人工智能发展论文
人工智能发展论文
随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。以下是小编精心准备的人工智能发展论文,大家可以参考以下内容哦!
摘要:人工智能属于一门综合性的边缘学科。诞生时间为20世纪50年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。
关键词:人工智能发展;识别率;人脸识别;遗传算法
1智能计算机的发展
1.1人工智能简述
人工智能[1](ArtificialIntelligence,简称AI)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速,在很多的地方都得到了应用,尤其是在科学领域。
人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。
1.2人工智能研究的发展概况
未来,随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。在我们的日常生活中,人们对人工智能技术的期望一直都拥有着很高的热情和期盼,但是,在客观事实上,人工智能技术进步不但要考虑软件、硬件技术的限制,也还要考虑人们对自身能力理解程度的制约,因此未来人工智能技术将在不断限制的过程中不断突破不断成长,从而保持着逐步的发展。比如人脸识别技术,当该技术以一次问世时,人们对人工智能充满了信心,但当大多数人亲自使用时,却发现它对人脸的识别率还是不够高;
近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,OCR、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。
人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。
人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的.变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。
2人工智能的前沿
2.1智能信息检索技术
现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。
2.2遗传算法
遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。
3结束语
人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008(9).
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2013(9).
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2013(7).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2014(7).
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2011(5).
[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2015(7).
[7]曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009(8).
[8]王梓坤.论混沌与随机.北京师范大学学报,1994,30(2):199-202.
[9]陈明.基于进化遗传算法的优化计算[J].软件学报,2008,9(11):876-879.
[10]陈火旺.遗传程序设计(之一)[J].计算机科学,2005.22(6):12-15.
【人工智能发展论文】相关文章:
人工智能学术论文范文10-03
人工智能专家系统论文09-30
可持续性发展合作医疗论文08-09
人工智能时代作文(6篇)09-26
人工智能时代作文6篇09-25
【实用】人工智能作文五篇08-29
人工智能作文(集锦15篇)08-22
人工智能作文(合集15篇)08-22
人工智能作文(通用15篇)08-21
【推荐】人工智能作文10篇08-11
全球人工智能产业发展现状及发展趋势浅析
