人工智能如何在物流领域应用我们梳理了14个环节的案例
资料图
从行业作业性质看,人工智能在物流行业应用前景可观,首先有丰富的场景,其次有大量重复的劳动,再次物流作业的高效离不开数据规划与决策,而这些因素正是和人工智能应用相匹配的。而今,我们也不断看到领先企业在人工智能方面的研发与应用。随着国家发力推进新基建,人工智能的爆发前景可期。那么,具体到物流领域,人工智能究竟有哪些落地场景?本文从仓(园区管理、仓储管理)-干(无人驾驶、车辆管理)-配(分单、调度、配送),以及其中涉及的装卸、搬运、盘点、客服等环节梳理如下:
01
表单处理
物流行业有许多表单、文档数据,人工智能技术中的计算机视觉和深度学习就可以在这一场景中应用。
比如腾讯云的OCR技术:通过计算机视觉结构化识别表单内容,能够快速便捷地完成纸质报表单据的电子化,大幅避免人工输单;对文档扫描件或者图片中的印章进行位置检测,内容提取,实现自动化一致性比对;独有的手写文字识别技术可以精准识别出手写文字、数字、证件号码、日期等,实现带有手写文字的扫描件或图片数字化处理。
目前,中外运、顺丰等均有与腾讯云合作应用该技术。以中外运的北京奔驰进口报关业务为例。因为零部件的单据非常复杂,一个零部件涉及的单据可能100多页,以往一页一页的录,四个人要花一周时间,如今应用了人工智能技术,一个人40分钟就可以解决,且准确率极高。
02
园区管理
表单处理完,货物进入园区。随着IOT、5G等技术的应用,人工智能在园区管理上同样可以发挥重要作用,比如监测、采集场院内车辆信息,提供车辆装载率、车辆调度、运力监测和场地人员能效等基础数据,优化运力成本;再比如对人员工作情况进行管理,规避员工不规范甚至危险的操作。
2018年,菜鸟网络曾宣布全面启动物流IoT(物联网)战略,并向全行业发布了全球首个基于物流IoT的“未来园区”。这是IoT、边缘计算和人工智能等前沿技术第一次在物流领域的大规模应用,“未来园区”可以识别每一个烟头、监控每一个井盖,实时保障园区安全、高效运转。
2019年,京东物流披露,其已建成的5G智能园区,通过5G+高清摄像头,不仅可以实现人员的定位管理,还可以实时感知仓内生产区拥挤程度,及时进行资源优化调度;5G与IIoT的结合,帮助对园区内的人员、资源、设备进行管理与协同;5G还帮助园区智能识别车辆,并智能导引货车前往系统推荐的月台进行作业,让园区内的车辆更加高效有序。这中间同样是以人工智能技术为底层依托。
03
搬运
从园区进入仓内,其中必然要发生的一个动作就是装卸。货物识别+机器人与自动化分拣则可大大降低人类的劳动量。举例来说,AMR(AutomaticMobileRobot)即自主移动机器人,是目前发展和应用较快的技术。与传统AGV不同的是,AMR的运行不需要地面二维码、磁条等预设装置,SLAM系统定位导航为其装上了“一双眼睛”,让其可以实现高效的搬运和拣货作业。
以AMR商业化项目落地领先的灵动科技为例,其率先将计算机视觉技术与多传感器输入相结合,让其机器人实现了真正的视觉自主导航。据介绍,灵动视觉AMR能够帮助企业实现人效提升2倍以上、拣货成本下降超过30%的“降本增效”成果。
04
装卸
2019年,顺丰对外发布的“慧眼神瞳”一度备受关注,这也是顺丰科技人工智能计算机视觉成果在业务场景的落地突破。其实简单地说,“慧眼神瞳”就是利用各种视频和图像进行自动化分析的人工智能系统。比如中转场的装卸口环节,将摄像机部署在装卸口,通过分析车辆到离卡行为、车牌识别、车辆装载率、人员工作能效等基础数据,就可以刻画出装卸口作业场景的完整生产要素,将所有作业数据线上化,持续优化各项运营成本,优化运转效率。
同样,与华为云合作的德邦快递,也有类似技术应用。比如,可以通过AI来监控快递分拣的场地、场景,抓取对货物搬运不规范的情况,从而让业务员或者理货员操作的规范程度大大提高。
如果说上述场景的应用是在“助人”,无人叉车的应用则是在“替人”。2018年,物流指闻曾见证:德邦快递与智久共同宣布,作为德邦快递无人智慧物流的发展探索,首款无人叉车将应用于德邦快递浦东分拨中心。当时,智久机器人相关负责人介绍说,改进后的无人叉车采用“无人叉车+智能托盘+多层货架+JDS(调度系统)+LMS(库位管理系统)”的形式进行实地操作、多机调度、多车协同,同时通过RFID及传感器等进行智能路径规划。经测试新解决方案可使仓内成本下降30%,total毛利润增加7%。
