博舍

人工智能为媒体赋能 人工智能播报新闻联播内容

人工智能为媒体赋能

原标题:人工智能为媒体赋能

人工智能有望改变媒体,重塑媒体的整个流程。未来,人工智能将融入到媒体运作的各个环节,但在媒体行业的落地,需要更复杂、更全面的架构。无论是人工智能本身还是其在传媒领域的应用,距离成熟都还有很长的路要走。当下,应基于媒体行业自身的数据构建具有针对性的人工智能系统,提升媒体与人工智能结合的成熟度。

人工智能媒体融合应用场景未来发展

媒体行业正处于融合发展的深水期和战略转型期,亟须找到媒体产业升级的新思路和新方向。随着人工智能应用的逐渐普及以及人工智能在媒体行业中一个个新的实际应用成果的诞生,我们越来越清晰地看到人工智能在推动媒体融合发展中的作用。人工智能给媒体行业带来的影响是深远的,推动着媒体运作流程中每个环节的变革,人工智能正成为媒体纵深融合的关键着力点,为媒体向智能化发展赋能。

人工智能+媒体:应用场景多元

大数据时代为媒体带来了前所未有的丰富数据资源和先进数据科学技术,但同时媒介环境变化也给行业的态势带来深度的影响。如今,受众呈现出分散化、复杂化的特征,信息量指数式增加,传统的内容生产、分发的方式及传受关系已不能满足时代的需要。媒体和媒体人正试图探索人工智能给智能媒体变革带来的新机遇,并积极寻求人工智能在传媒领域的落地。

人工智能在媒体有着巨大的应用空间,事实上,人工智能与媒体实际应用的结合已经有许多成功的案例并且在许多方面有着出色的表现,媒体行业对于人工智能技术直接或间接的运用正在不断发展,并将推广到更广泛的新场景。

高级文本分析技术

基于自然语言处理技术的文本分析技术是人工智能重要技术领域。自然语言处理(NLP)可以分析语言模式,从文本中提取出表达意义,其终极目标是使计算机能像人类一样“理解”语言。基于内容理解和NLP的写作机器人为记者赋能,可以模拟人的智能和认知行为,实现机器的“创造力”,经过对大量数据的分析和学习,形成“创作”的模板,用人机结合的方式来强化记者的写作能力。国内的媒体积极地将这一技术作为媒体内容生产方式的创新,如新华社的“快笔小新”,南方报业的“小南”等。百度人工智能开放平台推出的NLP产品“新闻摘要”,其技术原理是基于语义分析和深度学习模型,进行新闻内容的语义分析,自动抽取新闻内容中的关键信息,并生成指定长度的新闻摘要,可用于热点新闻聚合、新闻推荐、语音播报等场景。

图像和视频识别技术

图像和视频识别可以基于深度学习进行大规模数据训练,实现对图片、视频中物体的类别、位置等信息的识别。图像主体检测可以识别图像的场景、图像中主体的位置、物体的标签等。人工智能视频技术则能够提供视频内容分析的能力,对于视频中的物体和场景进行识别并能够输出结构化标签。

图像和视频技术在媒体中应用十分广泛,如内容分析、质量检测、内容提取、内容审核等方面。以媒体内容监测为例,有了人工智能图像视频技术的加持,使得非结构化媒体数据采用机器审核成为可能,通过数据集的训练建立用于审核的模型,针对画面中的元素进行追踪,对于图像及视频中的不恰当、有争议或违法内容、敏感内容、低俗内容等进行识别检测,进行标注和报警,以进行过滤和处理,可以大大减少人力的投入。

语音技术

人工智能语音技术主要包括语音识别和语音合成,它是一种“感知”的智能。自动语音识别(ASR/AVR)是基于训练的自动语音识别系统,将物理概念上的音频信息转换为机器可以识别并进行处理的目标信息,如文本。语音合成技术是通过深度学习框架进行数据训练,从而使得机器能够仿真发声。一些智能语音开放平台也提供了智能语音服务。以科大讯飞构建的智能语音开放平台为例,科大讯飞的语音输入法准确率已经能达到98%,并且输入的速度提高到了每分钟400字。越来越多的媒体开始使用科大讯飞的语音技术。

随着语音转换技术的日渐成熟,“语音-文本”双向转换技术在媒体中的应用成为可能。例如将语音识别技术在采编环节中使用,生成文本稿件并进行二次编辑。运用人工智能智能语音编译系统,将现场的语音报道生成文字版,大大提升了编辑人员原本耗时的整理工作的效率。将媒体的视音频内容转化成为文本素材,提升了媒体稿件、节目素材管理的效率。由于需要应对媒体音频和视频文件声源的复杂性和不可控性,虽然目前生成的文字稿件并不完美,但也在不断地提升和改善。

语音合成技术可以基于深度学习模型,把媒体报道的文章从文字版转换成语音版,并且接近于逼真的人声。甚至可以根据不同受众群体的需求,针对性地生成特定的声音供用户收听,打造更贴切、更有亲和力的语音体验。

人脸与人体识别技术

人脸识别是人工智能的应用中最为人所熟知的,它属于计算机视觉领域(CV)。目前人脸识别技术的主要应用包括人脸检测与属性分析、人脸对比、人脸搜索、活体检测、视频流人脸采集等方面。谷歌、苹果、Facebook、亚马逊和微软等互联网巨头争相在这一领域的技术和应用方面抢夺先机,纷纷推出相关的技术应用并不断突破创新。2018年5月的媒体报道称,亚马逊积极推广名为Rekognition的人脸识别服务,该解决方案可以在单个图像中识别多达100个人,并且可以对包含数千万个面部的数据库执行面部匹配。Facebook使用简单的人脸检测算法来分析图像中人脸的像素,并将其与相关用户进行比较,为上传到平台上的每张图片提供了自动生成的标记建议,取代了手动图像标记。

个性化推荐技术

传媒领域的大部分产品如电影、新闻、书籍、音乐、广告、文化活动等都致力于吸引受众阅读,聆听和观看媒体生产的内容。发现目标群体并把内容传播给该群体是能否达成媒体传播效果的关键一环,而个性化推荐技术解决了这一难题。这是目前在媒体中应用较为成功的人工智能技术,在媒体的内容分发过程中,个性化推荐技术为用户提供个性化体验,针对每个特定用户量身定制推荐内容,减少搜索相关内容所花费的时间。与此同时,对于人们所担忧的,由于算法主导的精准分发过程只推荐感兴趣的内容,会导致用户陷于信息茧房的问题,研究人员目前也在试图改进算法,开发“戳破气泡”的应用技术。例如BuzzFeed推出的“OutsideYourBubble”、瑞士报纸NZZ开发的“theCompanion”程序、Google的“EscapeYourBubble”等。