人工智能是指使用机器代替人类实现认知、识别、分析、决策等功能,是研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,其本质是对人的意识和思想的信息过程的模拟。人工智能是一种尖端技术,是新一轮科技革命和产业变革的重要驱动力量,它给经济、政治、社会等带来了颠覆性的影响,或将改变未来的发展格局。在21世纪,人工智能已逐渐成为全球各国新一轮科技战和智力战的必争之地,全球围绕人工智能领域的布局抢位日趋激烈。
一、全球人工智能发展现状
2021年7月8日,世界人工智能大会在上海开幕。根据统计数据评分,全球人工智能排名前10的国家依次为:美国、中国、韩国、加拿大、德国、英国、新加坡、以色列、日本和法国。其中,中国的综合得分为50.6分,美国为66.31分。
(一)美国着重国家和经济安全,力争保持全球领导地位
美国人工智能战略和政策的着力点在于保持其全球“领头羊”地位,并期望对人工智能的发展始终具有主动性与预见性。美国自2013年开始就发布了多项人工智能计划,并提及人工智能在智慧城市、自动驾驶和教育等领域的应用和愿景。2016年,美国将人工智能上升至国家战略层面,出台了《国家人工智能研究与发展计划》,从政策、技术、资金等方面给予一定的支持和保障。特朗普政府执政后,于2019年2月发布了第13859号总统行政令—《维持美国在人工智能领域领导地位的倡议》,从国家战略层面提出美国未来发展人工智能的指导原则,明确指出要集中联邦政府资源发展人工智能,扩大美国的繁荣,增强国家和经济安全,力图保持其在人工智能时代的全球领导地位。2021年6月,拜登政府宣布成立了由12名学术界、政界和产业界人士组成的国家人工智能研究资源工作组(NAIRR),他们将制定一项计划,让人工智能研究人员获得更多政府数据、计算资源和其他工具。该项计划基本继承了《2020年美国人工智能倡议法》的战略诉求。NAIRR的创建是美国政府加速美国国内技术进步的更广泛努力的一部分,美国参议院批准了2500亿美元的投资,用于从人工智能到量子通信等科学研究,这意味着,人工智能战略是拜登政府战略重心之一。
(二)韩国加快构建可持续的人工智能技术能力
韩国拥有雄厚的ICT产业发展根基,这为其发展人工智能奠定了良好的研发与应用生态基础。2018年5月15日,韩国第四次工业革命委员会审议并通过《人工智能研发战略》(以下简称《战略》),旨在重点推广人工智能技术进步,并加快AI在各领域的创新发展,打造世界领先的人工智能研发生态,构建可持续的人工智能技术能力。韩国认为人工智能是经济与社会大变革的核心动力之一,但其AI技术能力与中国和美国相比仍有较大差距,因此提升人工智能技术能力迫在眉睫,事关其能否在第四次工业革命中占得技术主导权。为了加快经济和社会的创新发展,为产业注入新的活力,韩国于2019年12月17日公布了《国家人工智能战略》,旨在凝聚国家力量、发挥自身优势,实现从“IT强国”到“人工智能强国”的转变。根据预算,相关措施若得以实施,到2030年,韩国将在人工智能领域创造455万亿韩元(约合2.7万亿元人民币)的经济效益。
(三)加拿大大力发展人工智能产学研用聚集中心
2017年3月,加拿大政府发布了全球首个人工智能国家战略计划——《泛加拿大人工智能战略(PanCanadianArtificialIntelligenceStrategy)》,计划拨款1.25亿加元支持AI研究及人才培养。该计划还提出了“增加加拿大优秀人工智能研究人员和熟练毕业生的数量”“在加拿大埃德蒙顿、蒙特利尔和多伦多3个主要人工智能中心建立互联的科学卓越节点”“在人工智能发展的经济、伦理、政策和法律意义上发展全球思想领导”以及“支持国家人工智能研究团体”等目标。此外,加拿大在全国范围内形成了数个有代表性城市的人工智能产学研用聚集中心,正是这些中心支撑起了加拿大人工智能发展的基本格局。这些聚集中心包括蒙特利尔、多伦多、埃德蒙顿、滑铁卢、温哥华和魁北克等城市,它们构成了加拿大人工智能研究的中坚力量。如果将加拿大人工智能领域看作一个生态系统,风险投资机构、加速器或孵化器以及公共非盈利机构构成了这个生态系统的土壤,为加拿大人工智能的研发和应用提供基础;各个人工智能产学研用聚集中心有其不同的偏重方向,就像不同种类的作物;各个聚集中心培育出来的初创企业,是人工智能服务人类生活的直接载体,就如作物结出的花朵与果实;国家和地方的政策支持、各领域方向的人才团队构成了人工智能生态的空气和养分;同时,加拿大社会开放,具备吸引外国投资机构、企业实体和人才的良好环境,为整个人工智能生态系统提供了有益补充。