05
盘点
库存盘点也是仓储管理的重要一环。如何保证盘点的准确高效?人工智能同样可以提供助力。
一汽物流就与百度云合作,运用无人机航拍取代人工盘点。简单来说,所谓无人机取代人工,就是无人机通过获取图像数据,基于视觉识别技术模型进行自动分析,并快速识别子库区,及库内汽车数量、车辆所在的车位号、与库存系统进行实时比对,如果实际数量与库存数量不吻合,将对异常数据进行警示,实现库存自动盘点。经过多次的数据训练,可将无人机准确识别率提升至100%。
此外,无人机还有报警、提示等功能,当实拍图与从LVCS获取车辆位置信息形成的图示有差异时,将会第一时间提示工作人员,查漏补缺,避免产生重大损失。
06
仓储系统
在仓内投入大量的机器人等设备,就需要一个系统进行管理,就像身体需要大脑。
旷视科技就曾发布AIoT操作系统——河图(HETU)。据介绍,河图是旷视科技推出的首个智能机器人网络协同大脑是一套致力于机器人与物流、制造业务快速集成,一站式解决规划、仿真、实施、运营全流程的操作系统。旷视河图与机器人硬件设备相结合,不仅体现了河图对整个作业节奏的控制、连接运维等能力,实现了人、设备、订单、空间、货的高效协同。
2019年,极智嘉(Geek+)也曾宣布,推出实体智慧物流版的aPaaS(applicationplatformasaservice)系统——“极智云脑”。极智云脑能够让客户轻松重构其解决方案,并在云端高效部署,自由调度机器人和各种设备,实现高度灵活的智能化系统,极大降低了智慧物流的部署门槛,让AI触手可得。
而针对无人仓内容物流机器人数量多、设备模型、接口、技术特点驳杂繁多,设备巡检和及时维护工作量大,京东物流也推出了X仓储大脑。据介绍,X仓储大脑自2018年8月投入应用,在人工智能等技术的助力下,提升规划、运营监控及维保效率高达80%,降低人力成本高达50%。
07
无人驾驶
运输是物流的重要一环,人工智能在该环节的应用也表现在多个方面,比如无人驾驶、车队管理、智能副驾等等。以最熟知的无人驾驶为例,要实现无人驾驶,要依靠三个环节感知、处理以及执行,这均离不开人工智能。
此前不久,自动驾驶货运初创企业图森未来(TuSimple)宣布,获得美国卡车制造商Navistar(纳威斯达)投资,双方将共同研发L4级无人驾驶卡车。图森未来表示,争取在2024年前量产无人驾驶卡车。目前,图森未来拥有一支超过50台卡车的无人驾驶车队,并服务于包括UPS(美国联合包裹)、McLane(麦克莱恩)在内的18位客户。2017年6月,图森未来获准在加州展开自动驾驶汽车路测。
而除了图森未来,赢彻、智加、驭势等均在研发相关技术,包括亚马逊、京东等多家企业也尝试提出了各种解决方案,并已经有一些商用测试。
当然,相比于公路运输,封闭的港口园区落地或更快速。2018年4月3日,图森未来就对外发布全球首个无人集卡车队港区内测试视频,宣布进入港内集装箱卡车无人驾驶运输市场。
08
智能副驾
看完“无人”,再说“有人”。驾驶从来不是一份安全的工作,对于长时间驾驶的司机尤甚,而计算机视觉则给了车辆发现危险的“眼睛”。
物流指闻曾见证过中寰卫星导航通信有限公司发布智能副驾产品。其智能副驾依托车载智能硬件T-Box、ADAS和DMS设备,通过传感器数据融合和智能算法,结合ADAS地图等位置服务,从“人、车、路”三方面建立协同的安全管理机制,及时感知道路运输过程中的不安全因素,并通过监控管理平台实时呈现、预警,以安全共管云平台方案为商用车安全管理提供工具、手段和依据,降低风险、减少隐患,以实时在线的虚拟“副驾驶”。当司机有风险系数不大的行为时,设备将启动报警,并上报平台,形成日报月报,提供给车主甚至保险公司。如果出现重大风险,立即启动本地报警,如果本地报警没有引起司机重视,则引入管理者介入;如果管理者依然还没有解决,则会启动亲情电话,让司机的妻子或者儿子在线提醒。
09
装载
除了安全,运输另外一个关注点在于装载率,如何能装更多的货?基于大数据积累和AI深度学习算法,G7数字货舱就可以实时感知货物量方,自动记录量方变化曲线,时刻知晓装载率。通过AI摄像头和高精度传感器对厢内货物进行图像三维建模,保证货物运输状态全程可视化,并智能管控装车过程和装车进度。
其发布智能挂车“数字货舱”V9版,还搭载了业界首创的“量方”功能。“量方”功能,采用了传感器+AI算法,对舱内货物进行高精度扫描+三维图像建模,最终自动计算出货舱容积占用百分比,实现精准装载。不仅如此,货舱在装载过程中“哪里空”、“哪里满”,都将以全3D方式呈现。通过对货舱空间更合理地利用,时刻保证车辆的真正满载。
