博舍

2023年人工智能行业研究报告 人工智能行业的前景和发展前景

2023年人工智能行业研究报告

第一章行业概况1.1定义和分类

人工智能(ArtificialIntelligence,AI)是一个广泛的计算机科学分支,它致力于创建和应用智能机器。在更深入的层次上,人工智能可以被理解为以下几个方面:

学习和适应:人工智能系统需要具有学习和适应的能力。这意味着这些系统能从数据中学习,并在新的、未曾见过的情况下,根据所学到的知识做出适应性的反应。

理解和解析:人工智能系统需要有能力理解和解析其所处的环境。这可能包括理解语言,识别图像,或者理解复杂的模式和关系。

决策和行动:人工智能系统需要能够基于其理解和学习,做出决策并采取行动。这可能包括自动驾驶汽车的导航决策,或者聊天机器人产生回应的决策。

自我改进:人工智能系统需要有能力进行自我改进。这意味着系统能够根据其性能的反馈,调整其行为以提高未来的性能。

人工智能可以按照不同的标准进行分类。以下是一些常见的分类方式:

(1)按照功能分类:

弱人工智能(NarrowAI):这类人工智能系统专门针对某一特定任务进行优化,例如语音识别或图像识别。它们只能在特定领域内表现出人类级别的智能。

强人工智能(GeneralAI):强人工智能系统能够执行任何人类智能能够执行的任务,理论上它们能够理解、学习、适应并执行任何一种可以由人类大脑完成的认知任务。

超人工智能:各个领域超越人类,创新创造领域超越人类,解决人类无法解决的问题。

当前,人工智能的发展仍处于“弱”人工智能阶段,只具备在特定领域模拟人类的能力,“工具性”仍是该阶段主要特点,同全面模拟或者超越人类能力的强人工智能、超人工智能差距巨大。

图智能的构成以及人工智能分级

资料来源:资产信息网千际投行平安证券研究所

(2)按照技术分类:

机器学习(MachineLearning):机器学习是一种让计算机系统从数据中学习的方法。机器学习算法使用统计学习理论,从输入数据中找到并学习潜在的模式。

深度学习(DeepLearning):深度学习是机器学习的一个子领域,使用神经网络模拟人脑神经元的工作方式,从复杂的、大量的数据中进行学习。

自然语言处理(NaturalLanguageProcessing):自然语言处理是计算机用来理解、解析和生成人类语言的技术。

计算机视觉(ComputerVision):计算机视觉是让计算机和机器能够“看到”和理解视觉信息的技术。

以上就是人工智能的一些主要分类,它们不同的特性和应用场景使得人工智能在各个领域都有广泛的应用。

1.2发展历程

人工智能的历史已有七十余年的长河,其脉络可追溯到上世纪初的岁月。如今,AI已然深入到我们生活的每个角落,无论是医疗保健、汽车产业、金融业、游戏产业、环境监测、农业、体育、能源管理,还是安全领域,大量的AI应用都正在彻底改变我们的生活方式、工作习惯以及娱乐模式。这些技术的持续进步预示着第四次工业革命的到来。

(1)萌芽1900-1956

1900年,希尔伯特在数学家大会上宣布了23个未解决的问题,其中第二和第十个问题与人工智能密切相关,最终促进了计算机的发明。1954年,冯-诺依曼完成了早期计算机EDVAC的设计,并提出了“冯-诺依曼架构”。图灵、哥德尔、冯-诺依曼、维纳、克劳德-香农和其他的先驱者奠定了人工智能和计算机技术的基础。

(2)黄金时代1956-1974

1965年,麦卡锡、明斯基等科学家召开“达特茅斯会议”,首次提出“人工智能(AI)”的概念,标志着人工智能学科的诞生。随后,人工智能研究进入了20年的黄金时代,取得了一批令人瞩目的研究成果,如机器定理证明和跳棋程序,掀起了人工智能发展的第一个高潮。

在这个黄金时代,约翰-麦卡锡开发了LISP语音,成为此后几十年人工智能领域最主要的编程语言;马文-明斯基对神经网络有了更深入的研究,也发现了简单神经网络的缺点;接着开始出现多层神经网络和反向传播算法。

(3)第一次寒冬1974-1980

人工智能发展的最初突破极大地提高了人们的期望,使人们高估了科技发展的速度。然而,连续的失败和预期目标的落空使人工智能的发展进入低谷。

1973年,赖特-希尔关于人工智能的报告,拉开了人工智能冬天的序幕。此后,科学界对人工智能进行了一轮深入的拷问,使人工智能受到了严厉的批评和对其实用价值的质疑。随后,政府和机构也停止或减少了资助,人工智能在20世纪70年代陷入了它的第一个冬天。

有限的计算能力和大量常识性数据的缺乏使发展陷入瓶颈,尤其是过度依赖计算能力和经验数据量的神经网络技术,在很长一段时间内没有取得实质性的进展。

(4)应用发展1980-1987

专家系统模拟人类专家的知识和经验来解决特定领域的问题,实现了人工智能从理论研究到实际应用的重大突破。专家系统在医学、化学、地质学等领域的成功,将人工智能推向了应用发展的新高潮,1980年XCON在卡内基梅隆大学(CMU)正式启动,成为专家系统开始在特定领域发挥作用的里程碑,推动了整个人工智能技术进入繁荣阶段。

经过十年的沉寂,神经网络有了新的研究进展,并发现了具有学习能力的神经网络算法,这使得神经网络的发展在20世纪90年代后期一路走向商业化,被应用于文字图像识别和语音识别。

(5)第二次寒冬1987-1993

随着人工智能应用规模的不断扩大,应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、与现有专家系统数据库难以兼容等问题逐渐暴露出来。当时的人工智能领域主要使用约翰-麦卡锡的LISP编程语言。LISP机的逐步发展被蓬勃发展的个人电脑打败了,专用LISP机的硬件销售市场严重崩溃,人工智能领域再次进入寒冬。

硬件市场的崩溃和理论研究的混乱,再加上政府和机构纷纷停止对人工智能研究领域的资金投入,导致人工智能领域几年来一直处于低迷状态。但另一方面在理论方法的研究上也取得了一些成果。

1988年,美国科学家朱迪亚-皮尔将概率统计方法引入人工智能的推理过程;IBM的沃森研究中心将概率统计方法引入到人工智能的语言处理中;1992年,李开复利用统计方法设计开发了世界上第一个独立于扬声器的连续语音识别程序;1989年,AT&T贝尔实验室的亚恩-莱坤和团队将卷积神经网络技术应用在了人工智能的手写数字图像识别中。

(6)稳步发展1993-2011

人工智能的创新研究因网络技术的发展而加速,尤其是互联网的发展,使人工智能技术进一步实用化。

1995年,理查德-华莱士开发了新的聊天机器人程序Alice,它能够利用互联网不断增加自己的数据集并优化内容。

1997年,IMB的计算机Deepblue深蓝击败了世界象棋冠军卡斯帕罗夫。德国科学家霍克赖特和施米德赫伯提出了LSTM递归神经网络,至今仍被用于手写识别和语音识别,对后来的人工智能研究产生了深远影响。