(四)欧盟构建可信人工智能框架,抢占全球伦理规则主导权
欧盟很早就把发展以智能化为基础的经济模式作为其主要战略目标,注重在研发和人才上的投入,但由于缺乏风险资本和私募股权投资,以及民众过多顾虑隐私保护等问题,其在人工智能上的发展落后于中国和美国。为改变这一现状,欧盟采取多种措施大力发展人工智能,发力构建可信人工智能,力争取得全球主导权。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。2018年12月,欧盟发布了《人工智能协调计划》,提出要进一步增加资金投入、深化人工智能技术创新与应用、完善人才培养和技能培训、构建欧洲数据空间、建立人工智能伦理道德框架、促进公共部门人工智能技术使用、加强国际合作等行动,推进欧洲人工智能的开发与应用,实现欧盟和各国人工智能投资收益最大化,推动发展符合欧中价值观和伦理观念的人工智能,力争在伦理与治理领域占据全球领先地位。欧盟于2020年2月发布的《人工智能白皮书—欧洲追求卓越和信任的策略》,透露了欧盟人工智能将由“强监管”转向“发展和监管并重”,在促进人工智能广泛应用的同时,解决新技术使用所产生的风险问题。
二、我国人工智能发展现状
我国人工智能产业在政策、资本、市场需求的共同推动和引领下快速发展。产业上,我国人工智能企业“质、量”兼顾,同步发展,集聚发展效应明显,产业规模不断扩大,产业链布局不断完善。技术上,论文数量不断攀升,在复杂的国际环境下我国迎难而上,芯片产业突破明显,在国际竞赛中我国企业成果颇丰。为进一步推动技术创新,诸多高校设置人工智能相关专业、成立人工智能学院。融合上,我国人工智能与实体经济融合在广度和深度上都进一步深化,全国人工智能产业形成了特色化的发展格局。
2015年7月,国务院印发《关于积极推进“互联网+”行动的指导意见》。《指导意见》将人工智能作为其主要的十一项行动之一,并明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。2016年3月,国务院发布《国民经济和社会发展第十三个五年规划纲要(草案)》,人工智能概念进入“十三五”重大工程。2017年3月十二届全国人大五次会议上,“人工智能”首次被写入政府工作报告;7月,国务院发布《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心;10月,人工智能进入十九大报告,将推动互联网、大数据、人工智能和实体经济深度融合;12月,《促进新一代人工智能产业发展三年行动计划(2018-2020年)》的发布,它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。工信部为加快推动我国新一代人工智能产业创新发展,组织实施了人工智能产业创新任务揭榜挂帅工作,在人工智能项目攻关、选才用才方面效果显著。
相关数据显示,2020年人工智能行业核心产业市场规模将超过1500亿元,预计在2025年将超过4000亿元,中国人工智能产业在各方的共同推动下进入爆发式增长阶段,市场发展潜力巨大,未来中国有望发展为全球最大的人工智能市场。
我国高度重视人工智能技术进步与行业发展,人工智能已上升为国家战略。在此背景下,许多地方出台促进人工智能发展的政策,针对人工智能开展了布局,以广东省为例,广州、深圳、佛山等不少基础雄厚的城市都在积极谋划创建人工智能试验区,其中佛山市提出要“创建国家新一代人工智能创新发展试验区”,这一举措对区域在人工智能发展赛道抢占先机十分有利,对于区域人工智能发展有着显著的带动效果。在产业布局方面,佛山市因地制宜,将人工智能与工业制造进行融合。作为全国制造业的重要基地,佛山拥有2.16万亿的工业产值,对促进人工智能和实体经济融合发展有着大量的需求,可以实现人工智能技术在区域的产业化发展。2021年7月,《佛山市推进制造业数字化智能化转型发展若干措施》提出,“建设数字化智能化示范工厂、示范车间,支持技术改造升级”,加大金融财政支持力度、推动产业链协同、增强产业数字化智能化供给能力多措并举,以加快佛山制造业数字化、网络化、智能化转型升级。8月,佛山市南海区对外释放在人工智能方面的新布局,通过聚焦前沿技术,引进高科技企业和高端人才项目,联合高校科研院所共同攻克人工智能领域关键核心技术,一系列举措阐释着佛山市南海区全力打造国内一流的人工智能创新高地,助力打造佛山市制造业数字化智能化转型发展引领区,赋能佛山制造业升级提速的信心。这是佛山市南海区制造业高质量发展的表现,也是佛山市南海区在人工智能发展到新一阶段的布局升级,同时也反映了地方政府在新的时期发展和布局人工智能的信心与决心。