除上述应用外,资料显示,在货车、轮船和飞机上安装与AI程序相连的传感器,也可以大大改善车队管理。这些程序可以监控油耗,针对减少石油和天然气的使用提供方法建议,以及在昂贵且耗时的重大故障发生之前主动提供维修意见。
10
无人机配送
配送是货物流动过程的最后环节,也是物流链条上人力资源投入最重的环节。目前,在这一环节,常见的科技创新是无人机与无人车配送。
亚马逊于2013年提出的PrimeAir业务,将无人机引入物流领域。国内顺丰、京东、中通等企业也纷纷跟进。2019年5月,中外运敦豪与亿航智能签署战略合作协议,并发布了国内首个全自动智能无人机物流解决方案。当时,物流指闻在现场也见识了无人机+智能包裹柜的创新应用。
当时应用的是亿航天鹰(Falcon)物流无人机进行派送。该机型采用4轴8桨多旋翼结构、全备份多冗余设计、智能安全飞控算法,可实现垂直起降、视觉识别精准定位、智能规划航线、全自动飞行、实时联网调度,最大载重5公斤的快递包裹,可将单程派送时间从40分钟大幅缩短至8分钟。作为此次发布的全自动智能无人机物流解决方案的一部分,专门开发的DHL智能柜能够与无人机高度自动协作、无缝接驳,并可以实现无人机的自动起飞、降落,挂仓的自动装卸载,快件的自动分类和基于身份比对以及实名认证的快件存取等一系列智能功能。
11
无人车配送
无人配送车是应用在快递快运配送与即时物流配送中低速自动驾驶无人车,其核心技术架构与汽车自动驾驶系统基本一致。在新闻当中,我们也时常听说京东、菜鸟、美团、苏宁等无人配送车在小区校园等封闭区域配送、快递员接驳等多种场景中应用和测试。
比如,2016年就有一款名为菜鸟小G的自动送包裹的机器人在阿里西溪园区亮相。2019年8月,苏宁物流对外公开5G无人配送车的路测实况,这也是5G技术应用从实验阶段走向商业化应用。
研发方面,代表企业如九号机器人。2018年,其与美团进行了合作,并联合发布了Segway配送机器人S1。这是九号机器人在智能服务机器人领域的“试水”。在一年的时间里,S1代产品已经运行了5000+公里,积累了大量的运营数据。而后,九号机器人又新发布了Segway配送机器人S2与Segway室外配送机器人X1。
12
调度
文章开头说,数据是提高物流效率的重要工具,一个体现就是以运筹学等为代表的工具进行调度与规划。而这方面,算力+算法+数据“喂养”的人工智能也能大展身手:借助人工智能技术,实现物流运配环节车辆、人员、设备等作业资源的协调统一,使作业效率最大化。
以外卖为例,资料显示:美团实时智能配送系统是全球最大规模、高复杂度的多人多点实时智能配送调度系统。能够基于海量数据和人工智能算法,在消费者、骑手、商家三者中实现最优匹配,同时需要考虑是否顺路、天气如何、路况如何、消费者预计送达时间、商家出餐时间等复杂因素,实现30分钟左右准时送达。
而,饿了么的智能调度系统方舟,通过使用深层次神经网络与多场景智能适配分担,引入“大商圈”概念,为平高峰不同场景建立了不同的适配模型。得益于深度学习与多场景人工智能适配分单,该系统能实时感知供需、天气等压力变化,对预计送达时间,商户出餐时间、商圈未来订单负载等做出精准预测,用户的订单将会在最优决策下被匹配最佳路径,保证配送效率和体验。
13
分单
看完外卖的例子,再看一个快递的例子。分单是快递的重要一个环节。人工智能的应用,使其实现了从人工分单到人工智能分单的转变。
以送往北京的包裹为例,过去包裹到达北京的转运中心之后,需要专门的人工对包裹进行区分,哪些去往海淀区,哪些去往东城区,会被写上不同的编号。到达网点之后要经过再次分拨,到达配送站之后,快递员之间需要第三次分拨。这些分单工作人员,要达到熟练至少要经过半年的训练,一个转运中心大则100多号人三班倒工作,小的也需要几十人,还会经常发生错误,出现类似去往北京的包裹意外来到了深圳这样的问题,严重影响派送效率和消费者体验。
菜鸟网络通过人工智能技术,大规模的机器学习,处理海量数据,实现智能分单。包裹发出时,就会对包裹要去往的网点以及快递员做出精准的对应,并在面单上标识出编号,无需再由人工手写分单。包裹到达转运中心、网点以及配送站之后,工作人员根据编号即可判断包裹的分配,分单准确率达到99.99%,效率也得到提高。
14
客服