2004年,美国神经科学家杰夫·霍金斯出版了《人工智能的未来》,2006年,杰弗里辛顿出版了《学习多层表征》,为神经网络奠定了一个新的架构,对未来人工智能中的深度学习的研究产生了深刻影响。

(7)深化阶段2012-至今

随着移动互联网技术和云计算技术的爆发,积累了难以想象的数据量,为人工智能的后续发展提供了足够的素材和动力,以深度神经网络为代表的人工智能技术的快速发展,大大跨越了科学与应用之间的“技术鸿沟”,迎来了爆发式增长。

2012年,多伦多大学在ImageNet视觉识别挑战赛上设计的深度卷积神经网络算法,被认为是深度学习革命的开始。

2014年,IanGoodfellow提出了GANs生成式对抗网络算法,这是一种用于无监督学习的人工网络。这是一种用于无监督学习的人工智能算法,由生成网络和评估网络组成,这种方法很快被人工智能的许多技术领域所采用。

2016年和2017年,谷歌推出的人工智能程序AlphaGo连续击败了前围棋世界冠军韩国的李世石,以及现任围棋世界冠军中国的柯洁,引起了巨大轰动。同时语音识别、图像识别、无人驾驶等技术不断进步。

2022年11月,OpenAI推出其开发的一个人工智慧聊天机器人程序ChatGPT。该程序使用基于GPT-3.5架构的大型语言模型并通过强化学习进行训练,成为AIGC现象级应用。

在2023年3月,OpenAI又推出了ChatGPT的升级版——GPT-4,迭代速度极快。其包含的重大升级是支持图像和文本的输入,并且在GPT-3原来欠缺的专业和学术能力上得到重大突破,它通过了美国律师法律考试,并且打败了90%的应试者。在各种类型考试中,GPT-4的表现都优于GPT-3。

1.3市场现状

全球AI产业规模预计2030年将达到1500亿,未来8年复合增速约40%。目前全球人工智能企业的数量迅速增长,2022年,全球人工智能(AI)市场规模估计为197.8亿美元,预计到2030年将达到1591.03亿美元,从2022年到2030年,复合年增长率为38.1%。

图人工智能全球市场规模预测

资料来源:资产信息网千际投行PrecedenceResearch

2022年中国人工智能产业规模达1958亿元,年增长率7.8%,整体稳健增长。而从应用格局来看,机器视觉、智能语音和自然语言处理是中国人工智能市场规模最大的三个应用方向。根据清华大学数据显示,三者占比分别为34.9%、24.8%和21%。一方面,政策推动下国内应用场景不断开放,各行业积累的大量数据为技术落地和优化提供了基础条件。另一方面,以百度、阿里、腾讯和华为为代表的头部互联网和科技企业加快在三大核心技术领域布局,同时一系列创新型独角兽企业在垂直领域快速发展,庞大的商业化潜力推动核心技术创新。

图中国人工智能产业规模

资料来源:资产信息网千际投行艾瑞咨询

第二章商业模式和技术发展2.1产业链

人工智能产业链主要分为基础层、技术层、应用层三个层级:

基础层以数据、算力、算法为核心;

技术层是建立在基础层的核心能力之上,通过打造一套人工智能系统使机器能够像人类一样进行感知与分析,其中最关键的领域包括计算机视觉(图像识别与分析)、语音识别与自然语言处理技术(语音识别与合成)、机器学习与深度学习(分析决策及行动)等;

应用层是将技术能力与具体场景相融合,帮助企业/城市管理者等客户降本增效,目前主要应用的场景有泛安防、金融、医疗、自动驾驶等领域。

在上述三个层级之外,通常面向终端时还涉及硬件交付,如摄像头、服务器、芯片等,所以人工智能产业链涉及业务方众多。

图:产业链

资料来源:资产信息网千际投行招商银行

上游

人工智能基础层是支撑各类人工智能应用开发与运行的资源平台,主要包括数据资源、硬件设置和计算力三大要素。

人工智能基础层主要包括智能计算集群、智能模型敏捷开发工具、数据基础服务与治理平台三个板块。

智能计算集群:提供支持AI模型开发、训练或推理的算力资源,包括系统级AI芯片和异构智能计算服务器,以及下游的人工智能计算中心等;

智能模型敏捷开发工具:主要实现AI应用模型的生产,包括开源算法框架,提供语音、图像等AI技术能力调用的AI开放平台和AI应用模型效率化生产平台;

数据基础服务与治理平台:实现应用所需的数据资源生产与治理,提供AI基础数据服务及面向AI的数据治理平台。

AI基础层企业通过提供AI算力、开发工具或数据资源助力人工智能应用在各行业领域、各应用场景落地,支撑人工智能产业健康稳定发展。

图:人工智能基础层分类

资料来源:资产信息网千际投行

通用计算芯片CPU、GPU全球市场基本被Intel、Nvidia等美国芯片厂商垄断,技术与专利壁垒较高,卡脖子现象严重。华为麒麟、巴龙、昇腾及鲲鹏四大芯片有望突破此壁垒。未来几年,全球各大芯片企业、互联网巨头、初创企业都将成为该市场的主要玩家。

图中国及全球人工智能基础层产业规模及年增长率

资料来源:资产信息网千际投行中国电子学会

计算力指数国家排名中美国列国家计算力指数排名第一,坐拥全球最多超大规模数据中心,这是美国算力的基础保障。中国列第二,AI算力领跑全球。日本、德国、英国分别位列第三至第五名。

计算平台方面,全球市场被亚马逊、谷歌、阿里、腾讯、华为等公司基本垄断,但小公司的计算平台凭借价格优势仍有生存空间。

中游

技术层作为人工智能产业的核心,主要依托基础层的运算平台和海量数据资源进行识别训练和机器学习建模,以开发面向不同领域的应用技术,对应用层的产品智能化程度起着决定性作用。根据技术层级分为通用技术层、AI软件框架层和算法模型层。

算法作为人工智能技术的引擎,主要用于计算、数据分析和自动推理。当前最为主流的基础算法是深度学习算法,深度学习可以从大量数据中自动总结规律,并使其适应自身结构,从而应用到案例中。随着基础算法的成熟和稳定,算法发展重点转向工程实现——软件框架,很多企业开始转向建设算法模型工具库,将算法封装为软件框架,提供给开发者使用。

图中国及全球人工智能技术层产业规模及年增长率

资料来源:资产信息网千际投行中国电子学会

目前美国是该领域发展水平最高的国家,以谷歌、Facebook、IBM和微软为主的科技巨头均将人工智能的重点布局在算法理论和软件框架等门槛高的技术之上。而我国基础理论体系尚不成熟,鲜有拥有针对算法的开放平台,百度的Paddle-Paddle、腾讯的Angle等国内企业的算法框架尚无法与国际主流产品竞争。

下游

应用层是基于技术层的能力,去解决具体现实生活中的问题。比如利用计算机视觉技术,实现金融、安防等多个领域的人脸识别;利用智能语音技术,实现智能音箱、录音笔等的语音识别;利用自然语言处理技术,用于智能客服的问答。