预测技术

现在已经开发出来的一些强大的基于人工智能的预测技术,让我们可以“预知未来”。通过时间序列(TS)建模来处理基于时间的数据,以获得时间数据中的隐含信息并作出判断。按照一定时间间隔点来收集数据,再对这些数据点的集合进行分析以确定长期趋势,以便预测未来或进行相应的分析。

当拥有时间相关数据时,时间序列模型将派上用场。例如,可以使用时间序列数据来分析某一家媒体下一年的用户数量、网站流量、影响力排名等,从而在广告投放方面作出合理决策。另外,如何及时地抓住社会热点是新闻机构所面临的重要问题,人工智能预测技术通过对海量的热点内容的模型进行训练和分析,建立热点模型,可以实现对于热点趋势的预测。

媒体需要思考的问题

人们越来越清晰地看到人工智能给媒体带来的意义与价值。在融合的时代背景下,媒体迫切需要人工智能带来推动媒体变革的潜力。与此同时,我们也不能认为人工智能可以解决媒体变革中的一切问题,技术并不是一块现成的、可以直接拿来享用的蛋糕,在媒体应用人工智能时,还需要着手考虑许多问题。

数据的完备性

媒介体系内部和外部都会产生大量的数据碎片,虽然目前数据量庞大,看似拥有海量的数据资源,但是生产的数据与可以用于人工智能的培训数据之间的匹配度还有待提升。在深度学习算法中,需要用大量的数据训练算法才能产生有意义的结果,数据的不完整性会导致准确性的下降,而准备这样的数据集的成本很高。为了实现大量的用户行为数据的积累,提高数据的完善程度,媒体需要构建大规模的数据体系和战略。为了实现人工智能在媒体中的进一步部署,媒体需要具备完备的数据源和处理更为庞大的数据系统的能力。

深度融合的方式

目前,人工智能技术还停留在初步应用层面,其深度还需要挖掘、广度还需要扩展,融合的方式也需要深入地进行探索。人工智能在媒体领域的大部分应用只是将现有的研究成果迁移到媒体行业,如果媒体想要更深入地参与到人工智能潮流中,就要积极地投入到算法的开发中,在人工智能领域中开辟出自己的空间,如此,才能使人工智能在媒体行业应用更加成熟。

数据安全与隐私

当人工智能应用飞速发展,人们很容易忽略在人工智能应用中的安全问题。2018年Facebook的数据泄漏事件折射出的数据安全漏洞引起社会关注,再一次提醒我们要严肃对待数据安全及隐私等问题。用户在媒介接触的过程中,用户数据和个人资料越来越多地交付给媒体,媒体在使用这些数据为用户提供更好服务的同时,需要权衡智能化用户体验和用户数据安全之间的关系。欧盟发布的通用数据保护条例(GDPR)于2018年5月25日正式生效,根据其条款,组织不仅必须确保在合法和严格的条件下收集个人数据,而且收集和管理个人数据的组织将有义务保护其免遭滥用和泄漏,并尊重数据所有者的权利,旨在确保人们可以掌控其个人数据。

坚守媒体的价值观和底线,保障数据安全,尊重用户隐私十分重要,媒体应思考在保护用户数据方面是否存在漏洞以及如何落实相应的人工智能安全策略。

人才培养

媒体领域对于人工智能人才的需求量还很大。要走出人才窘境,一方面要完善人才引进和培养规划,提升媒体从业人员的大数据和人工智能技能和素养,补齐人才短板。特别是要引进掌握坚实的传播理论基础,既懂媒体传播规律又懂大数据、人工智能的复合型人才,逐步形成与智能化媒体业务形态相适应的人才布局。另一方面要优化原有人才结构。当智能机器人取代部分人力成为可能,智媒时代的媒体人要在行业的巨变之中找准自己的定位,提升自己的知识技能。无处不在的“共享”和“开源”的知识使我们学习和了解人工智能行业前沿技术,例如Google发布的机器学习工具AutoML,用户无需掌握深度学习或人工智能知识即可轻松培训高性能深度网络来处理数据。

媒体和媒体人要拥抱媒体智能化的时代,破除对于新技术的“恐慌”,加快知识体系更新,使专业素养和工作能力跟上智能时代的节拍。

智能媒体:未来无限可能

虽然智能机器距离接近人类学习、思考和解决问题的能力还很遥远,但是机器取代人力是大趋势。人工智能将不断地从媒体生产链条向内容创建生产环节突破,从而帮助媒体进行内容升级和用户体验升级。

内容生产是未来人工智能在媒体行业实现新突破的重要方面,虽然人工智能目前不能超越人类的创造力,但可以承担起一部分信息收集、数据整理和内容创作的工作,将媒体人从一些重复性的繁冗工作中解放出来,从而节省出时间用于创作和创造性工作。媒体也应积极探索新的与人工智能结合的工作方式,使得工作更高效智能。

此外,人工智能将通过多种方式增强并带来更好的用户体验。通过学习用户行为,了解受众偏好从而使用户获取到感兴趣的内容,并根据用户画像定制个性化的内容。运用人工智能技术捕获处理数据,精准理解用户需求,可帮助媒体实现更加精细化的用户划分和用户分析,提供更加人性化的服务。人机交互使得用户体验更加立体化和场景化。

人工智能有望改变媒体的一切,重塑媒体的整个流程。预计未来人工智能将融入到媒体运作的各个环节。但无论是人工智能本身还是其在传媒领域的应用,距离成熟都还有很长的路要走。人工智能在媒体行业的落地,需要更复杂、更全面的架构。构建以大数据和人工智能为核心的技术生态体系,基于媒体行业自身的数据构建具有针对性的人工智能系统,提升媒体与人工智能结合的成熟度。目前人工智能技术在媒体行业的应用并不完善,但并不阻碍我们对于其发展前景的期待。

如何充分地发掘人工智能的潜力是媒体和媒体人面临的大命题,我们应思考人工智能如何更好地与媒介进行结合,尝试在融合发展面临的问题中加入人工智能解决方案。未来,机器与人的共生将成为媒体常态,我们期待人工智能为媒体带来更好的未来,在技术的助力下走向真正的智媒时代。

(作者沈浩系中国传媒大学新闻学院教授、博士生导师;杨莹莹系该院新闻与传播专业媒介市场调查方向硕士生)

(责编:赵光霞、宋心蕊)