以言语理解为核心的认知智能研究也是人工智能领域的核心研究之一,目标是让机器具备处理海量语音内容和认识理解自然口语的能力,并在此基础上实现自然的人机交互。在日常生活中,小度、小爱等都是代表案例。而在物流快递业当中,其可以应用的场景之一是客服。客服不容易,人员流失率也高,有报道称客服岗每年离职率高达50%,为此巨头都在打造智能客服系统。“三通一达”、顺丰和美团、饿了么为主的头部公司均已上线了语音和文字智能客服,其服务半径辐射80%以上终端消费者。菜鸟也曾发布语音助手这一产品。
以圆通速递为例,圆通速递在2017年开始相继在官网、微信等渠道上线国内版智能在线机器人客服,代替或协助人工在线客服完成客户服务工作,一定程度上解决了客服用工成本高、服务时间难以满足客户需求的问题。相关资料显示,圆通速递高峰期每日电话呼入量超200万通,需要5000人工坐席处理,在配备智能语音客服机器人后,高峰期90%以上电话呼入可通过语音机器人处理,日均服务量超30万,每秒可处理并发呼入量超1万次,在控制成本的前提下,极大程度上释放了人工效率。
……
除了上述案例,人工智能在路径规划、智能选址、智能路由、商品布局等等方面均可以应用,篇幅所限不再详述。另外值得一提的是,此前科技部公布的最新一批国家人工智能开放创新平台名单,宣布依托京东集团建设国家新一代智能供应链人工智能开放创新平台,领衔智能供应链国家战略发展。可见国家层面的重视。
当然,技术应用要考虑包括投入与产出等等方方面面的问题。当下,人工智能在物流行业应用也不一定成熟。然而未来的物流一定是科技的物流,下一个时代一定是人工智能的时代,当下我们可以不应用,却不可以不看到这样的趋势。
来源/物流指闻(ID:wuliuzhiwen)
作者/叶帅返回搜狐,查看更多
生成式人工智能会塑造信息茧房复旦教授揭示如何让危机“已知”
【编者按】
2023年5月27日,是复旦大学118周年校庆。“校庆种种活动,以促进科学研究为中心。”从1954年校庆前夕时任校长陈望道提出这一主张开始,在校庆期间举办科学报告会,成为复旦的重要学术传统之一。
赓续学术传统,百年弦歌不绝。5月9日起,来自文社理工医各学科的50多位复旦名师将陆续带来学术演讲。
“2023相辉校庆系列学术报告”第十场,由复旦大学国家智能评价与治理实验基地副主任、大数据研究院教授赵星,与浙江大学公共管理学院信息资源管理系“百人计划”研究员蒋卓人于线上线下共话“生成式人工智能的挑战与治理”。
活动现场。本文均为复旦大学供图
从2011年苹果手机首次推出的Siri语音助手,到今年包揽奥斯卡七大奖项的电影《瞬息全宇宙》,生成式人工智能早已融入人类生活。当下,ChatGPT类工具进一步引爆全球人工智能热潮,赵星和蒋卓人携手带来一场贯穿生成式人工智能前世、今生和未来的学术盛宴,解析生成式人工智能带来的多重挑战,启发我们对其治理问题的思考。
生成式人工智能的前世今生
金色的夕阳被乌云遮住,小草在风雨中摇曳,水珠在叶片上滚动……蒋卓人首先播放了一段名为“Summershowers”(《夏日阵雨》)的视频。这段充满灵动色彩和生动风景的视频,却完全是由生成式人工智能模型创作的。
何为生成式人工智能?
目前,生成式人工智能还没有统一的定义,一般可以理解为一种能够根据提示生成文本、图像或其他媒体信息的人工智能系统。
“这个技术不是像魔法一样凭空出现的,而是有着悠久的历史渊源。”蒋卓人强调。在生成式人工智能90多年的发展历程中,不乏人类智慧闪耀的时刻。
1932年,法国工程师GeorgesArtsrouni创造了装置“mechanicalbrain”(机器大脑)。它通过查询多功能词典完成翻译,输入、输出都是一条纸带。蒋卓人认为,虽然它和今天的机器翻译不同,但它完全符合今天对生成式人工智能的定义,即人类输入一段内容,机器产生一段新的内容。
在20世纪中,麻省理工学院创造了最早的生成式人工智能之一Eliza,JudeaPeal(朱迪亚·珀尔)引入了贝叶斯网络因果分析概念,YannLecun(杨立昆)等展示了如何利用卷积神经网络来识别图像……
2006年,华裔计算机科学家李飞飞着手构建数据库ImageNet。该数据库中有超过1400万张手工标注的图片,包含超过2万个类别。“正是有了这样一个庞大数据库的支撑,深度学习才能得以兴起。所以我们总说,好的科研品位,加上持续不断的努力,就能成就一段好的学术生涯。”蒋卓人评价。
ChatGPT何以成为明星产品?