图全球及中国应用层产业规模及增速

资料来源:资产信息网千际投行中国电子学会

在实际的应用中,技术层和应用层的关系是相互交叉的,某个领域的应用可能用到多个维度的技术层的能力,比如金融行业的应用对于智能语音、计算机视觉、自然语言处理技术都会有需求;同样某个技术层的能力也可以广泛应用到多个不同的应用领域,比如计算机视觉技术可以广泛应用到金融、安防、医疗、交通、教育等多个维度。

2.2商业模式

人工智能相关产业大概分为五类:销售智能设备、提供智能服务、智能平台变现、智能软件授权以及智能项目整合。不同的商业领域决定AI技术的变现能力,根据五类产业内容又可分为计算能力、数据、算法框架、应用平台和解决方案六类商业领域,其进入壁垒、演化路径与短期长期价值各不相同。

图:人工智能常见五种商业模式

资料来源:资产信息网千际投行

目前,国内外的中大型厂商都已经初步形成了各自不同的核心竞争力,依据五大类人工智能商业内容呈现出的最终形式大致可以分为以下三类公司。

人工智能创业公司:主要是依靠其对于某一垂直领域的技术研发或渠道优势,通过销售相关技术产品设备或服务获得盈利。人工智能领域创业的技术门槛较高,一旦成功产业化,则竞争压力相对较小。商业模式相对比较传统,在获得市场关注和盈利前,需要投资人在人才与研发环节持续投入。而获得源源不断的融资也靠创始人的声誉背书,因此这类企业短时间内的收入模型和盈利模式比较模糊。

人工智能平台:大型人工智能科技公司一般布局都在基础功能平台服务上,如大数据、云计算平台。现在越来越多的巨头也把资源投入到了AI领域,如微软旗下成熟的AI平台。大型科技巨头公司将主要精力花在布局基础设施上,且大型人工智能平台主要都是靠应用程序接口(API)来盈利,调用的API次数越多,收费越高。而在调用这些API的同时,用户通常还会涉及其他服务,如服务器、虚拟机、数据库等,这也将为企业盈利带来新的增长点。

人工智能咨询与定制服务:主要根据企业和客户的需求进行定制化的人工智能解决方案。现阶段,人工智能方案对于传统制造与服务类企业来说,规模化应用及成本控制难度较大。但随着未来AI技术的发展,与人工智能服务相关的产品成本必将下降,中小型企业也可以负担并愿意进行智能升级改造。

AI咨询与定制服务的商业模式较为独特,目前大致有以下两种模式:

成熟的AI专利应用,如开发一个独家专利的人工智能解决方案产品,并出售给下游用户,其产品可标准化、规模化量产。

客户定制化服务,比如为某家公司客户进行产品定制服务,服务的归属权归客户所有,服务公司无权转卖,此类定制服务价格较高,竞争能力强。

2.3专利申请量

专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智能专利申请主要来源于中国、美国和日本。2000年至2018年间,中美日三国AI专利申请量占全球总申请量的73.95%。中国虽在AI领域起步较晚,但自2010年起,专利产出量首超美国,并长期雄踞申请量首位。

从专利申请领域来看,深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于AI科技热潮兴起后申请,并集中在应用端(如智能搜索、智能推荐),而AI芯片、基础算法等关键领域和前沿领域专利技术主要仍被美国掌握。由此反映出中国AI发展存在基础不牢,存在表面繁荣的结构性不均衡问题。

从专利权人分布来看,中国高校和科研机构创新占据主导地位,或导致理论、技术和产业割断的市场格局。欧美日人工智能申请人集中在企业,IBM、微软、三星等巨头企业已构建了相对成熟的研发体系和策略,成为专利申请量最多的专利人之一。其中,IBM拥有专利数量全球遥遥领先。而中国是全球唯一的大学和研究机构AI专利申请高于企业的国家。由于高校与企业定位与利益追求本质上存在差异,国内技术创新与市场需求是否有效结合的问题值得关注。

图AI领域主要专利权人分布

资料来源:资产信息网千际投行Derwent

通过对国内人工智能行业的各个专利申请人的专利数量进行统计,排名前列的公司依次为:中兴通讯、京东方A、四川长虹、视源股份、海康威视、浪潮信息、大华股份、航天信息等。

图国内人工智能行业专利数量Top10

资料来源:资产信息网千际投行iFinD

中国AI专利质量参差不齐,海外市场布局仍有欠缺。尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国AI专利国内为主,高质量PCT数量较少。

PCT(PatentCooperationTreaty)是由WIPO进行管理,在全球范围内保护专利发明者的条约。PCT通常被为是具有较高的技术价值。据中国专利保护协会统计,美国PCT申请量占全球的41%,国际应用广泛。而中国PCT数量(2568件)相对较少,仅为美国PCT申请量的1/4。

目前,我国AI技术尚未形成规模性技术输出,国际市场布局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实用新型专利和外观设计三类,技术难度依次降低。中国拥有AI专利中较多为门槛低的实用新型专利。此外,据剑桥大学报告显示,受高昂专利维护费用影响,我国61%的AI实用新型和95%的外观设计将于5年后失效,而美国85.6%的专利仍能得到有效保留。

2.4政策监管

人工智能行业根据中国证监会颁布的《上市公司行业分类指引》(2012年修订)和国家统计局《国民经济行业分类》(GB/T4754-2017)隶属于“软件和信息技术服务业”(行业代码为I65)。根据《战略性新兴产业分类(2018)》隶属于“新一代信息技术产业”中的“人工智能”行业。

人工智能行业的行政监管部门为工信部,负责拟订信息产业的规划、政策和标准并组织实施,指导行业技术创新和技术进步,组织实施有关国家科技重大专项,推进相关科研成果产业化,推动软件业、信息服务业和新兴产业发展。

人工智能的自律协会包括:

中国软件行业协会:协助政府部门组织制定、修改行业的国家标准、行业标准及推荐性标准,并推进标准的贯彻落实;开展软件和信息服务行业的调查与统计,提出行业中、长期发展规划的咨询建议;根据软件行业发展需要,组织行业人才培训、人才交流等。

中国人工智能产业发展联盟:聚集产业生态各方力量,联合开展人工智能技术、标准和产业研究,共同探索人工智能的新模式和新机制,推进技术、产业与应用研发,开展试点示范,广泛开展国际合作等。

中国人工智能学会:组织和领导会员开展人工智能科学与技术的创新研究,促进人工智能科学与技术的发展;开展国内、国际学术交流活动,提高会员的学术水平;开展人工智能科学与技术的咨询与培训;组织开展对人工智能领域科学技术和产业发展战略的研究,向政府部门提出咨询建议等。

人工智能的行业政策包括:

资料来源:资产信息网千际投行

2020年国家标准化管理委员会、中央网信办国家发展改革委、科技部、工业和信息化部关于印发《国家新一代人工智能标准体系建设指南》的通知,将人工智能标准体系结构分为八大部分。