分享让更多人看到

人工智能技术背景下的新闻业变革与坚守

随着智能手表等可穿戴智能设备、无人驾驶、阿尔法狗大胜李世石的人机围棋对战等被人们所熟知,人工智能浪潮已经席卷了公共服务、教育、医疗等多个行业。媒体行业当然也不甘落后,国内外已有不少媒体在人工智能+新闻方面做出了探索。可以说,这是媒体行业发展最好的时代,也是最坏的时代,外部环境瞬息万变,不断影响新闻业,媒体人始终谨小慎微,如履薄冰。人工智能会给新闻业带来多大的变革呢?究竟是颠覆还是辅助?新闻业应该如何应对变化?种种问题都值得新闻行业思索。

本文将溯源人工智能发展历史,介绍国内外在人工智能+新闻方面的进展,通过人工智能在新闻业应用的优劣分析思考人工智能与新闻业的结合对于传媒行业来说究竟是机遇还是挑战,新闻业如何在新技术冲击下实现进化。

一、人工智能概念及应用现状

人工智能(ArtificialIntelligence)的概念早在1956年就已被提出,“人工智能是关于知识的学科―――怎样表示知识以及怎样获得知识并使用知识的科学”,[1张妮、徐文尚、王文文:《人工智能技术发展及应用研究综述》,载《煤矿机械》第30卷第2期]美国斯坦福大学人工智能研究中心尼尔逊教授如此定义。美国麻省理工学院的温斯顿教授则认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”[曾雪峰:《论人工智能的研究与发展》,载《现代商贸工业》2009年8月刊]本文将人工智能定义为“通过软硬件结合,用各种手段使其能够达到类人的智能,使机器能够做像人一样的处理事情”。

近半个世纪以来,人工智能技术全方位地向各个领域延伸,在新闻领域,人工智能也与新闻业产生了一系列的化学反应。本文所探讨的“人工智能+新闻”指的是人工智能技术在新闻写作、采访、编辑等新闻活动中的具体运用,人工智能给新闻业带来的变革我们称为媒体的智媒化。

二、人工智能在新闻生产上的应用与反思

(一)、人工智能在新闻业的应用

1、外媒AI+新闻:全方位、多环节应用

纵观国外人工智能在新闻业的应用,可以发现不少媒体都已经或多或少的涉足了AI界,AI+新闻的探索时间较长,探索结果也较为深入,当前人工智能已经全方位、多环节渗透到新闻领域中,下文将试图按照新闻生产流程来分析国外AI+新闻的相关应用。

(1)、线索收集、信源捕获

人工智能可以在新闻生产的前端为媒体提供信源。《华盛顿邮报》目前应用的聊天机器人Feels,在2016年总统大选期间就向使用用户收集相关线索,以此获取选民在选取前的政治倾向。Buzzfeed与之相似,它目前主要通过Facebook上的关注者借助Messenger为其提供新闻素材。在messenger上接受buzzbot的推送时,他还会告诉用户它在为某地发生的某事手机新闻素材,并询问用户是否关注这一新闻?是否在当地在现场?对这一事件有何态度?是否可以提供现场素材等等?这些问题会给出三个预设答案,用户只需选择进行反馈,最后,用户还可以选择一个表情来表达对这一新闻的态度。

(2)、机器人写作

当下,国外媒体中机器人写作已经成为相当广泛的现象,机器人写作的不少新闻已经让人难以分辨究竟是记者还是AI的大作了。美联社就利用算法自动撰写关于棒球比赛的相关报道,这一技术也在电子商务、房地产以及金融服务等领域得到应用。美联社采用的用来撰写新闻的机器人叫Wordsmith,早在2014年7月美联社就和科技公司AutomatedInsights合作,利用AI技术来报道商业领域的企业财报相关新闻。操作原理是将公司盈利状况相关的数据导入机器人平台,经过wordsmith为美联社量身定制的算法处理,wordsmith将这些数据信息与他信息比对参照,在几毫秒的时间里就可以写出一篇标准的带有美联社风格的的新闻稿件。记者在涉及大量数据信息的报道中差错率一般会有所提高,机器人新闻

就不需要担心这个问题。准确性的提升是一大改进,另一方面,从一季度300份到一季度3000份的生产能力也大大地提高了美联社的财报数量。

除此之外,美联社还宣布将在美国职棒小联盟的赛事报道中应用人工智能技术,他们专门聘请了一批自动化领域的专家来开发、管理和整合美国职棒小联盟的报道。美国职棒小联盟的官方统计数据服务商MLBAdvancedMedia和AutomatedInsights能够在数分钟之内为他们提供比赛数据,wordsmith则通过查看并分析海量结构化的数据,从中发掘出新闻点,例如,某队选手的赛场表现不如预期等,然后人工智能会自动生成可读性的内容。

机器人写新闻在财经、体育这种模式化的报道领域可以说是具有得天独厚的优势,此外,强调时效性的新闻方面机器人记者也大有用武之地。2014年美国加州曾发生一次4.4级的小地震,《洛杉矶时报》凭借机器人记者撰写的新闻稿成为最快报道该新闻的媒体。这要归功于《洛杉矶时报》的地震新闻自动生成系统,美国地质勘探局在勘测出地震消息的同时会给系统发送地震信息,随后机器人记者会自动将这些数据套入相应模板生成新闻报道,这一系统是由该报的记者兼程序员KenSchwenck开发的。

国外的不少媒体,机器人记者已经成为其新闻编辑室中的重要一员,不过目前机器人写作主要集中在对信息的收集整理而非内容创作上。机器对程式化的新闻资讯(例如灾害、体育、财经等动态信息)可以做到准确、及时地生成和发布,用时短且错误率低,这是机器处理得天独厚的优势。而且,此类报道一般不需要进行深入细致的调查,也不存在错综复杂的关系,因此,现阶段在各大媒体中应用的人工智能使得人类记者无需在简单、机械性的工作中耗费时间,得以将更多精力投入到更有创造力的内容创作上。

(3)、辅助编辑

新闻编辑工作上人工智能近年来也有所涉猎,2015年7月,纽约时报R&D实验室就设计了可以自动标记文章的机器人,在编辑工作中,它可以识别内容并分析,从而提供推荐使用的关键词、标签等,这使得新闻编辑室可以更加便捷地收集内容。

美国知名的互联网新闻博客Mashable则将关注点放在了科技公司与社交媒

体的相关新闻上。2016年2月,Mashable的执行董事BenMaher曾表示Mashable已经尝试利用人工智能技术发现新闻,他认为网站主页将不再有活力,现代用户需要媒体主动吸引。[3刺猬公社《在人工智能和新闻的结合上,国外媒体已经飞起来了?》]为此,Mashable启动了数据分析工具Velocity,它可以分析判断新闻的传播趋势和可能的传播爆点,此外,Velocity还可以帮助编辑们发现传播过程中的“饱和点”,当一则新闻的分享率达到95%时编辑将不再予以关注,否则编辑们则会考虑如何让新闻继续发酵,到达更多的用户。