1750亿参数量,3000亿训练单词数,这是ChatGPT的数据。2022年发布后,ChatGPT在短短两个月内吸引了超过1亿的用户,成为有史以来用户增长最快的应用。
蒋卓人认为,要理解ChatGPT,就要理解它的关键技术:大模型基础训练、指令微调、人类反馈强化学习。
“大模型的全称是大型语言模型,”蒋卓人讲道,“它是一种概率模型,能告诉你一个词出现的概率是多少。”
蒋卓人教授
比如,在Thestudentsopenedtheir这句英文后面,可以出现books、laptops、exams、minds等词。“但它们出现的概率是不一样的。一个好的语言模型,能精准地预测下一个词是什么。”蒋卓人说。
随着语言模型的发展,它具备了良好的语言理解能力,但如何让其与人类建立对话呢?
研究者们提出的办法是指令微调。通过引入思维链以及代码生成,大模型的推理能力得以提升。“这种能力对于大模型来说至关重要,使其可以在开放领域有很好的表现。”蒋卓人评价。
至此,大模型初步具备了回答人们提出的任何指令的可能,但回答的质量却参差不齐,如何让大模型持续性地输出高质量回答呢?
研究者们又为此设计了一套基于人类反馈的强化学习方法,即通过大模型的微调、奖励函数的训练、以及大规模强化学习的优化来确保高质量回答的生成。“OpenAI就是使用这种方法,大幅度降低了数据集构建成本。”蒋卓人说。
生成式人工智能:新智能面临新挑战
面对生成式人工智能带来的挑战,赵星从资源、技术、应用与社会伦理四个维度进行解读。
从资源维度来看,生成式人工智能需要高质量的数据,而中文世界的数据质量弱于英文。赵星认为,即使有很强大的翻译能力,类ChatGPT工具的中文处理效果也显著弱于英文,核心的原因之一是投喂的中文数据质量较差。另外,硬件技术也是支撑我国人工智能产业高速发展的关键要素。
赵星教授
“科技界曾将人工智能的应用比作炼金术,”赵星打趣道,“人们将数据一股脑往模型里面扔,至于能否炼出有价值的东西,炼出的是什么,却没有明确的预期。”很明显,在技术层面上生成式人工智能存在内生的不确定性。
“当我们准备向全社会投放一种通用性工具,却不能明确它的科学原理是什么,就一定会有内生性的风险。”人工智能风险中最核心的一点在于其结果的不可承受性。“我们很少在治理问题上处于如此无力的状态,”赵星说。在应用层面上,生成式人工智能产业发展的确定性与风险治理的不确定性将长期存在。
而在社会方面,生成式人工智能不仅深陷知识产权与信息泄露问题,或也将塑造真正的信息茧房。“当生成式人工智能24小时都陪伴你身边,潜移默化地,你会误认为一切都是你自己的决定。”
赵星警示,“我们面对的,是一个会在短时间内崛起,或将引起严重后果且后果未知的事物。”
内生安全治理:让危机“已知”
面对生成式人工智能这个新对手,赵星认为不能沿用传统治理“被动回应外在威胁”的方法。相反,他的团队正在着眼于借助复旦大学大数据研究院院长邬江兴院士提出的“内生安全理论”,构建生成式人工智能治理的新模型。
“我们能否在未知的风险爆发之前找到抵抗它的办法?这是生成式人工智能内生安全治理要解决的问题。”赵星说,“我们需要在人工智能风险来临前,给人类社会点亮一棵新的技能树:应对人工智能非传统安全问题的能力。”
生成式人工智能的治理模型涵盖了三个层面。最外层是法律的监督与规约,中间层是管理层的敏捷治理,尤为强调的最内层是教育。在法律和政府治理之前,高等院校应和所有的教育机构一起,完成针对全人类的社会性融合人工智能的教育和训练。
“我们应当在每一位年轻人的成长过程中,让他们学会如何与人工智能良好共处与规避‘信息茧房’,以及如何去做一个智能社会中的‘好人’。”
内生安全治理模型的原理,是基于群体智能将个体“未知的未知”转化为群体“已知的未知”,从而进一步将其转化为“已知的已知”。
“当我们知道可能的风险是什么、产生在何处,生成式人工智能治理便有机会转化为常规性安全问题,我们就能尝试寻求到治理闭环的实现。”赵星说,“然而这仍需要理论、实践上长期的探索。”
赵星团队也开始探索生成式人工智能在科学评价中的应用,创新构建了“客观数据、智能算法、专家评议”三者和谐共生的“数智人”评价与治理新范式。近期团队也在开展利用类ChatGPT工具进行智能评价系统构建的探索实验。