基础共性标准:包括术语、参考架构、测试评估三大类,位于人工智能标准体系结构的最左侧,支撑标准体系结构中其它部分。

支撑技术与产品标准:对人工智能软硬件平台建设、算法模型开发、人工智能应用提供基础支撑。

基础软硬件平台标准:主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑。

关键通用技术标准:主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑。

关键领域技术标准:主要围绕自然语言处理、智能语音、计算机视觉、生物特征识别、虚拟现实/增强现实、人机交互等方面,为人工智能应用提供领域技术支撑。

产品与服务标准:包括在人工智能技术领域中形成的智能化产品及新服务模式的相关标准。

行业应用标准:位于人工智能标准体系结构的最顶层,面向行业具体需求,对其它部分标准进行细化,支撑各行业发展。

安全/伦理标准:位于人工智能标准体系结构的最右侧,贯穿于其他部分,为人工智能建立合规体系。

图:人工智能标准体系结构

资料来源:资产信息网千际投行东吴证券

第三章行业估值、定价机制和全球龙头企业3.1行业综合财务分析和估值方法

图:指数表现

资料来源:资产信息网千际投行iFinD

人工智能行业估值方法可以选择市盈率估值法、PEG估值法、市净率估值法、市现率、P/S市销率估值法、EV/Sales市售率估值法、RNAV重估净资产估值法、EV/EBITDA估值法、DDM估值法、DCF现金流折现估值法、NAV净资产价值估值法等。

3.2行业发展和驱动因子

多个行业希望利用AI实现数字化转型

当前,数字化浪潮来袭,以人工智能为代表的新一代数字技术日新月异,催生了数字经济这一新的经济发展形态。过去20余年消费互联网的充分发展为我国数字技术的创新、数字企业的成长以及数字产业的蓬勃发展提供了重要机遇。人工智能等新一代信息技术的快速发展和应用,推动着各行各业加速向数字化迈进。伴随着数字技术的融合应用以及我国供给侧结构性改革的不断深化,加快AI等数字技术与产业经济的融合发展成为多个行业的共识。

大量人工智能高端人才

高端人才对于一个行业的影响毋庸置疑,甚至可以说,一个国家在人工智能领域的实力主要取决于少数精英研究人员的质量。目前世界范围内,美国仍然是拥有最多拔尖研究人员的国家,这就是为什么美国在人工智能发明的年代能够取得领先地位,并且进入应用的时代时,他们比自己的同行有优势。

近年来,我国企业对于机器学习、知识图谱等领域关注度逐年增加,尤其在金融、教育、医疗领域,并由此吸引了越来越多的人才从事相关领域的学习。在研究热度、就业前景、政策红利等多方面因素叠加下,未来我国有望培养大量该领域的高端人才。

移动互联网的推动

随着人工智能进入应用时代,数据的应用量得到了大幅提升。当今人工智能应用的核心,就是通过深度学习在海量数据中概括出人类难以发觉的细微联系的能力。数据可以被视为支撑人工智能运行的原材料。

我国拥有大量的移动互联网用户基础,为我国人工智能行业提供数据支撑。截至2021年上半年,我国手机网民规模为10.07亿,较2020年12月新增手机网民2092万,网民中使用手机上网的比例为99.6%

技术进步

(1)边缘计算技术:通过将边缘技术应用于人工智能,可以提供更快的计算和洞察力、更好的数据安全性以及对持续运营的有效控制。因此,它可以提高支持人工智能的应用程序的性能,并降低运营成本。

(2)分布式计算技术:可以将计算任务分派给多个分布式服务器进行下发,计算完成后再将结果通过不同的分布式服务器进行汇总,通过中央控制器合成展现。分布式计算架构与人工智能计算相辅相成,共同完成大数据处理和计算任务。

政府政策支持

政府政策在驱动中国人工智能发展方面的作用是显著的但常常被人误解。政府常常挑选优势企业进行补贴,或者发布命令规定应当发展的技术。如果人工智能对经济的影响远小于当前预期,那么投入人工智能的资源可能是一种浪费。

另外,由于许多人工智能技术都已经成熟,选择哪些进行支持对公共部门来说是一个问题。政府的参与绝不是技术领先的先决条件,但随着人工智能更深入地渗透到现实系统中,政府参与可能会加速技术产生经济影响。

3.3行业风险分析

表:常见行业风险因子

资料来源:资产信息网千际投行

(1)美国对国内AI发展限制力度可能加大

限制我国高科技产业的发展,已经成为美国政治精英层的共识。AI作为未来全球科技的重要发展方向,美国对相关领域的出口管制力度,不但不会因中美双方的后续协商而有所缓解,甚至还有可能加大。目前,美国已经将主要AI技术列入“限制性出口清单”,虽然没有明确限制对象,我国作为其重要竞争对手,限制力度可能更为严格,国内企业在技术引进、产品进口等方面将面临更多限制。

(2)政策支持力度不达预期或调整

当前,国内人工智能发展还处在起步阶段,产业链各环节发展还较为薄弱,企业对政府在技术研发、财税优惠、公共服务平台搭建、投融资支持、政府采购、人才培养等方面支持还十分依赖。如果政策支持方向出现调整,或者力度不达预期,对企业的业务发展和公司业绩都会造成较大的影响。

(3)技术研发和产业化不及预期

人工智能作为计算机领域的交叉和新兴学科,近年来进入创新爆发期,产品周期明显缩短,技术创新迭代加速,企业面临着的技术层面的竞争更为激烈。如果企业在技术研发投入不足或者产业化不及预期,对整个公司的发展将造成严重影响。

(4)市场竞争激化的风险

目前,国内在应用领域企业较为集中,微创企业、传统互联网巨头、垂直行业企业都在积极进入,形成了“百家争鸣”的格局,而且未来在国家政策的支持下,行业新进入企业将可能增多,市场、利润争夺也将趋于白热化,企业盈利能力将可能受到挑战。

3.4竞争分析-SWOT模型

优势

人工智能可以提供各种各样的应用来服务人类,比如京东和淘宝的智能推荐,无人车的自动驾驶。人工智能可用于完成最困难,最复杂甚至最危险的任务。我们可以利用人工智能的优势并充分利用它。人工智能还可以节省人力资源和提高效率,帮助我们完成单调,重复和耗时的过程。并且人工智能可以不停地工作,但人们不能这样做。同时人工智能能够比人们更快地完成复杂的任务,节省大量时间并加快进程,并且人工智能的成本与人力成本相比要低很多。

劣势

人工智能系统还无法超出场景或语境理解行为,并且具有不可预测性,用户无法预测人工智能会做出何种决策,这既是一种优势,也会带来风险,因为系统可能会做出不符合设计者初衷的决策。最后是安全问题和漏洞。机器会重结果而轻过程,它只会通过找到系统漏洞,实现字面意义上的目标,但其采用的方法不一定是设计者的初衷。例如,网站会推荐一些极端主义视频,因为刺激性内容可以增加浏览时间。再如,网络安全系统会判断人是导致破坏性软件植入的主要原因,于是索性不允许人进入系统。