三、人工智能未来发展趋势
在未来的数十年里,人工智能有可能会极大地改变人类社会结构和生存方式。人工智能技术加速融入经济社会发展各领域全过程已是大势所趋。人工智能在重组全球要素资源、重塑全球经济结构、改变全球竞争格局方面将发挥出重要作用。我国面临中华民族伟大复兴战略全局和世界百年未有之大变局,将以国内国际两个大局、发展安全两件大事为出发点,充分发挥海量数据和丰富应用场景优势,促进人工智能与实体经济深度融合,赋能传统产业转型升级,催生新产业新业态新模式。在加强核心技术攻关、加快新型基础设施建设、推动人工智能和实体经济融合发展、规范行业发展和完善行业治理等方面持续发力,促进人工智能创新发展。
参考资料
1.国家工业信息安全发展研究中心.2019-2020人工智能发展报告.2020-7
2.李月白,江晓原.钱学森与20世纪80年代的人工智能热.2019-11
3.广州日报.2020中国人工智能产业白皮书:五年内市场规模预计超过4000亿元.2021-2
4.李贺南,陈奕彤,宋微.2020年韩国人工智能国家战略.2020-4
5.韩联社.韩国斥巨资大力发展人工智能.2020
6.江丰光,熊博龙,张超.我国人工智能如何实现战略突破——基于中美4份人工智能发展报告的比较与解读.2020-1
来源:中国网
免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。
人工智能下的工业制造应用与趋势
人工智能下的工业制造应用与趋势时间:2023-05-3111:44:55
摘要:在数字化浪潮的驱动下,人工智能由理论逐渐走向应用与实践,并带动了工业智能制造的飞速发展。基于人工智能的时代背景,本文阐述了我国智能制造的发展现状,结合国际标准介绍了参考模型RAMI4.0与生态系统SMS,并分析了我国在该领域面临的困境。此外,本文结合RFID技术和Agent技术分析了人工智能在工业智能制造领域的应用,并对未来发展提出展望。
关键词:智能制造;人工智能;参考模型;RFID技术;Agent技术
随着时代的发展,人工智能技术在我国的关注度逐年提高,其热门的衍生应用包括工业智能制造与人工智能的融合。制造智能化的过程不仅涉及技术且涉及企业组织流程的重构和商业模式的创新,甚至能够影响企业战略发展的进程。由于人工智能技术的融合,智能制造在我国也呈现出广阔的发展前景。
1人工智能时代的语境分析
1.1人工智能的发展现状
智能制造最初被定义为机器人应用制造软件系统技术、集成系统工程以及机器人视觉等技术,实行批量生产的系统性过程。如今,中国AI企业超过1000家,已成为人工智能发展最快的国家之一。到2020年,中国人工智能市场规模将超过700亿元。然而,我国仍处于人工智能发展的初级阶段,在诸多关键指标上与美国还存在较大差距。我国的工业制造企业更青睐技术相对成熟及应用场景更清晰的领域,而对基础层关注较少。人工智能主要产业链有三个层面:基础层,即芯片、算法框架等;技术层,即计算机视觉、自然语义理解、语音识别、机器学习等领域;应用层,指垂直产业或精确场景的领域。其中企业价值链主要分布在应用层和技术层。
1.2人工智能的技术布局
AI技术的布局由核心技术研发、产业化及基础资源公共服务平台三部分构成。其中,核心技术的研发及产业化项目大多有三个技术层面上的要求。(1)人工智能的深度学习和类脑智能的基本理论;(2)芯片、传感器、操作系统、存储系统等基础软件和硬件的人工智能共性技术;(3)以AI为基础的计算机视听感知、生物识别、人机交互、自然语言理解等人工智能重要技术[1]。
1.3人工智能在重点领域的智能应用
为加快AI技术的产业化进程,AI先后被各国在多个重要领域试点推广,在第一时间转化为生产力,如家庭、制造、教育、环境等领域。制造业领域,使用人工智能的方案主要分为产品、产品和服务、业务运营管理、供应链和业务模型验证五个领域。AI在工业领域的应用从智能制造转移到生产服务和供应链管理。智能化生产领域,计算机视觉技术的发展促进了人工智能在质量监控和缺陷管理中的应用,未来越来越多的应用场景将应用到AI技术。例如自动化生产工厂、订单管理、自动调度等。商业模型决策领域,客户体验和成本结构是AI在制造商业模型决策中的主要方向。众多公司计划使用人工智能来准确预测客户需求、开发智能产品和服务,采用定价和计费方式,为客户提供高效,完善的服务体验。