“初步结果显示,虽然现阶段的生成式人工智能远没到能胜任学术评价这样的严肃评价工作的程度,”赵星表示,“但生成式人工智能表现出的“跨学科”评价能力和“涌现”推断预测潜力值得高度关注。”
人工智能在司法领域的应用
短短50年,司法(法律)人工智能的飞速发展令人惊叹,特别是近几年,人工智能大有取代法律人的趋势。在国外,人工智能应用于司法领域的例证可追溯至20世纪70年代,美国等发达国家研发了基于人工智能技术的法律推理系统、法律模拟分析系统、专家系统运用于司法实践。
我国最初将人工智能应用于司法是在20世纪80年代,由朱华荣、肖开权主持建立了盗窃罪量刑数学模型;1993年,赵廷光教授开发了实用刑法专家系统,具有检索、咨询刑法知识和对刑事个案进行推理判断、定性量刑的功能。
时至今日,随着我国智慧法院、智慧检务等重点工程的全面铺开,最高人民法院在2018年推出了“智慧法院导航系统”和“类案智能推送系统”,还有北京的“睿法官”智能研判系统、上海的“206”刑事案件智能辅助办案系统、河北的“智审1.0”审判辅助系统以及其他地方法院推出的人工智能产品,为法官审理案件提供了支持,全面提高了司法效率。
正如我们所看到的,司法人工智能一路走来,技术不断革新,愈发突破人类的认知极限。确实,人工智能在司法领域的应用前景十分广阔,很多学者甚至大胆猜测随着人工智能技术革命性的发展,法律人也将逐渐被取代。然而,尽管这一新兴事物激发了我们对未来的无限畅想,我们仍应保持清醒,在促进其发展的同时守住一些底线,不要抱有盲目的期待和开展毫无方向的研究,要在法律原则和伦理限度内客观评估、审慎使用。下文我们将对此展开详细的论述。
人工智能在司法领域的应用现状
(一)法律问答、信息处理数据化
司法人工智能在法律检索、信息处理上呈现电子化、数据化的趋势,并且这一趋势将如日中天地延续下去。如法律问答、诉前咨询、电子卷宗生成、远程立案等都属于在线信息处理技术,在此期间运用的人工智能没有自主思考过程,仍然由人进行实质化操作,其核心在于由传统的线下办案转为线上模式,为当事人及办案人员提供便利。其中法律问答机器人似乎与我们脑海中想象的人工智能更加接近,通过检索在机器人系统中提前设置好的固定提问模式来获取所需信息,其本身无法根据不同疑难问题产生额外答案,但对于日常一般案件所需还是可以满足的。
再如卷宗OCR识别、庭审语音识别、证据识别等属于感知智能技术,相较于传统的扫描、录音等技术有很大提升。以庭审语音识别为例,科大讯飞的灵犀语音助手特别针对中文口音问题进行了识别优化,语音识别率已能达到90%以上。与书记员在庭审中手动输入文字材料相比,庭审语音识别技术大大提高了庭审记录效率,经对比测试,庭审时间平均缩短20%至30%,复杂庭审时间缩短超过50%,庭审笔录的完整度达到100%。此外,这一技术的推广能够解决运用录音、录像技术记录庭审过程的最大弊端,即我国的方言问题,这就避免了后期因录音识别难度大所造成的理解困难。其次,识别转化后的电子书面材料与录音、录像这一载体相比,查阅起来也更加有针对性,更加方便快捷,正在起到解放书记员的作用。
(二)文书制作、类案推送自动化
在文书制作与类案推送上,司法人工智能发挥的作用比基础的信息处理就多了一些智能化的因素。对于大多数简单案件,如危险驾驶、小额借贷纠纷、政府信息公开等可以简化说理并且能够使用要素化、格式化裁判文书的案件,裁判文书自动生成系统能够通过OCR、语义分析等技术,自动识别并提取当事人信息、诉讼请求、案件事实等关键内容,按照相应的模板一键生成简式裁判文书。对于其他制式法律文书的生成更是不在话下,还能够自动纠错,因而大大缩短了起草文书的时间,减轻了法官的工作量,帮助法官提高办案质效。
例如河北高院研发的“智慧审判支持”系统,就包含这样的文书制作功能,于2016年7月上线,在河北194个法院应用,截至2017年6月,短短不到一年的时间共处理案件11万件,生成78万份文书。以此积累从而建立自己的案例信息库,通过分门别类、匹配标记达到类案检索,在法官办案时自动筛选以往相似度较高的案例,实现类案推送提醒,为法官对相似案件的审判提供参考。如此一来,能尽量避免“类案不同判”和“法律适用不统一”的问题,有利于统一本地的司法裁判尺度,防止裁判不公。
(三)案件分析、辅助裁判智能化