机遇

无论人类社会自身的需求,还是由于人工智能的介入而产生的新需求,这些需求本身都为人工智能的发展提供了难得的机遇。虽然这些机遇不一定促成人工智能的进步,但它们的确是人工智能进一步发展的动力。人类总是期望人工智能可以更安全、更贴心地服务于人类,为人类创造更多的便利。

威胁

从技术层面来说,当前人工智能仍然面临着众多技术上的难题。技术上的难题关系着人工智能是否具有可靠性与高效性,能否取得人类信任,能否避免出现重大技术事故等。

从社会规范层面来看,人工智能的快速发展在一定程度上打破了传统的社会规范,也因此带来了一系列的社会问题。这些问题的出现,为人工智能的发展带来了诸多隐忧,甚至在一定程度上阻碍了人工智能的发展。人工智能能否解决人类对人工智能自身发展的担忧,在很大程度上决定着其自身的发展前景。

3.5重要参与企业

中国主要企业有海康威视[002415.SZ]、工业富联[601138.SH]、京东方A[000725.SZ]、中兴通讯[000063.SZ]、科大讯飞[002230.SZ]、恒生电子[600570.SH]、澜起科技[688008.SH]、闻泰科技[600745.SH]、兆易创新[603986.SH]、圣邦股份[300661.SZ]等。

根据Google的综合数据,全球人工智能企业排名前十分别是:Nvidia,Microsoft,IBM,Google,OpenAI,Alphabet,DataRobot,Apple,Intel,SenseTime。

第四章未来展望

整体趋势

人工智能作为第四次工业革命的重要抓手之一,已经成为各国科技领域争夺的焦点。中美两国在该领域各有千秋,竞争日趋激烈。国内人工智能政策环境较好,产业基础初步具备,市场需求十分旺盛。按照中央规划,未来人工智能核心产业、“AI+”(AI与传统产业融合)均是战略发展重点。

基础层

该层主要为人工智能提供算力支撑和数据输入,包括AI芯片、算力基础设施和大数据服务等。AI芯片方面,未来随着产业自身发展以及科创板的推进,国内AI专用芯片尤其是边缘端芯片领域的投资标的可能增加,一些视觉、语音算法研发企业已经注意到该领域的发展潜力,开始增加该板块的投资。

基础设施方面,服务器、云计算、超算等算力都开始向AI倾斜,尤其是GPU服务器需求增长更为迅速,国内主要服务器企业也在持续发力,竞争优势开始凸显。

技术层

该层是人工智能的核心,除了开源技术框架主要为国外AI巨头所掌控之外,我国企业在算法、语音和视觉技术等方面的布局已经相对完善。

应用层

该层是我国AI市场最为活跃的领域,国内AI企业多集中在该板块。尤其是语音、计算机视觉、知识图谱等相对成熟的技术,在AI产品、融合解决方案市场(安防、医疗、家居和金融等)上都得到了广泛应用,随着我国“AI+”战略的实施,该领域的市场空间更为广阔。

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能调研 2023人工智能行业发展前景及趋势分析

人工智能调研2023人工智能行业发展前景及趋势分析方蔓桃2023年6月21日来源:百度88054繁体

消息面上,特斯拉、英伟达等海外大厂近期接连发布人形机器人产品的相关消息。特斯拉CEO马斯克直言:“人形机器人将会是今后特斯拉主要的长期价值来源。”

人工智能行业市场到底多大?截至收盘,上证综指报3240.36点,跌0.47%;深证成指报11305.35点,涨0.28%;创业板指报2271.42点,涨0.28%。沪深两市合计成交10900亿元,较前一日缩量约160亿元。北向资金全天小幅净买入17.42亿元。

近日,人工智能主线继续获得资金追捧。一方面,AI应用方向爆发,机器人概念股掀起涨停潮,步科股份、秦川机床、柯力传感等约10只机器人概念股涨停,柯力传感、鸣志电器今年以来股价已翻倍。

消息面上,特斯拉、英伟达等海外大厂近期接连发布人形机器人产品的相关消息。特斯拉CEO马斯克直言:“人形机器人将会是今后特斯拉主要的长期价值来源。”

国内通用机器人领域也将有新动作。今年7月,“傅利叶智能通用机器人战略发布会”将在上海举行,届时,傅利叶智能的最新研发成果——通用人形机器人GR-1将首次与公众见面。此外,傅利叶智能还将分享在通用机器人领域的未来发展愿景。

ChatGPT概念的走红,背后有相应的技术支撑和社会对人工智能的现实需求,也少不了资本的推波助澜。相关数据显示,1月31日至4月6日,ChatGPT概念股板块成交额从160多亿元攀升至850多亿元,整个板块指数涨幅已逾50%,部分概念个股年内累计涨幅更是高达300%。

百度“文心”、阿里“通义”、腾讯“混元”、京东“ChatJD”、华为“盘古”……国内抢占AI大模型赛道头牌的战争已打响,纷纷想抢占“人工智能”技术及产业的新基座,而这些国内互联网、科技大厂的大模型技术,应用“落地”与它们本身所专注的业务领域息息相关。

据中研普华产业院研究报告《2023-2028年中国人工智能行业全景调研与发展战略研究咨询报告》分析

人工智能行业市场深度分析

分析人士认为,人形机器人产业化趋势正在提速,行业处于百花齐放阶段,大语言模型将赋予机器人更高级的智能,未来“人形机器人+大模型”有望应用于更多商业化场景。

近期多只千亿市值科技股股价创出数年来新高。通信设备龙头中兴通讯昨日以涨停报收,股价创近两年新高;科大讯飞收涨6.88%,股价刷新历史高点;金山办公收涨6.82%,股价也创出历史新高。股价创阶段新高的千亿市值科技公司还有宝信软件、紫光股份等。

上述科技龙头股大涨多数与人工智能主线相关。近年来中兴通讯服务器业务营收实现较大增长,目前公司已与百度合作,为“文心一言”定制算力底座;科大讯飞本周一接待机构时表示,公司AI硬件在“6·18”期间销售额同比增长125%。

在多家互联网大厂内部,AI技术早已为它们提速增效。腾讯高层在3月的财报会上披露,腾讯一直有利用AI技术落地内部业务提高效率。去年4月,腾讯对外披露“混元”AI大模型,包含计算机视觉、自然语言处理、多模态内容理解、文案生成、文生视频等多个方向。

人工智能(AI)是利用机器学习和数据分析方法赋予机器模拟、延申和拓展类人的智能的能力,本质上是对人类思维过程的模拟。AI概念最早始于1956年的达特茅斯会议,受限于算法和算力的不成熟,未能实现大规模的应用和推广。近年来,在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。

为促进AI产业发展,全国各地正陆续加大AI领域投入,打造产业示范区。截至2022年底,工信部设立的国家AI创新应用先导区增至11个,覆盖长三角、京津冀、粤港澳、成渝四大战略区域以及长江中游城市群。