2智能制造发展现状
截至2019年2月,人工智能企业广泛分布在18个应用领域,上述两个领域企业数占比最高,分别达到15.7%和10.5%[2]。基于人工智能在制造业的发展,国际电工委员会提出十余种描述不同制造技术系统特征和结构的通用参考模型。其中工业4.0参考体系结构模型Rami4.0和智能制造生态系统模型SME两种模型最具代表性。
2.1工业4.0参考架构模型
RAMI4.0工业4.0参考架构模型利用三维模型描述了智能制造的关键因素,从产品的全生命周期与价值链、层级结构和架构等级进行分析,帮助智能制造企业进行自我定位。该模型第一维度是产品生命周期和价值链。产品完整的生命周期从流程规划开始,到产品设计、生产仿真测试,接着正式投入制造,最后到销售和服务,进入市场。[3]第二维度是层级结构,除工厂及其中的设备,在原有框架中增加了“产品”和“互联世界”两层。第三维度是最重要的创新部分,即“功能级”维度,用于对以上两个角度进行信息建模,其主要分为六层:业务层、功能层、信息层、通信层、集成层、资产层。各层功能相对独立,相邻层间联通,“下层”对上层提供接口,上层可以获得下层的服务[3]。
2.2智能制造生态系统SMS
与RAMI4.0相比,智能制造生态系统SMS着重分析制造网络中各组分间的联系,分为三个维度,不同维度的生命周期相互“独立”[4]。在产品维度,其生命周期从设计阶段开始,经过工艺规划和设计、制造、直到最后退役回收作为结束,该“维度”涉及整个周期中的信息流和控制;在生产系统维度,其生命周期专注于生产系统的设计、建设仿真、系统调试、运行维护和最终的退役;在业务维度,其生命周期着重于在采购和配送环节上调节供需关系的平衡。各维度都在制造金字塔中发挥一定的作用且强调了制造生态系统中软件的集成[5],有助于制造流程的调控和战略决策的优化。以上概念和网络关系结合在一起形成完整的智能制造生态系统。基于标准制造的SMS系统可以自由方便地进行数据的交换,进而优化产品更新的速度和生产系统的供应效率,同时改善车间安全和加强产业的可持续性。
2.3我国智能制造尚存的问题
2.3.1核心技术的归属芯片技术包括集成电路和半导体产品两大主要方面,我国在世界芯片市场的占比极为低下。如今中国技术基础的落后也在一定程度上表现鲜明,这同时表明我国的提升空间。比如我国集成电路的自给率从2010年的4.5%到2017年的11.2%,我国集成电路的自给率在近年有着难以忽视的进步,与此同时技术的落后也彰显出来。以我国核心芯片占有率为例,能够替代的国产芯片寥寥无几,多数能够发挥作用的属于低端产品。包括工业机器人等工业智能化的堡垒相较于其他国家都不可及,其核心技术及市场分布主要是集中在日本、德国等技术大国。2.3.2产品转化能力的弱化如今,我国智能制造的设计能力被困箍在实验室中,商品化、产品化的能力过弱,缺少专业化的供给输出机构。这其中也有智能制造本身特性所带来的对专业性机构(即产品转化能力)的渴求,首先智能制造企业对其“供应链”有着极为严苛的需求,从设计产品,到线上线下店铺的经营,每个环节都必不可少。其次,智能制造的“试错成本”和投入高昂,加上无法避免的“长制造”周期,针对这一缺陷,专业性的输出产品化机构能够在很大程度上减少经济损耗。
2.3.3核心人才培养环节的缺失AI技术的融合发展给予行业新的活力,但同时提高了对人才的要求,能为两者的融合发展发挥个人作用和贡献的人才在数量上相对较少,使得行业发展受到了限制。以工业机器人为例,人才的培养主要集中在以下三类:一是制造阶段的技术人才需求,即对应产品的基本制造和工厂组装;二是系统加成阶段的技术人才需求,即对应集成电路、机器人的安装调试等工作;三是企业应用阶段的技术人才需求,即处理机器人的专业维护以及操作编程等工作[6]。
3人工智能对智能制造的影响
3.1RFID技术在智能制造上的应用
智能传感技术是智能制造领域的核心技术之一,RFID是其中一种射频识别技术,主要包括读写器、电子标签、天线以及数据管理系统[7]。在磁场范围内,天线对电子标签发送无线射频信号,电子标签接收信号后发送对应信息,而读写器的作用是读取电子标签反馈的信息,提交到数据管理系统进行处理,从而实现信息的无接触传递,完成对标签信息的识别。如RFID和AI结合在汽车生产流水线的应用:输送线将汽车的发动机配送到特定的位置时,控制系统利用电子标签识别汽车的型号并配备相应物料,同时确定发动机的摆放位置、方向是否正确。装配物料后,控制系统可以根据读取到的型号,通知电动拧紧机自动寻找位置进行螺栓拧紧,并在工作完成后将该发动机运至下一道的生产工序中。