人工智能减轻了办案人员处理日常琐碎事务的负担,在这样的背景下,我们不仅希望人工智能在可量化、低效率的环节发挥作用,还期待能够进一步发挥其智能化的优势,从而提高司法效率。于是,将其应用于案件分析与裁判就成了一个重要议题。在案件分析的初级阶段,通过设置分流原则和调整繁简区分要素,智能分案系统能对各类案件进行精细化处理,在平台运转过程中,分别针对刑事、民事、行政等不同案件的特点,综合各项权重系数,科学测算每个案件所需的办案力量,帮助法院实现对案件的繁简分流,合理配置司法资源,缓和“案多人少”的压力。在案件的深度分析及辅助裁判上,北京法院的“睿法官”系统能在庭审前自动梳理出待审事实,生成庭审提纲,并推送到庭审系统中。上海“206系统”的最大亮点是证据标准、证据规则指引功能,这一功能实现了证据资料的智能审查,为办案人员提供了标准化指引。此外,阿里推出的“AI法官”针对交易纠纷类案件建立了整套审判知识图谱,能够迅速分析案情并在极短时间内向法官给出判案建议。
总之,司法与人工智能的深度结合在理论界讨论得热火朝天,对人工智能产品的应用某些方面已经走在了理论的前面,司法系统的改革亦是大势所趋。但这并不意味着目前的研究与应用是完全科学、有效的,对司法人工智能的应用空间及限度尚需细细推敲。
人工智能在司法领域的应用限度
(一)在广度上不能覆盖司法活动全程
目前,司法人工智能被集中运用于流程性重复低效劳动以及依据模型简单推理等环节,能够辅助处理事务性工作,在通用技术已然成熟的领域还是十分成功的,如在线方式的信息处理(信息电子化)以及语音识别技术的应用,确为司法活动提供了极大的便利。然而,我们发现,不管是在线信息处理还是语音识别,都是日常生活中已经广泛应用的技术,这几项应用的成功取决于成熟人工智能技术的普遍性适用。以语音识别为例,我们平时在智能手机中常用的语音输入法便是这一技术最普遍的体现,只是在庭审中对此功能开发的更加精准与完善了而已,虽然场景不同,但其本质是不变的。
由此可见,目前成功广泛应用的人工智能产品大多是将通用化的技术稍加完善,便移植到了部分司法活动中,而对于其他司法环节,如疑难案件的事实认定、评价证据的证明力度、法律解释等等,仅靠通用技术的成熟是无法满足其需求的,要通过非形式逻辑与司法经验等因素的灌输来“定制”专门化产品,使其达到能够应对大多数司法问题的水平,从而贯穿司法活动全程。关键就在于能否实现这种“定制”呢?这不仅意味着需要有高度发达的研发水平作为支撑,还需要将人工智能、法律知识、司法经验等多重因素深度融合,使人工智能具备法律人的逻辑与思维,其难度远远高于日常通用技术的开发。于是,如果期望人工智能技术覆盖司法活动全程,我们不难得出,这种“定制”是很难、甚至无法实现的。
(二)在深度上不能替代法官价值衡量
如上文所提到的,司法人工智能已经在信息检索、文书制作、智能识别、证据指引等方面得到了成功的推广应用,对于一些简单案件也可以实现辅助推理并提出量刑建议。其强大的数据处理能力大大减轻了法官从事日常琐碎工作的负担。虽然还有相关研究表明,将人工智能运用于预测裁判结果,得出的预测准确度远高于人类,但是就能如部分人群所追捧的那样,将人工智能取代法官吗?
人工智能是关于数据的技术,依赖于人类对它进行设计和编程,它只能对人类输入的已有知识和信息进行模式化的吸收和处理,尽管它对现有知识的掌握度远超人类,但致命的缺陷就在于它不能适应人类社会日新月异的变化。法律适用作为对现实社会的即时反映,在司法裁判的价值衡量中融入社会一般公正观念是一种常态,而这种价值衡量是一个十分复杂的过程,“带有人情味的价值判断”很难被机器所学习。而司法裁判是关于经验的艺术,美国大法官霍姆斯说过,法律的生命在于经验而不是逻辑,他要求法官根据社会生活的不断变化赋予每个案件独特的裁判价值,不要被固有的法律逻辑所束缚。这就需要在法律规范和生活之间有交互往返的认知过程,通过复杂的价值判断来获得结论。从这个角度来说,人工智能法官只能按照事先设置的形式化指令来裁判案件,亦步亦趋地跟随着人类的操控,没有人的参与和输入,机器学习不会自主发生,更不会有人的独立思维,也就无法满足法官在价值判断过程中的语境化需求。正如霍姆斯法官说得那样,法律不是纯粹的逻辑和极致的理性,在司法裁判中还应考虑经验、道德和温情。毕竟,只懂法律的人不一定能够胜任法官,更何况只懂法律的机器呢?