(4)、资讯分发

内容生产上人工智能可以帮助媒体收集素材,获取信息,写作新闻,有了内容后更重要的则是传播出去,而如何找到用户的好奇点,将内容分发给适配用户实现精准传播则是人工智能带来的另一突破。

目前,《纽约时报》就采用了Blossomblot作为机器人编辑,它主要辅助编辑选择潜在的热文。纽约时报内部统计数据显示Blossom筛选出的文章点击量是普通文章的38倍。Blossom的主要原理就是通过分析Twitter等社交媒体上的文章数据,从而判断哪些新闻更具有传播潜力。随后将这些信息反馈给人工编辑。未来,Blossom还可以通过机器学习完成独立取标题、写摘要等工作。

来自美联社的战略经理FrancescoMarconi认为,人工智能赋予新闻机构创造无限内容的可能,并且可以根据读者的个性、心情、社会经济地位以及地理位置,向每位读者推荐适合他们的故事,让用户真正享受到“私人定制”资讯。[4腾讯网《人工智能会成为记者的好伙伴吗?》http://news.qq.com/a/20161111/032007.htm]在Marconi看来,人工智能将从根本上提高“个性化分发”的效率,而该领域的巨头Google、Facebook、Twitter早已深谙此道。从2013年以来,不少新闻机构就在人工智能方面投入了很多精力,比如借助Facebook的通讯软件messenger,华尔街日报等使用机器人bot进行新闻资讯的推送,实现了一定程度的自动化。

(5)、交互反馈

技术的变革使得传统新闻业中读者的身份变为用户,这极大地突出了用户的主动性,人工智能目前也在这一方面发力,通过人机对话等实现双向传播,增强

用户粘性。

数字商业新闻网站Quartz在2016年也在客户端里加入了人机对话推送资讯的功能。Quartz界面是一个对话窗口,会以聊天式的方式向不同读者推送新闻。读者如果想深入了解,可以在窗口下的选项继续追问获取更多细节。Quartz推送的内容人工编辑会进行选择编辑,但用户与Quartz的互动则由机器算法完成。

(6)、资讯服务

从机器人记者写作新闻、为媒体收集素材到从事辅助编辑工作再到交互反馈,可以说,人工智能基本上全方位、多环节地渗透到了国外媒体的新闻实践。除直接参与新闻生产流程外,人工智能还是新闻业的好帮手。2012年,《华盛顿邮报》就使用“TruthTeller”核实新闻的准确性;“truthteller”主要功能是核实新闻的准确性,它通过记录新闻报道的内容,即时与数据库比对,一旦发现问题就会发出警报,以此来保证新闻信息的真实性。

目前,不少科技公司在人工智能领域方面已取得不少进展,谷歌就将其人工智能技术应用在了新闻领域。2014年谷歌推出了一款基于大数据的预测系统─GoogleAlert。输入需要检测的关键词,这一系统会全天候检测出现这些关键词的网站,并将信息发送给用户。此外,他还可以将正在发生的事件结合背景与相关情况智能分析,预测事件可能带来的影响。也就是说。GoogleAlert在帮助记者收集新闻之外还可以判断新闻的发展趋势、后续价值等。

2、国内AI+新闻:试水与起步

国外AI+新闻发展已经如火如荼,相比之下国内人工智能与新闻业的结合相对还处于起步阶段,目前人工智能与新闻业的结合主要体现在机器人写作与智能化推荐方面。

(1)、写作机器人

与国外类似,机器人记者也是国内新闻业相对走在前面的应用。腾讯在2015年就在其财经频道的新闻写作中使用了人工智能,它的机器人记者名为Dreamwriter,当年8月份机器人记者就发布了一篇关于CPI的稿件,题名为《8月CPI同比上涨2.0%创12月新高》。稿件包括数据信息本身和相关行业人士的数据解读两部分。文章与普通记者写出来的并无太大差别,只是在最后注明了是由

Dreamwriter撰稿。此后,dreamwriter不断写作相关新闻,根据《中国新媒体趋势报告2016》数据显示,2016年三季度,腾讯财经机器人记者发布的新闻数量已经达到了4万篇。

新华社也于2016年11月18日推出了写稿机器人“快笔小新”。其操作十分简单,输入一个股票代码再点击一下鼠标即可生成一篇财报分析新闻。“快笔小新”只是一个电脑里的程序,尽管其写作的内容并不完善,但快速的出稿速度是极大的优势。目前,新华社的体育部门和《中国证券报》也采用了“快笔小新”。一直自诩是科技公司而非媒体的今日头条则在里约奥运会之际,推出了写作机器人“xiaomingbot”,这款机器人可以在数据库更新的两秒之内生成相应的新闻并发布;同时,它的系统内内置了较多可供选择的样式,这使其能够根据赛前预测与实际结果的差异选择相应的语气生成新闻。

目前,国内的人工智能相对停留在较为初级的阶段,已有的写作机器人主要参与体育新闻、财经新闻等报道,新闻题材上也主要是快讯、财报等。不过,虽然其写作的新闻在质量上没有显著改进,但机器人在新闻写作上的应用极大地提高了新闻数量,给了用户更大的选择空间,头条实验室的负责人李磊这样评价小明,“张晓明最大的意义在于,面对奥运会同时举行的上百场比赛的综合赛事,可以观察到每一场比赛报道,无论这场比赛多么冷门和不重要。在传统新闻理论中,某些冷门比赛乒乓球的小组赛的报道价值不大,但实际上依然有可观的阅读量。”[5刺猬公社金凯娜:《在人工智能和新闻的结合上,国内媒体到底做得怎么样了》]这恰恰符合了长尾理论,以前因劳动力不足或者缺乏关注度等原因被忽视的新闻资讯借助机器人记者得以被生产,属于小众的需求得以满足。

(2)、智能化推荐

有了更加丰富的内容,接下来更重要的就是让更多的人、更关心这一新闻的人知道。现在越来越多的新闻应用都采用了个性化推荐,这一领域最初得到大家广泛关注是因为今日头条的崛起,“你关心的,才是头条”这句广告语表明今日头条所侧重的是根据用户的个性需求为其私人订制新闻。其内在逻辑在于当用户长时间使用app浏览新闻后,后台会不断收集用户的阅读数据,如浏览栏目、停

留时间等等,从而为用户精准画像。同时,随着用户数量的增多,后台可以根据相似性为用户分群,进一步实现智能化推荐。

(3)、智能互动

如今,人工智能的应用使得一些内容提供者得以用聊新闻的方式为读者去繁就简,它使得同类新闻可以汇聚起来,通过自然语言处理技术对内容进行结构分析,然后通过信息特征学习等方法,将事件核心信息整理成一百字左右的聊天内容,高效满足读者基本的信息需要,随后读者可以根据其自身需要提出疑问从而获取深度解读等信息。