3.2Agent技术在智能制造上的应用
Agent理念源于分布式人工智能,可理解为驻留在特定环境下,能自主感知周围环境并采取行动、灵活执行接受的命令以满足预设目标的计算机系统,具有自治性、主动性、反应性、面向目标性以及交互协作性等特点。Agent系统主要由推理机、知识库/数据库、通讯模块及功能模块组成[6]。其中推理机主要负责接受通讯模块的信息,结合知识库或数据库中的信息进行分析和推导,并对功能模块下达相应任务,功能模块包含计划、监控、决策和协作等功能,其基础结构如图1所示。Agent系统可以应用在手机制造当中,如:参与新型手机的开发和设计、操控手机制作和组装的过程、对手机制造流水线进行维护。理论上,Agent技术可应用于制造的各阶段,需要考虑如何对系统进行建模,使用Agent的总量,Agent间连接方式,多Agent情况下的配置方案等问题。
4人工智能与智能制造的未来趋势
4.1对智能制造行业的痛点针对性
针对目前市场上的智能制造行业出现的痛点,我们可以通过AI技术提高产品质量及制作效率。部分服装制造公司经过智能改造后,效率大大提升,提高了产能1.25倍左右;其他诸如高精密仪器制造公司完成的智能化改造的生产线也大大提升,一线工人数量减少了近70%,效率和产出提升超过30%[8]。伴随着智能制造的痛点针对性带来的目的性更为明确,直接带动了未来我国智能制造业的规模兴起。
4.2大数据技术将成为二者融合发展的核心技术
在数据驱动行业的过程中,安全性可以成为业务决策的重要基础。诸如行业关键数据和公司核心技术专利之类的数字资产的价值正在加速增长。最小化数据安全风险,提高系统安全性和数据安全性是数字转换和业务升级的更重要指标[9]。
4.3产品发展的服务化增强以及范围广泛化
新的商业模式和新模式正迅速出现在测试城市中。随着HaierCosmo,ShugenInternet和AerospaceCloudNetwork提供的工业Internet平台的快速发展。在Siasun的“机器人智能工厂”,公司的效率提高了一倍。该工厂的新模型可以在短短三个月内扩展,能有效提高高端本地机器人的效率。
5小结
自1956年起,人工智能技术为生活的各个方面带来新的活力,随着时代的进步,现出现的痛点将会随着智能制造与人工智能技术的适度融合以及共同发展逐步被解决,但当下的AI技术大多停留在理论研究阶段。而智能制造更侧重技术问题,应广泛应用在生活各方面。在工业方面,寻求新的转机、追求智能化的风向已然出现。我国在人工智能技术的诸多领域与其他国家相比还存在劣势,在基础的理论研究、核心技术算法、关键设备、集成电路和产品输出领域,研究的优秀成果并不多,人才数量和技术无法跟上发展的迫切要求。但中国也有其他国家不具备的优势,如大量的数据以及基础设施:并且官方先后部署了智能制造等国家重点研发计划重点专项、《"互联网+"人工智能三年行动实施方案》和《新一代人工智能发展规划》[8]。从指导思想、战略目标、重点任务和保障措施、科技研发、应用推广、产业发展等方面看,我国AI发展将具有先发优势。
参考文献:
[1]谢永峰.人工智能时代工业机器人的发展趋势[J].中国科技纵横,2019(4):63-64.
[2]王宝鑫.智能制造时代的工业机器人发展新趋势分析[J].发明与创新(职业教育),2019(1):66-67.
[3]欧阳劲松,刘丹,汪烁,等.德国工业4.0参考架构模型与我国智能制造技术体系的思考[J].自动化博览,2016,(3):62-65
[4]张力平.面向未来的智能工厂[J].电信快报,2017(3):5.
[5]王春喜,王成城,汪烁.智能制造参考模型对比研究[J].仪器仪表标准化与计量,2017(4):1-7.
[6]胡强,向凤红,张勇,等.基于Agent技术的智能制造系统综述[J].昆明理工大学学报(自然科学版),2005(30):419-422.
[7]郭桓宇,侯悦民,李康.RFID定位方法及其在智能制造中的应用[J].电子科技,2017(4).
[8]荣伟.工业机器人及智能制造发展现状和发展趋势[J].时代农机,2017(10):46.
[9]李末军.智能制造领域研究现状及未来发展探讨[J].冶金丛刊,2017(3):26.
作者:丁芷晴张雪宁陈华玲单位:上海大学