从省份分布来看,截至2022年底,广东、江苏、北京三个省份/直辖市的AI产业链相关企业续存数量最多,其中,广东存续企业数量最多,超过13万家;从增长情况看来,2016-2022年间,广东(9.5万家)、江苏(4.2万家)、浙江(3.5万家)存续企业增长最快。

随着OpenAI、微软等AI大模型产品或服务快速进入中国市场,AI大模型市场竞争将空前加剧,竞争方式也将从技术竞争转向品牌、价格和服务等综合实力的竞争。

从人工智能产业进程来看,技术突破是推动产业升级的核心驱动力。数据资源、运算能力、核心算法共同发展,掀起人工智能第三次新浪潮。人工智能产业正处于从感知智能向认知智能的进阶阶段,前者涉及的智能语音、计算机视觉及自然语言处理等技术,已具有大规模应用基础,但后者要求的“机器要像人一样去思考及主动行动”仍尚待突破,诸如无人驾驶、全自动智能机器人等仍处于开发中,与大规模应用仍有一定距离。

我国人工智能市场规模逐年扩大。2022年,我国人工智能市场规模达到2680亿元,预计2023年全年我国人工智能市场规模将达到3200亿元,同比增长33.8%。

人工智能行业市场前景分析

今年以来,在人工智能浪潮席卷下,1月至3月A股TMT行业成交额占比持续攀升,至4月初达到阶段高点,4月下旬至5月下旬高位回落,6月以来再度升至前期高位。有市场人士担忧,板块成交拥挤度过高,意味着后续边际增量资金有限,且容易遭遇获利盘集中了结造成股价波动加剧。

分析师认为,从中期视角看,后续AI细分赛道行情分化主要取决于业务落地进度及产业趋势演进,建议关注短期业绩兑现确定性强、中长期产业趋势逻辑无法证伪的子板块。

我国政府高度重视人工智能的发展,通过发布政策、实施重大项目等方式积极推动人工智能技术和产业创新发展,将人工智能融入国家整体创新体系,不断增强产业竞争力。人工智能赋能实体经济,为生产和生活带来革命性的转变。人工智能作为新一轮产业变革的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和新产品。从衣食住行到医疗教育,人工智能技术在社会经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测,2035年,人工智能将推动中国劳动生产率提高27%,经济总增加值提升7.1万亿美元。

展望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的增长态势,发展潜力较大。

未来,欲了解更多关于人工智能行业的市场数据及未来行业投资前景,可以点击查看中研普华产业院研究报告《2023-2028年中国人工智能行业全景调研与发展战略研究咨询报告》。

关注公众号

免费获取更多报告节选

免费咨询行业专家

相关深度报告REPORTS

2023-2028年中国人工智能行业全景调研与发展战略研究咨询报告

产业介绍人工智能覆盖的产业相对较广,主要包括基础层、技术层和应用层,涵盖多个不同的技术及应用场景。当前中国人工智能领域产业格局尚未成熟,上中下游具有较大的发展空间。目前,人工智能行...

查看详情

产业规划特色小镇产业园区规划产业地产可研报告商业计划书细分市场研究IPO上市咨询

人工智能

54延伸阅读1如何应对2020年新形势下中国人工智能听视觉SoC行业的变化与挑战!11112中国经济基本面稳定,但动力和质量较为不足,人工智能行业发展如何受限?8743经济数字化趋势突出,视觉人工智能行业如何借力发力,企业如何迈出更大一步?6744技术升级提升竞争力,行业转型增强优势,人工智能听视觉SoC行业企业如何选择?4745投资与产出不成正比,银行人工智能企业如何做出正确的投资规划和战略选择?3376行业集中度在不断提升,不进则退。人工智能情报分析把握有力发展方向!174推荐阅读

大力发展深远海养殖推动海洋渔业现代化转型升级海洋经济行业市场深度分析

海洋经济行业市场前景怎么样?加快发展深远海养殖,是向海洋要食物的重要途径、现代化海洋渔业建设的重要方向、海洋渔2...

2023蛋白质行业市场发展现状调研报告

蛋白质行业市场前景怎么样?蛋白质是生物体所必需的、细胞中含量最丰富、功能最多的营养素,在各种生命活动过程中发挥1...

软件行业调研2023软件行业现状与市场发展前景趋势分析

软件行业市场前景怎么样?当前,中国软件产业市场竞争力不断增强,正在步入加速迭代、群体突破的关键时期,迎来从量的5...

中国智慧地铁行业市场深度调研分析2023

智慧地铁行业市场到底多大?智能导航、刷脸进站、自动测温、数字阅读、数字艺术馆……如今,科技范十足的“智慧地铁”2...

中国滤波器行业市场发展现状分析2023

滤波器行业市场集中度较高,全球范围内,滤波器市场主要由日本、美国、德国的企业所占据,经过市场不断发展,目前滤波...

中国储能空调行业市场发展现状分析2023

政策驱动国内外储能行业高速发展。国家宏观层面出台储能政策,《“十四五”新型储能发展实施方案》中指出2025年电化学...

猜您喜欢

除湿机市场现状及发展趋势分析2023

集成灶行业发展现状及前景分析2023

环保建材行业深度调研与发展现状分析2023

截至5月底全国营业性演出票房收入超110亿元戏曲音乐文化行业发展分析

2023农业投资行业现状与未来前景态势分析

共享办公行业现状及前景预测2023

【版权及免责声明】凡注明"转载来源"的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。中研网倡导尊重与保护知识产权,如发现本站文章存在内容、版权或其它问题,烦请联系。联系方式:jsb@chinairn.com、0755-23619058,我们将及时沟通与处理。

中国人工智能行业市场现状及发展前景分析

我国人工智能行业三大短板分析

1、底层技术基础差

由于我国人工智能产业重应用技术、轻基础理论,底层技术积累薄弱,存在“头重脚轻”的结构不均衡问题,使我国人工智能产业犹如建立在沙滩上的城堡,根基不稳。基层技术积累薄弱使人工智能核心环节受制于人,阻碍人工智能领域重大科技创新,不利于国内企业参与国际竞争。

2、发展氛围显浮躁

人工智能概念虽当前火热,但企业和政府对产业发展理解不透、思考不足,普遍高估并急于兑现人工智能的近期商业价值。产业发展氛围略显浮躁,面临同质化、碎片化风险,这些都可能延长人工智能商业价值的兑现周期,并加剧产业未来发展的周期性波动幅度。

3、专业人才不充足

人工智能是新兴产业,虽然技术和产业发展迅猛,但专业技术人才,以及兼顾人工智能与传统产业的跨界人才不充足,限制了产业发展以及与实体经济的深度融合发展。

从人才培养角度而言,我国高校人工智能领域的学科建设、人才培养相对滞后。人工智能涉及领域宽泛,相关领域学科资源分散,未能形成合力,培养人才的数量、质量有待提升。目前,国内开设人工智能专业的高校数量较少、时间较短,学科实力不强。美国国家科技委员会发布的2017年人工智能全球大学排名中前50名均位于欧美地区,我国大学无一上榜。此外,国内缺乏人工智能与传统行业的跨界人才,不利于人工智能在各垂直行业的应用推广。