“聊”新闻主要在百度新闻app上有所应用,进入界面后,可以通过对话体形式读新闻,阅读更加直接。系统可以准确回答关于新闻内容的提问。在这个过程中,聊新闻可以略去媒体报道中80%的内容,其目的在于满足读者对信息基本的需求,互动环节则可以充分发挥读者主动性,引导读者进行“深阅读”。

(二)、反思人工智能在新闻业的应用:机遇与问题

1、机遇:人工智能解放并辅助新闻业

人工智能在新闻业的应用为其带来了发展新机遇,极大地解放了新闻人,正如《纽约》杂志撰稿人凯文・罗斯所言,机器人写作处理的是人类新闻从业者不愿耗时去做的、与大量数据相关的“体力活”,让新闻从业者从大量低附加值的重复性劳动中解脱出来,以更多的时间和精力去从事创造性更强的新闻工作。[张海霞:《机器人写作时代新闻从业者的应对》,载《新闻战线》2016年11月上,第111页]具体来说,人工智能的应用在以下几方面为新闻业提供了很好的辅助作用。

(1)、高效处理大数据

人工智能对数据具有更高的敏感度,它可以从海量数据中观察到人类不宜洞察的内在关联,从而生产处具有新闻价值的报道,自动挖掘具有传播潜力的新闻内容将有效扩展人类的观察视野。此外,冗杂的数据往往会牵扯记者大量的时间精力,而且对于体育新闻、财报等动态信息的写作通常有章可循,机器人记者几秒钟时间就可以写出一篇与人工作品无差的新闻,这将记者从大量繁杂重复性的工作中解放出来,将人力资源用在更有创造力的内容生产上。

(2)、新闻精准化、智能化、个性化

新闻业通过与人工智能的结合,媒体可以实现对用户的清晰画像,从而更加精准的分析用户,实现内容生产与份分发的定制化、个性化、对象化。以往千人一面、一点对多点的生产模式和传播模式都发生了巨大转变,“你看手机的同时手机也在看你”,人工智能技术使得个性化新闻时代到来,除此之外,人工智能还可以为用户进行场景化匹配,罗伯特・斯考伯、谢尔・伊斯雷尔在《即将到来的场景时代》写道:“移动互联网时代,场景(情境)的意义被极大地强化,移动传播是基于场景(情境)的服务,即对环境的感知及信息(服务)适配。”[罗伯特・斯考博、谢尔・伊斯雷尔.即将到来的场景时代[M].北京:北京联合出版社,2014.

]根据用户不同的时间段、不用的地理位置等人工智能可以判断用户阅读需求,如用户运动时,可穿戴设备可以为用户提供短小精悍的突发新闻新闻简讯等消息,等待时则可以阅读趣味性的内容等等。

(3)、角度客观且成本低廉

人工智能在生产新闻、收集素材、辅助编辑时只会依照算法程序等进行,除

非刻意的人工干预,否则其提供的内容都将是一种将结构化的数据进行文本形式的可视化表现,具有极强的客观性。而人工生产难免会受各种各样的限制从而影响其客观性。除此之外,人工智能作为一种软硬件结合的产物,如本质上是一套算法程序的机器人记者,可以不知疲倦、永不停歇的工作,使用成本较低。

2、问题:人工智能应用的局限

不过,目前人工智能在新闻业的应用已经出现了一些问题,以智能分发上为例,单纯依靠算法点击推荐阅读可能会带来阅读浅薄化甚至低俗化的后果,用户容易陷入信息茧房的处境,真是可能导致假新闻肆虐。综合来看,目前人工只能与新闻业的结合面临以下几个问题:

(1)、写作模式单调

就目前国内外人工智能在新闻写作方面的应用――机器人记者来看,我们可以发现其主要应用于体育、金融等数据繁多的新闻报道中,这些新闻只需对数据进行简单的分析加工形成模式化的报道,内容枯燥,模式单一,缺乏可读性。机器人记者只是在系统内设的模板上填充处理数据信息生成新闻报道,尽管客观公

正,但千篇一面的报道很难对读者有吸引力。他们的报道难以满足读者的高层次需求,只能提供基本的事实信息。

(2)、应用领域有限

当下写作机器人所涉猎的报道题材局限于快讯、财报等只需要简单的数据收集、信息整理的内容。它们无法完成新闻评论、现场报道、深度调查报道等题材的新闻写作。事件性新闻一般有较强的现场感,在基本的人物、时间、地点、事件等基本要素外,很多细节信息也是重要的内容,而这些机器人记者无法捕获。新闻业有这样的说法:七分采三分写。这表明了优秀的新闻报道不是“写”出来的,而是“采”出来的。机器人记者在这一领域恐怕难以施展身手。此外,深度报道这类需要深入挖掘信息,厘清事件来龙去脉、前因后果与错综复杂人物关系的报道也需要脑力完成。这些都建立在一定的社会经验与感情认知的基础上,机器人记者显然难以做到。新闻评论也是机器人记者的一大难点,评论所体现的是作者的立场、观点与价值取向,具有鲜明的主观性,而机器人作为一种辅助工具,其智能程度难以达到可以发挥主观能动性的地步。以上这些都表明人工智能在新闻写作领域应用受限较大,且突破难度大。最后,基于各个领域的差异性与专业性,机器人记者只能在少数专业领域报道中有用武之地,大部分的行业报道它难以胜任。

(3)、缺乏主动性

归根结底,人工智能在新闻行业的应用都是基于人类的设定,它缺乏主动性,新闻写作方面机器人记者不具备新闻敏感性,无法主动发现新闻,只能根据预设模板对特定内容报道。收集素材、辅助编辑等方面也是基于一定的指令,无法脱离人的指令独立运作,这表明人工智能目前尚处于一种依附状态。

(4)、新闻特殊性质需要人类把关

虽然人工智能与新闻业的结合已经为不少媒体节省了大量人力物力,记者编

辑也得以从繁杂无意义的初级工作中解放出来,但在新闻生产的最终环节,大多数情况下仍需要专业新闻人进行把关。新闻活动作为一种社会性工作,涉及政策、法律法规、伦理等多方面的问题,人工智能终究无法取代人脑,涉及价值判断等方面的把控还是需要人类把关。

三、人工智能技术背景下新闻业应对探索

加拿大传播巨擘麦克卢汉“媒介即讯息”的论断指出媒介技术给社会发展带来的影响,他认为任何一种新的媒介技术被广泛应用后,会给社会发展带来新的尺度,社会各个方面也将会适应这一尺度有所变化。也就是说,真正有价值的讯息不是传播内容,而是所使用的传播工具带来的变革。人工智能的应用更是印证了这一观点,作为一种新的媒介技术,人工智能将对社会变革产生极大的推动作用,新闻业的变化也是不可阻挡的。

