然语言处理能否在2018年涌现新进展,DanRoth和周明也都表示出充分的信心。

DanRoth说:“利用知识库,未来自然语言处理应用会协助企业把专业知识转成特定的自然语言处理模型。利用这些模型,自然语言处理技术就能成为很好的工具,影响更深层次的人类生活。”

周明表示:垂直领域有一定的保护门槛(比如有一些不公开的数据),在这样的领域可以做一些知识图谱的探索,还可以针对本领域特点,做一些特殊的优化和有的放矢的研究,而不是使用通用的自然语言技术。这样就可能会产生一个专业的知识图谱,以及基于专用图谱之上的自然语言理解的技术,最后提升整个领域的生产力。

此外,神经网络机器翻译、阅读理解、聊天对话、机器客服和创作辅助这些应用在今年和明年就会有很多地方普及,相关的应用场景包括搜索引擎、个人助手、语音助手、机器翻译,还有个人制作音乐,个人制作新闻、撰写网络小说、问答系统等等。

对于如何解决自然语言处理的主要问题,周明表示有三个值得尝试的方向:

第一,上下文的建模需要建立大规模的数据集。比如多轮对话和上下文理解;数据标注的时候要注意前后文。没有这样的数据,很难取得突破。

第二,强化学习很重要。我们需要根据用户的反馈倒推模型并做参数修正,使模型更加优化。现在强化学习刚刚开始用在自然语言领域,性能并不稳定,但在未来很有机会。

第三,要引入常识和专业知识,并把这些知识构建好,这样就能更加精准地回答问题。没有人能证明现在常识知识用在语言问答和搜索中的作用有多大,所以,我们需要一个测试集来检验结果。这个测试集要专门测上下文和常识,可以让我们要不停用新模型(比如强化学习或者知识图谱)去试错,来看系统性能能不能提升。

■■■

从符号主义和连接主义的对立走向合作,从静态分析走向交互,从语法和浅层语义走向深层语义,从功能主义走向认知和情感体验……自然语言处理技术的科研创新一直精进不休,我们相信在不久的将来,机器将更加善解人意。

部分内容摘自DeepTech深科技:中美两位AI大师的“巅峰对话”:为何NLP领域难以出现“独角兽”?

部分内容摘自DeepTech深科技:中美两位AI大师的“巅峰对话”:为何NLP领域难以出现“独角兽”?

人工智能、大数据的前沿资讯,深度的商业内容解析。更多精彩,欢迎关注——海致星图或访问www.haizhi.com返回搜狐,查看更多

2023年人工智能领域发展七大趋势

2022年人工智能领域发展七大趋势

有望在网络安全和智能驾驶等领域“大显身手”

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。

增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。

更大更好的语言建模

语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。

2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。

众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。

网络安全领域的人工智能

今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。

随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。

人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。

人工智能与元宇宙

元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。

人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。

低代码和无代码人工智能

2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。

美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。

自动驾驶交通工具

数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。

特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。

此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。

创造性人工智能

在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。

2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)

【纠错】【责任编辑:吴咏玲】

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