图片来源:网络

我国人工智能行业发展前景分析

1、人工智能已上升为国家战略

2017年3月5日,国务院总理发表2017年政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”首次被写入了全国政府工作报告,这意味着人工智能已上升为国家战略。

2017年7月20日,国务院出台《新一代人工智能发展规划》,提出了面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施。《规划》提出坚持科技引领、系统布局、市场主导、开源开放的基本原则和三步走的战略目标,部署构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

2017年12月13日,工信部印发了《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,明确了人工智能2018-2020年在推动战略性新兴产业总体突破、推进供给侧结构性改革、振兴实体经济、建设制造强国和网络强国方面的重大作用和具体目标。

2018年1月,《人工智能标准化白皮书(2018版)》发布,《白皮书》从支撑人工智能产业整体发展的角度出发,研究制定了能够适应和引导人工智能产业发展的标准体系,进而提出近期急需研制的基础和关键标准项目。

2018年3月5日,国务院总理李克强在十三届全国人大一次会议作政府工作报告时表示,要加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进“互联网+”,这是继2017年之后,“人工智能”再次被写入政府工作报告。

2、科技新基建将带动人工智能基础设施建设

“科技新基建”即信息产业领域的新型基础设施建设,被列入18年底中央经济会议报告中基础设施建设部分,成为扩大内需,发挥投资关键作用的重要内容。

基础设施建设通常是国家发挥投资杠杆作用,拉动内需的主要方式,而2019年是历史上头一次,以5G、人工智能、工业互联网、物联网为代表的新型基础设施建设,也就是我们总结的“科技新基建”首次被定性为基建的重要内容,排列顺序甚至在城际交通、物流、市政基础设施等传统基建类项目之前,充分表明我国未来基建投资的侧重点将更加向科技产业领域倾斜,财政资金配套将更加到位。科技新基建将带动5G、人工智能、工业互联网、物联网等信息基础设施建设。

3、人工智能是目前全球最受互联网业界和市场关注的新技术及应用

近年来,技术革新已经逐渐替代人口红利成为中国互联网经济发展的最主要推动力之一。人工智能是目前全球最受互联网业界和市场关注的新技术及应用。全球主要互联网企业均在向人工智能方向转型,并大幅增加相关科研、技术和产业应用布局方面的投入。展望未来几年,人工智能将会为互联网行业带来两个重要趋势:

第一,人机交互界面转向语音化。继键盘鼠标、触摸屏之后,语音交互正在成为新的人机交互方式。对于互联网企业来说,掌握了新的接口才更容易掌握新的流量入口,更容易通过此入口向用户推广服务。智能音箱的兴起就与这一发展趋势密切相关。全球主要互联网、硬件及家电企业将继续通过技术升级、应用拓展和市场推广等多重手段努力争夺这个新流量入口的市场份额。

第二,人工智能拓展互联网服务场景。人工智能在后台全面支持互联网业务的发展;我们看到互联网的各个场景都开始受益于人工智能。预计未来几年里,在传统互联网应用场景(例如搜索、新闻和电商等服务)中,人工智能技术将更多地被运用,并有效地提高服务效率和产品质量。在一些新兴领域,人工智能技术则会拓展互联网服务的应用场景,带来更新的商业化模式。

4、人工智能将实现提效降本、延续人类智慧的核心价值

人工智能即通过智能实现人类思维的效果,从宏观层面来看,此效果体现在智能社会与智能经济层面,即人工智能将大幅改善依赖劳动力创造的劳动密集型、简单重复性的传统经济运行模式,并依托此经济模式构建万物互联、智能协同的产业体系,打造国际领先的智能社会。从微观层面来看,人工智能将替代传统劳动,带来新式生产方式,以提升生产效率并降低成本,进而实现企业效益提升、改善人们工作与生活。而随着机器变得聪明,我们将最终实现人性化人工智能(HumanisticAI),即通过机器达到拟人的形式并以这类形式延伸人类智慧。

(本文来源:前瞻产业研究院)返回搜狐,查看更多

2023年中国视觉人工智能行业市场现状分析及发展前景展望报告

0分享至

本报告由智研咨询出品,经专业研究报告编撰团队实时监测与更新,最终得以呈现。报告研究基于研究团队收集到的大量一手和二手信息,研究过程综合考虑行业各种影响因素,包括市场环境、产业政策、历史数据、行业现状、竞争格局、技术革新、市场风险、行业壁垒、机遇以及挑战等。通过对特定行业长期跟踪监测,分析行业供给端、需求端、经营特性、盈利能力、产业链和商业模式等方面的内容,整合行业、市场、企业、渠道、用户等多层面数据和信息资源,为客户提供深度的行业市场研究报告,全面客观的剖析当前行业发展的总体市场容量、竞争格局、细分数据、进出口及市场需求特征等,并根据各行业的发展轨迹及实践经验,对行业未来的发展趋势做出客观预测。

报告目录:

第一章视觉人工智能行业发展概述

第一节视觉人工智能的概念

一、定义

二、特点

第二节视觉人工智能行业发展成熟度

一、行业发展周期分析

二、行业中外市场成熟度对比

第三节视觉人工智能行业产业链分析

第二章2018-2022年中国视觉人工智能行业运行环境分析

第一节2018-2022年中国宏观经济环境分析

第二节2018-2022年中国视觉人工智能行业发展政策环境分析

一、国内宏观政策发展建议

(一)继续实施积极的财政政策,加大结构调整力度

(二)采取组合调控措施,确保物价水平稳定

(三)推动节能减排市场化运作

二、视觉人工智能行业政策分析

三、相关行业政策影响分析

第三节2018-2022年中国视觉人工智能行业发展社会环境分析

第三章2018-2022年中国视觉人工智能行业市场发展分析

第一节视觉人工智能行业市场发展现状

一、市场发展概况

二、发展热点回顾

三、市场存在问题及策略分析

第二节视觉人工智能行业技术发展

一、技术特征现状分析

二、新技术研发及应用动态

三、技术发展趋势

第三节中国视觉人工智能行业消费市场分析

一、消费特征分析

二、消费需求趋势

三、品牌市场消费结构

第四节视觉人工智能所属行业产销数据统计分析

一、整体市场规模

二、区域市场数据统计情况

第五节2023-2029年视觉人工智能行业市场发展趋势

第四章2018-2022年中国视觉人工智能所属行业主要指标监测分析

第一节2018-2022年中国视觉人工智能所属行业工业总产值分析

一、2018-2022年中国视觉人工智能所属行业工业总产值分析

二、不同规模企业工业总产值分析

三、不同所有制企业工业总产值比较

第二节2018-2022年中国视觉人工智能所属行业主营业务收入分析

一、2018-2022年中国视觉人工智能所属行业主营业务收入分析

二、不同规模企业主营业务收入分析

三、不同所有制企业主营业务收入比较

第三节2018-2022年中国视觉人工智能所属行业产品成本费用分析

一、2018-2022年中国视觉人工智能所属行业销售成本分析

二、不同规模企业销售成本比较分析

三、不同所有制企业销售成本比较分析

第四节2018-2022年中国视觉人工智能所属行业利润总额分析

一、2018-2022年中国视觉人工智能所属行业利润总额分析

二、不同规模企业利润总额比较分析

三、不同所有制企业利润总额比较分析

第五节2018-2022年中国视觉人工智能所属行业资产负债分析

一、2018-2022年中国视觉人工智能所属行业资产负债分析

二、不同规模企业资产负债比较分析

三、不同所有制企业资产负债比较分析

第六节2018-2022年中国视觉人工智能所属行业财务指标分析

一、行业盈利能力分析

二、行业偿债能力分析

三、行业营运能力分析

四、行业发展能力分析

第五章中国视觉人工智能行业区域市场分析

第一节华北地区

一、华北地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第二节东北地区

一、东北地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第三节华东地区

一、华东地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第四节华南地区

一、华南地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第五节华中地区

一、华中地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第六节西南地区

一、西南地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第七节西北地区

一、西北地区经济发展现状分析

二、市场规模情况分析

三、行业发展前景预测

第六章视觉人工智能行业竞争格局分析

第一节行业竞争结构分析

第二节行业集中度分析

第三节行业国际竞争力比较

第四节2018-2022年视觉人工智能行业竞争格局分析

第七章视觉人工智能企业竞争策略分析

第一节视觉人工智能市场竞争策略分析

一、市场增长潜力分析

二、主要潜力品种分析

三、现有视觉人工智能产品竞争策略分析

四、潜力视觉人工智能品种竞争策略选择

五、典型企业产品竞争策略分析

第二节视觉人工智能企业竞争策略分析

第三节视觉人工智能行业产品定位及市场推广策略分析

一、行业产品市场定位

二、行业广告推广策略

三、行业产品促销策略

四、行业价格策略

五、行业网络推广策略

第八章中国视觉人工智能重点企业经营策略分析

第一节商汤科技

一、企业基本情况

二、企业销售收入及盈利水平分析

三、企业资产及负债情况分析

四、企业成本费用情况

第二节旷视科技

一、企业基本情况

二、企业销售收入及盈利水平分析

三、企业资产及负债情况分析

四、企业成本费用情况

第三节虹软科技

一、企业基本情况

二、企业销售收入及盈利水平分析

三、企业资产及负债情况分析

四、企业成本费用情况

第四节云从科技集团股份有限公司

一、企业基本情况

二、企业销售收入及盈利水平分析

三、企业资产及负债情况分析

四、企业成本费用情况

第五节MORPHO,INC.

一、企业基本情况

二、企业销售收入及盈利水平分析

三、企业资产及负债情况分析

四、企业成本费用情况

第六节深圳超多维科技有限公司

一、企业基本情况

二、企业销售收入及盈利水平分析

三、企业资产及负债情况分析

四、企业成本费用情况

第九章2023-2029年未来视觉人工智能行业发展预测分析

第一节未来视觉人工智能行业需求与消费预测

第二节2023-2029年中国视觉人工智能行业供需预测

第十章中国视觉人工智能行业投资机会与风险分析

第一节视觉人工智能行业投资机会分析

一、视觉人工智能投资项目分析

二、可以投资的视觉人工智能模式

三、2022年视觉人工智能投资机会

四、2022年视觉人工智能投资新方向

五、2023-2029年视觉人工智能行业投资的建议

六、新进入者应注意的障碍因素分析

第二节影响视觉人工智能行业发展的主要因素

一、2023-2029年影响视觉人工智能行业运行的有利因素分析

二、2023-2029年影响视觉人工智能行业运行的稳定因素分析

三、2023-2029年影响视觉人工智能行业运行的不利因素分析

四、2023-2029年我国视觉人工智能行业发展面临的挑战分析

五、2023-2029年我国视觉人工智能行业发展面临的机遇分析

第三节视觉人工智能行业投资风险及控制策略分析

一、2023-2029年视觉人工智能行业市场风险及控制策略

二、2023-2029年视觉人工智能行业政策风险及控制策略

三、2023-2029年视觉人工智能行业经营风险及控制策略

四、2023-2029年视觉人工智能行业技术风险及控制策略

五、2023-2029年视觉人工智能同业竞争风险及控制策略

六、2023-2029年视觉人工智能行业其他风险及控制策略

第十一章视觉人工智能行业投资战略研究

第一节视觉人工智能行业发展战略研究

第二节对我国视觉人工智能品牌的战略思考

一、企业品牌的重要性

二、视觉人工智能企业品牌的现状分析

三、我国视觉人工智能企业的品牌战略

第三节视觉人工智能行业投资战略研究(ZYLZQ)

图表目录:

图表视觉人工智能行业生命周期图

图表视觉人工智能产品国内、国际市场成熟度对比

图表视觉人工智能产品行业主要竞争因素分析

图表2018-2022年各季度三次产业增加值累计增速

图表2018-2022年工业增加值累计增速

图表2018-2022年物价指数同比变化情况

图表2018-2022年社会消费品零售总额情况

图表2018-2022年固定资产投资完成额累计增速

图表2018-2022年外贸进出口情况

图表2018-2022年各季度居民收入累计值

图表2018-2022年货币供应量同比增速

图表2018-2022年视觉人工智能产品消费量变化图

图表2018-2022年视觉人工智能企业品牌集中度分析

图表2018-2022年视觉人工智能产品产能分析

图表2018-2022年中国视觉人工智能产业工业总产值分析

图表2018-2022年视觉人工智能不同规模企业工业总产值分析

图表2018-2022年视觉人工智能不同所有制企业工业总产值比较

图表2018-2022年中国视觉人工智能产业主营业务收入分析

图表2018-2022年视觉人工智能不同规模企业主营业务收入分析

图表2018-2022年视觉人工智能不同所有制企业主营业务收入比较

图表2018-2022年中国视觉人工智能产业销售成本分析

图表2018-2022年视觉人工智能不同规模企业销售成本比较分析

图表2018-2022年视觉人工智能不同所有制企业销售成本比较分析

更多图表见正文……

数据说明:

1、研究报告核心数据以中国大陆地区数据为主,少量涉及全球及相关地区数据;

2、除一手调研信息和数据外,国家统计局、中国海关、行业协会、上市公司公开报告(招股说明书、转让说明书、年版、问询报告等)等权威数据源亦共同构成本报告的数据来源。1)一手资料来源于研究团队对行业内重点企业访谈获取的一手信息数据,主要采访对象有企业高管、行业专家、技术负责人、下游客户、分销商、代理商、经销商以及上游原料供应商等;2)二手资料来源主要包括全球范围相关行业新闻、公司年报、非盈利性组织、行业协会、政府机构及第三方数据库等;

3、报告核心数据基于公司严格的数据采集、筛选、加工、分析体系以及自主测算模型,确保统计数据的准确可靠;

4、本报告所采用的数据均来自合规渠道,分析逻辑基于智研团队的专业理解,清晰准确地反映了分析师的研究观点。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