司法人工智能的应用前景与出路
(一)司法人工智能:好钢用在刀刃上
人工智能最大的优势就在于它直接服务于人,通过介入司法活动的各个环节,在信息储存、数据运算、简单推理等方面发挥着重要作用,办案人员借助这些辅助功能最大限度地将自身从重复性、事务性的工作中解脱出来,还能及时发现并纠正一些细节问题,从而能够将时间和精力真正投入到分析疑难案件本身,实现了司法资源的优化配置。不仅如此,人工智能介入司法环节还能够在办案过程中对法官的行为进行程序化约束,矫正法官的主观偏见,扩展法官的认知能力,减少法官因直觉等主观因素对价值判断形成的消极影响。
司法实践中,人工智能作为辅助工具带来便捷,但也仅限于服务法官、辅助法官。因此,对司法人工智能的研发要将重心放在其辅助功能上。并且,基于当前司法人工智能在通用技术领域的应用上已经取得了相应的成果,因而未来应当更倾向于针对司法活动的专业性特征,进行司法专用领域的技术开发。比如,国外的一些法院利用人工智能对案件结果进行预测,还将人工智能运用于审查专家证言的可采性上,为法官裁判案件提供指引和参考。我国在研发时也可以结合自身实际来开发相应的产品。此外,也可以针对我国部分法院开始应用的量刑推荐、审判偏离预警等功能进行进一步完善与推广。
技术是人类社会进步的重要力量,人类作为社会发展的主体,必须将技术为我所用。正所谓“君子性非异也,善假于物也”,只有懂得如何开发与利用司法人工智能,善于扬其长避其短,才能将人工智能的价值发挥到最大化,只有将这块好钢用在刀刃上,才能为司法、为人民创造更多的价值。
(二)人工智能法官:不可望也不可即
早在20世纪70年代,已有学者提出假设——人类法官是否能被机器法官所取代,以消除法律的不确定性?我国最高人民法院副院长贺荣给出了明确的答案:机器人大法官绝无可能出现。
事实上,无论是普通民众,还是在领域内深耕已久的专家,都对计算机、人工智能和机器人这些事物的概念难以详细地区分。但有一点众所周知,它们的运作本质都是“接收信息-处理信息-输出信息”这样一种计算过程,每一个步骤都需要确切的定义,存在“唯一正解”。而司法裁判的魅力却在于往往不追求非黑即白,每个具体的案件都有其独特的一面,除了追求客观与合法之外,其中隐含的人情世故、伦理道德错综复杂,需要有审判智慧和审判经验的法官进行心证和裁量。法律虽然是冰冷的,但适用法律的过程却蕴含着温情,比如“于欢案”中,杀死“辱母”者这样为母复仇的情节富有非理性的情感色彩,与我国自古以来“父之仇,弗与共戴天”的礼法观念不无关联,这些人情事理只有亲历了生活、接受过教育、感受过熏陶的人类法官才能体会和把握,而隔着冰冷屏幕的人工智能法官是无法体会其中之精妙的。此外,人工智能还面临着算法“黑箱”问题。司法裁判的过程,本身就是一个注重辩论和说理的过程,在庭审中,不仅双方的唇枪舌剑会给法官带来事实判断上的影响,一个交互的眼神、一个微妙的表情都会成为法官的捕捉点,我国西周时期就有“以五声听狱讼,求民情”的记载。而人工智能法官的判案过程则会是系统内部的数据处理和运算,得出的判决是一个“暗箱操作”的结果,我们对其中的运算过程一无所知,“黑箱”的封闭性决策直接与司法公开原则相违背,还可能会触发算法独裁和歧视,难免招致公众对判决结果的质疑,引发社会混乱。
更重要的是,我国宪法有明确规定,国家的一切权力属于人民,审判机关的权力由人民赋予,法官所行使的司法权实质上是人民主权理论下的公共权力。古代西方有这样一句法律格言:“法官只有一个上司,那就是法律。”在此公共授权的语境之下,法官在审判中享有绝对的权威,其他任何主体都不能左右法官的最终判决。从这个角度上来说,如果让人工智能取代法官,是将人民赋予的公共权力让渡给了一个机器,无异于放弃了人民的公共事业,而导向机器人的统治。机器人是否能够认可法律作为他的上司我们不得而知,但必然消解了司法裁判的意义,也破坏了司法公信,这是社会所不能接受和容忍的。
综上所言,人工智能法官取代人类法官这样的愿景,乍一听固然美好,但是却陷入了人工智能的万能论当中。司法裁判是理解的技艺,是一门价值衡量的艺术,其中蕴含的经验和智慧并非人工智能所能体悟。人工智能取代法官是一个不可望也不可即的遥远幻想,未来对司法人工智能的开发不能突破底线,毫无节制地利用人工智能改造审判系统只会为现代法治带来无可挽回的创伤。
结论
尽管人工智能热潮一次次席卷而来,不断突破想象、冲击认知,但我们不能盲目追捧,尤其在司法领域更应保持审慎和理性。对于司法环节中的一些事务性、重复性工作,无疑应当交给人工智能来处理,发挥其超强的整合运算功能,提高司法效率;对于司法活动中的核心权力,如审判权,则必须由法官独立行使,而人工智能因其自身认知和思维上的缺陷决定了其只能处于从属地位。此外,如果一旦将司法决策权交与人工智能,随之而来的算法黑箱、算法歧视必然对司法公正造成冲击,也是对人民主权和现代法治制度的消解。
未来,要坚守法官的主体地位和人工智能的辅助角色,对司法人工智能的研发也要在服务法官、辅助法官的路上继续前进,而不要误入取代法官的歧途。人工智能与司法的深度结合已是大势所趋,审时度势地做好这道司法人工智能的加法题,让“人工”和“智能”各归其位、各取所需、强强联合,才能为司法、为社会带来最大的价值,将司法高效与司法正义共同推进。
来源:《人民法治》杂志
作者:贾喆羽吕昭诗孙晓璞
原标题:《人工智能在司法领域的应用》
阅读原文