人工智能给新闻业带来的新变局引发了众多媒体人的思考:记者的饭碗还能保得住么?人工智能究竟是新闻业的敌人还是伙伴呢?回答这一系列问题需要理性分析人工智能给新闻业带来的变化,厘清优劣,认清媒体人核心价值所在,实现人机共生。

(一)、厘清人机关系

人工智能在新闻业的应用曾多次引发业界人士的恐慌,不少人担心职业新闻人的饭碗将会被人工智能取代,这样的科技性恐慌似乎伴随着每一次重大技术的变革,早在上世纪60年代,一些公司开始使用计算机和机器人时就有一阵恐慌弥漫,但事实上,每一次关于技术的恐慌过后,技术的进步为社会创造的新的就业机会要远远多于它所替代掉的岗位。

人工智能与新闻业之间彼此纷繁复杂的关系可以用Neuberger和Nuernbergk所提出的“竞争、辅助和融合”三个维度来看待。职业新闻人应该认识到人工智能在新闻业的渗透都属于补充范畴,为新闻业提供更加多样丰富的可能性。因此,人工智能的出现不应该使新闻人妄自菲薄,而是应分清人类与人工智能的主客体关系,人工智能在新闻业的任何应用都是人为创造的产物,人机始终是附属关系,人工智能对新闻业是辅助作用而绝非取代新闻人。

(二)、新闻业态重塑

人工智能在新闻生产各个环节的应用极大地改变了新闻业态,这使得媒体的智能化进程不断加速,并将重构媒体的生产模式与呈现方式,推动了新闻人的转

型。新闻业对从业者的数量和质量要求将会产生较大变化,低层次的新闻记者需求将大量减少,职业新闻人将需要更专业的新闻技能。这些都要求新闻从业者重新认识自己的核心价值,充分提高自身的新闻专业素养和数据技术相关能力,努力在深度分析与价值判断等方面发挥优势,将职业发展方向转移到调研报道、深度新闻等方面,提供更优质的内容,实现自身转型。

(三)、新闻人更专注人

人工智能在新闻业的应用上一大突破在于写,但与新闻人相比,其局限也在于写。前文弊端方面已分析过机器人记者的稿件通常标准化、模板化,这使得读者感到重复生硬,缺乏“人味”。这恰恰是新闻人需要发挥其价值所在的领域,新闻记者要充分发挥人的主观能动性,在新闻写作中结合理性与感性思考,将关注点集中在人身上。新闻人应该在体察人情冷暖、发掘背后的故事方面付出更多努力,生产有人情味、有温度、有深度的新闻内容。在西方新闻业有第四权力的说法,新闻业是重要的社会公器,“铁肩担道义,妙手著文章”,要想写出富有感染力的新闻,记者必须要有人文主义情怀,深刻领悟人性与人情,关注大众命运。

(四)、新闻人技能提升

人工智能可以起到辅助编辑的作用,但媒体机构的编辑流程常常是相通的,校对文本、润色文字、内容把关、稿件编排等无法由人工智能统一完成,机器人写作的内容往往也需要经过人工编辑的审核才能发布,编辑的把关人地位越加重要。此外,自动化生产的新闻稿件所需要的编辑与传统编辑也有着不同的职能需要。传统编辑主要负责信息、语言把关调整,而机器人记者生产的新闻一般没有基础语法、信息错误等,编辑无需在校对上发挥太多精力,更重要的是润色内容,丰富语言,减少读者的刻板印象。因此,机器人记者的应用也对编辑的能力提出了更高的要求。

人工智能多为快速模板化写作,深度报道,新闻评论,调查报道等需要多方信息来源。涉及大量素材收集分析的题材更需要新闻人的智慧与专业能力。人工

智能在新闻写作方面的应用使得记者有更多的时间投入到现场报道、深度报道、

评论、软新闻等方面的写作中。记者要注重培养自己的综合素质,开阔知识视野,丰富知识结构,写出优质的新闻作品。

四、结论

人工智能已经在国外的媒体行业大显身手,国内的AI+新闻进程也渐渐起步,人工智能在新闻业的应用使新闻生产更加高效便捷,用户画像更加清楚,新闻传播效果更加优化,它对新闻业的内容生产、传播方式、反馈互动等带来了革命性的影响。不过,人工智能的应用也存在一些问题与不足之处,关于两者的结合,新闻业应认识到AI与新闻的关系,主动拥抱新变化。

其实,人工智能与记者恰如机器与人类的联姻。理想的合作状态应该是因为使用了这些技术和机器的帮助,人可以把他的工作做的更好,人可以成为更好的人。“好的婚姻不是1+1=2,而是0.5+0.5=1”。单独来看,人与机器都有各自的局限与劣势,但当两者共生协同发展时,就成了“1”,这个“1”,可以是一篇新稿件、可以是一个新客户端、可以是一个新编辑部,也可以是一个新的时代。 

(责编:尹峥、赵光霞)

分享让更多人看到

人工智能下电视新闻的播说结合

摘要:随着人工智能技术的进步和新媒体的发展,电视新闻领域出现了从“播新闻”到“说新闻”的转变。“播新闻”讲究字正腔圆,但语态的距离感稍强;“说新闻”使得新闻播报生动活泼,但不适用于严肃的新闻题材。本文认为采用“播说结合”的播报方式不仅能够保证新闻的严肃性,也能提高新闻的传播效果,使其更易于被受众接受。为使“播”与“说”更好地结合,新闻播音员应秉持为受众服务的理念,在新闻播报中准确把握语气和重音,使播报节奏与受众的感官更加贴合,应因事而化、因时而变,根据实际情况选择合理的播报方式。

关键词:新闻播音;播说结合;人工智能;电视新闻

新闻播音,是指播音员主持人对广播电视稿件以及深度报道稿件进行有声语言的再创作。电视新闻播音,就是以电视作为媒介载体而进行的新闻播音,是可视觉化的“新闻”。以往的电视新闻播音员都是经过业务能力培训后持证上岗的真人主播,但随着科学技术的进步,媒体行业也在飞速发展,以大数据、机器学习、人工智能为技术先导的第四次工业革命的潮流势不可挡地汹涌而来。尤其是“AI合成主播”的出现与发展,对传统新闻播报方式产生巨大冲击。面对AI合成主播出现的新形势,时代对传统电视新闻播音员的业务水平也有了新的要求。以往根据稿件“看字出声”的“机械派”功能型主持人失去其职业优势,从业者的新闻播音样态开始从“播新闻”转变为“播说结合”。毫无疑问,练就“播说结合”的亲切语态是提升播音员主持人核心竞争力的重要方法。然而,对于“说新闻”的具体内涵,学界尚缺乏系统的深入分析。如何将“播”与“说”更好地结合,亦缺乏讨论。所以,本文立足播音学基本理论,结合案例进行分析,以探讨人工智能背景下电视新闻应如何“播说结合”。

一、从“播”新闻到“说”新闻

(一)时代背景

1949年建国以来,我国电视新闻节目的播报方式与时俱进。在早期的新闻节目中,播音员往往身着深色西装、表情严肃、坐姿端正,讲究字正腔圆地“宣讲式”播报,即使是口播也会运用较多的书面用语。这种新闻的播报方式在我国播音主持领域一般被称为“播新闻”。传统“播新闻”模式的主要特点是严肃性和威严性,但随着时代的变迁和新媒体新闻节目的发展,主持人的话语样态日渐轻松和随和化。近些年,一种新的新闻播报模式开始运用于各大卫视的电视新闻节目中,我们称之为“说新闻”。

(二)“说新闻”的内涵

所谓“说新闻”,就是讲究在播音技巧上缩小语境差异,减轻观众与主持人的身份差异感。与传统“播新闻”的播报样态相比,“说新闻”的播音方式语气更亲切,给人以交流双方是平等的、距离很近的独特感受。当今许多新闻节目的改进和成功都验证了:在新闻播报时加入“说新闻”的方式,会使新闻播音更平易近人、趣味性增强,信息传达的有效度也就随之增加,提高栏目整体收看率。

(三)案例分析

纵观国内“说新闻”模式的诞生与发展历程,主持人鲁豫堪称“说新闻”模式的探路者。在凤凰卫视担任主播期间,鲁豫主持的《凤凰早班车》节目里最早尝试了将“播”与“说”的形式结合在镜头前,创新地调整了新闻传递的状态。鲁豫的新闻播报风格非常成功地融合了“播说结合”的讲述技巧:她不是激情四射的宣传式播报风格,也不是严肃机械的古板语态,而是运用亲和力的播报方式,让受众感觉到她不是在播送新闻,而是对着邻里亲朋正在谈心。这种亲切自然的新闻播音风格令人耳目一新,也让当时的《凤凰早班车》深受广大观众喜爱。

二、新闻播音“播说结合”的优势与意义

“说新闻”的方式更具有人情味,能够营造出主持人自然地与受众沟通的良好氛围,这也是目前人工智能技术合成的AI主播所无法做到的。“播新闻”的态度和标准,则保证了新闻节目的准确性与主持人语意的清晰表达。在专题类新闻节目、调查类新闻节目、民生新闻节目中,由于内容定位的不同,就更加适合“说新闻”的口语表达方式。“播说结合”的语言样态,可以彰显播音员主持人的个性,通过亲切自然的表达,完成与观众更深层次的情感共鸣交流,从而增加主持人的魅力和节目的可观性。众所周知,新闻播音是一个再创作的过程,即使是同一篇新闻稿件,每个新闻主持人对于稿件的理解都会不同,采用的播音方式和重音划分也就因人而异;即使是同一位主持人,对不同类型的新闻稿件进行再创作时也不会采用同一种手法。但总体而言,目前我国新闻播报的样态无外乎以上讨论的两种———字正腔圆地“播新闻”,或者侃侃而谈地“说新闻”。前者虽字正腔圆,但由于过于正式的播报语气,往往会让观众们产生距离感,影响信息传递的效果;后者侃侃而谈,娓娓道来的语气相对更自然亲切,但对于某些严肃题材并不适宜。所以,只有将“播说结合”,才能让有稿新闻播音真正“锦上添花”。

三、推进“播”与“说”更好结合的方法和策略

(一)合理使用口头语言

当主持人的播音技巧符合观众的听觉习惯时,新闻信息就自然会更易被观众接受。因此,新闻播音中主持人应尽量采用便于观众理解的口语,将心比心,避免出现“至此”“假使”“倘若”这样书面化较强、不符合听觉习惯的词语。同时,多用单句和短句,少用关联词和复句,避免播音语言“晦涩难懂”给听众造成收听压力。但同时我们也要注意,作为一种大众化传播媒介,电视新闻具有很强的教育功能。身为新闻的“代言人”,新闻播音员的语言规范程度也代表了新闻节目的品质。因此,播音员在新闻播音时的口语化再创作也要适度,将书面语有机转化为口语的同时也要注重语言的规范化,通过专业技能的学习,保证播音时语音标准无误、归音吐字清晰自然,同时避免出现错别字、方言、病句等问题,力求将最规范、最标准、最自然的新闻语言展示给广大观众朋友。

(二)提前备稿,状态积极

良好的播音状态是提升播音整体效果的精神支撑,只有在麦克风前保持积极的播讲状态,有声语言的创作才会更富有感情,进而带给观众一对一“说新闻”的沟通感和重视感。那么,如何才能达到“说新闻”的良好状态呢?仔细备稿是基础。对稿件内容的理解越充分,播音过程中出现失误的可能性就越小;相反如果对稿件不熟悉、准备不充分,播音员主持人就会降低自信心,容易出现断句不当、语速不均等问题。因此,当播音员主持人接到新闻稿件后,一定要对稿件进行细致分析,划分出稿件的逻辑层次和内容主旨,这样有利于把握播音的主基调,做到有稿播音“胸有成竹”,把新闻真正地“说”好、“说”清楚。

(三)仪态端庄,表情自然

新闻播音员在屏幕前的表情是电视新闻视觉语言的一部分,也是目前市面上的AI合成主播很难完全模拟真人播音员主持人的重要部分。面对镜头,新闻播音员体态挺拔、保持微笑,并高度集中注意力。播音时眼里要有观众,有“说新闻”的交流感和倾诉欲,增强观众的信任感。主持人对新闻的理解一定要真实,表情自然真诚,而不能主观臆断地“表演式”播读。此外,在主持人的化妆问题上,节目组也要深思熟虑。端庄美丽、亲切大方的主播往往更有“观众缘”,符合大众审美。作为新闻主播,适当的淡妆可以修缮肤色,增加面部的层次感,提升精神面貌;但如果是过于艳丽的妆容将不仅会分散观众的注意力,也与新闻播音的庄重感不符,甚至还会使观众产生心理反感,影响节目的收视率和“说新闻”的预期效果。

(四)有机调整播音节奏

新闻播音节奏的缓急、语音的轻重格式,既是新闻播音员独特风格的一部分,也是影响新闻节目收视率的重要因素。有关调查显示,新闻播音时主持人采用每分钟280字左右的语速最容易让观众接受吸收。但不管是“播”还是“说”,新闻播音主持中所谓的“语速”只是一个相对的概念,具体的语速节奏把握要根据新闻内容、情感基调、节目定位等方面综合考虑。对于信息量较大、综合性较强、观众理解难度稍大的新闻选题,播音的语速就应适当地放缓,给观众一定的理解时间。另一方面,节奏的适度变化也是新闻播音的重要环节,由于稿件内容的差异性,新闻播音的语速安排也会跟着内容的不同有张有弛。倘若不重视播讲节奏的变化,在重点语句、重点段落、重点层次上没有强调,就会使新闻从头到尾都保持同一个节奏风格,观众就会感到枯燥乏味,甚至听不懂新闻的内容,这与我们以“说新闻”的亲切自然语态赢得观众喜爱的初衷是相背离的。

(五)准确把握重音基调

想要把一篇新闻“说”好,在备稿的过程中,新闻播音主持人就要依靠对稿件的理解和以往经验提前找准重音,这也是目前人工智能合成的AI主播最为薄弱的地方。人是感情动物,而人工智能是没有温度的,它们虽然可以模拟、延伸和扩展人的智能,替代人类的部分工作,但终究还需要有人在其中添加上属于人类的标记。语言重音就是专属于人类的标记之一。强调好重音,能够在电视播音时起到提纲挈领的引导作用,使观众产生明确的观看目的,从而把新闻“说”清楚、“播”明白。具体来看,重音的表达并不是单纯依靠放大音量、提高音强就可以,而是要处理好重音和非重音之间的虚实、轻重、抑扬、长短。重音的选择要在理顺全文、透彻理解的前提下慎重决定,既要“准”还要“精”。

(六)主动提升服务意识

随着媒体技术的迅速发展,AI合成主播们开始进入人们的视野,新闻节目的市场竞争也日益激烈。面对众多挑战,新闻节目主持人要树立服务意识,要知道受众是节目的观看者、新闻作品的参与者、传播效果的反馈者,他们对节目的评价将直接影响节目的收视率和未来发展。新闻主持人想培养好播音的对象感,就要提高自己的服务意识,体现人文关怀。新闻节目主持人要“以人为本”,多了解真实民生,体悟人民心中的所想所感,平时广泛积累,在播报中才会对事件有更多的认知与思考,才能更好地把握对象感、理解受众的感受,真正做到“说”新闻要求中的“以情动人”。毫无疑问,播音员主持人的首要功能当属准确无误地播报新闻。但如果只是站在这个部分理解,就会忽略更深层的问题———难道主播仅仅是一个“人肉喇叭”吗?答案是否定的,除了作为新闻的“传声筒”,主播更是一个人,是人类就会有情感、有共鸣、有触动。当主播播到哪里发生灾害了,会情不自禁地流下眼泪;看到社会上发生的不公平公正的事件,主播会愤怒评论……这些真人主播所拥有的感情表达和共情能力是AI合成主播们难以做到的。

四、新闻“播说结合”的注意事项

在“播新闻”的语言样态中,新闻主持人是媒体的代言人,讲究端庄严谨、字正腔圆、大声播报。其播报技巧和发音都严格按照科班教学的培训,其播报间隔短、语速适中清晰、意义表达透彻,发音效果更具有美感和力量性。而在“说新闻”的播报样态中,发声技巧则有更大的灵巧性和亲切感。“说新闻”的播报风格让播音员主持人在对稿件的处理上拥有了更多自主权,主持人可以运用情感语气调节的诸多技巧来进行播报风格的创新探索。对于“说”和“播”这两种新闻播报风格,我们应当有机融合、因时选择,不能偏激。在何种情况运用何种方式进行新闻播报,要根据实际出发。在以时政新闻为主题的栏目中,如央视的《新闻联播》,其节目的内容往往恢弘端庄,包括政治要闻、重大事件、国家法律颁布等,此类节目就应该以“播”为主,兼顾播说结合,这样的播音风格才能表达出央视媒体的权威性,更好地统一受众的信息,符合我国的国情。而在此之外,一些当地社会新闻、专题类新闻、新闻调查、综合性新闻,尤其是民生类综合新闻节目里,就适合以“说新闻”的播报方式为主,“播说结合”突出新闻主持人的人文关怀,通过亲切的语流达到与观众深层次的情感沟通,语言中也可以适当体现当地特色,拉近与大众的心理距离。

五、结语

电视新闻播音是一门精湛的语言艺术,其技巧也必然要在反复的实践中不断进行琢磨和发展。电视新闻节目的“说新闻”与“播新闻”两种语言样态的和谐共存,正是我国电视新闻节目不断改革突破的体现。在新闻播音领域“播说结合”,既加强了新闻节目的服务性、尊重受众意识,也保证了新闻的准确性和严肃性。但值得注意的是,假如只是为了“说新闻”而“说”,仅在言语表面上强调亲民的感觉而忽略了新闻内容本身,这就是本末倒置了。其实,新闻节目播音主持究竟是“播”还是“说”,都只是播报方式上的选择。新闻节目最重要的内核依旧是准确、高效地传递给受众更多有价值的信息,无论是何种播报方式都是为新闻内容服务的。社会文化的多彩面、新闻节目的丰富面,都需要不同的语言方式进行诠释。“说”和“播”都是新闻播音员的基本专业技能,两种语体之间自然交叉、渗透,才能达到完美的结合。纵观全局,在当前的众多新闻节目中,具有人文情怀、能够“播说结合”且语言风格亲切的智慧型主持人受到观众的广泛喜爱。未来,即使人工智能技术在媒体行业进一步普及推广,有思想有深度的“播说结合型”电视新闻主持人依然会被观众们认可,被AI合成主播替代的几率较低,职业发展受影响小。着眼未来,我们可以发挥AI合成主播在计算力、记忆力、学习力、持久工作力等方面的强大优势,与人类在这些方面的短板互补,将AI合成主播们塑造为传统播音员主持人的得力助手;而拥有情感和思想创造力的人类播音员主持人,会有更充足的时间和精力去创造更有人文情怀、具有人类灵韵和格局、能够激发人类想象和向往的有声语言作品,以“播说结合”的亲切语态,为受众带来美与智慧的双重享受,提高人们的文化生活质量。

参考文献:

1.张颂.中国播音学[M].北京:北京广播学院出版社出版,2003.

2.吴莉.浅谈新闻的播与说[M].北京:北京广播学院出版社,2000.

3.费兴海,郑惠钦.电视出镜记者在新闻报道中如何“到位”[J].新闻实践,2012(06):58.

4.姚喜双.口播经验[M].北京:北京广播学院出版社,2002.

作者:宋嘉玉单位:陕西师范大学新闻与传播学院

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