中国逐鹿人工智能,哪些关键技术被国外垄断着怎么破
原标题:中国焦点面对面:中国逐鹿人工智能,哪些关键技术被国外垄断着?怎么破?当前,新一轮科技革命深入演进,数字时代扑面而来,全球主要国家在数字经济领域展开激烈角逐。关键数字技术创新,中国已经取得了哪些优势?在当前国际环境下,面临哪些难题要“啃”?
作为引领未来的战略性技术——人工智能是中国提高经济与科技水平、提升国际竞争力的重要算力基础设施,目前各地掀起了人工智能计算中心的建设热潮。人工智能计算中心如何才能发挥出最大价值?中国人工智能计算中心技术自主可控水平如何?哪些关键技术被国外垄断着?近日,中国工程院院士、清华大学计算机科学与技术系教授郑纬民接受“中国焦点面对面”专访,进行权威解读。
访谈实录摘编如下:
给三句话,它就能写50集连续剧
记者:近期,中国“人工智能计算中心订单爆单”的话题引发不少关注。武汉市5月底建成的第一个人工智能计算中心,刚开张就天天客满,满负荷运行,目前预约已经排到半年以后。人工智能(AI)计算中心是算什么的?为何市场需求这么强?
郑纬民:人工智能有多种多样的应用场景,需求很旺。根据场景可以分为三大类应用:
一、图像检测、视频检索类。可以用在安防、医疗诊断、自动驾驶。核心是卷积网络,这一类应用落地做得很好,已经起到了很好的作用。
二、决策类。比如交通规划等,这个类型也已经起到了很好的效果,核心是强化学习。
三、自然语言处理类。比如搜索与推荐,智能人机接口,核心是Transformer。在应用方面,语言翻译,把中文翻译成英文,英文翻译成日文等,问什么问题都能回答,这样的机器需要非常大才行。又比如生成文本摘要,你给它三句话,能给你写成50集电视连续剧。
这三类应用的需求很多,所以才会(出现订单)排队排到半年后这样一个情况。
记者:目前流行的人工智能计算中心与传统数据中心有何不同?日前,工信部印发《新型数据中心发展三年行动计划(2021-2023年)》,《行动计划》中定义的新型数据中心和人工智能计算中心是一回事吗?
郑纬民:传统数据中心主要由通用CPU架构的服务器集群构成。近年来,随着人工智能的发展,数据中心也逐渐包括了很多具有高性能人工智能算力(GPU或人工智能加速器)的机器。
而人工智能计算中心是什么呢?主要由具有高性能人工智能算力(GPU或人工智能加速器)的机器组成。因此可以说,数据中心概念的覆盖面会更大一些,包含了人工智能算力。
中国技术自主可控吗?
记者:人工智能和大数据中心都属于“新基建”,当前全球主要国家都在大规模建设人工智能、大数据基础设施,有人说未来人工智能算力将会像水和电一样,成为一种公共基础资源,对此您怎么看?中国建设人工智能基础设施有哪些核心优势?中国人工智能计算中心的技术自主可控水平如何?哪些关键技术被国外垄断着?
郑纬民:从全球公有云市场的快速发展可以看出,通用算力和人工智能算力都是公共基础设施,是一种重要的趋势,过去通用的算力是基础设施,现在把人工智能算力也作为基础设施,正在被越来越多的用户认可。
但是我们也要注意到,算力作为基础设施,需要相关的数据作为基础,把机器包括普通的机器,包括人工智能的机器都放在云上,不少行业的数据隐私性和保密性,对其上云仍然有很大的限制,怎么把数据放在云上是一个值得考虑的问题。
中国在建设人工智能基础设施上的主要优势,是政府主导的投入较多。但在市场化建设和运营,整体人工智能算力基础软硬件的技术水平和自主可控程度上,还与美国有一定的差距,如,编程框架目前以TensorFlow和Pytorch为主。智能计算芯片方面,华为昇腾和寒武纪在人工智能算力体系结构上取得了很好的进展,但受制于先进芯片制程,或在软件生态环境上仍然与Nvidia产品有明显差距,仍然需要尽快发展。
记者:“人工智能计算中心订单爆单”话题之外,近期鹏城实验室大科学装置“鹏城云脑II”接连斩获多项国际奖项,也受到业界关注。作为“新基建”,它们可以为科研创新项目提供哪些强大支持?在赋能行业应用等方面有哪些价值?
郑纬民:在科研创新方面,目前一个非常重要的趋势是HPC(高性能计算)+AI(人工智能),就是把传统基于模拟方法的高性能计算应用与AI模型结合起来。解决过去解决不了的问题,或是把过去耗时很长的问题加速成千上万倍。
这方面,AlphaFold(DeepMind人工智能系统)给出了非常好的例子,用人工智能方法来协助进行蛋白质结构预测,解决了过去使用纯科学计算模拟方法由于计算量过大无法解决的问题。HPC和AI结合是我们创新的一个非常明显的优势。
在赋能行业方面,鹏城实验室可以为智慧城市提供强大的人工智能算力,承载智慧城市应用中的智能交通、智能公共卫生等功能,鹏城云脑II也在开展“一带一路”语言的自动翻译,为“一带一路”(倡议)提供重要支持。
大模型方面,目前主要在自然语言处理效果方面取得了比较大的进展,但具体应用领域还在探索之中。
记者:各界都认为依靠人工智能实现智能转型是必修课,但目前中国产业主体存在着发展着力点分散等问题,从这个角度来看,政府统筹建设大规模的人工智能基础设施是否是一个比较好的解决企业转型的路径?大规模、集约型基础设施有哪些独特优势?
郑纬民:目前,各地政府在建设人工智能基础设施上有很大的积极性,对本地产业的人工智能赋能,应该说能够起到很好的推动作用。但也要注意,要因地制宜地分析本地产业人工智能化的路径和节奏。
大规模、集约型基础设施,主要是在完成超大规模模型的训练方面起到关键作用。目前看大模型确实是重要的发展趋势,但人工智能算法的规模大小是否有局限性仍是一个开放的问题。
各地为何掀人工智能计算中心建设潮?
记者:当前国内掀起了人工智能计算中心建设热潮,有20多个城市在规划建设人工智能计算中心,目前中国人工智能计算中心运营和落地情况如何?
郑纬民:从武汉和鹏城云脑的经验看,目前的人工智能计算中心运行情况还是很好的,需要机时的用户很多,需要排很长时间的队才能用到机器,这也体现出国内用户对于人工智能算力的强劲需求。
所以我觉得,建设一个人工智能计算中心为当地的企业、研究单位、高等院校等进行创新赋能,都是会起到很大作用。
记者:作为各方资源极度聚合的庞大基础设施,人工智能计算中心建设之后的运营同样是一大命题,在这点上您有什么建议?如何科学运营才能让各地人工智能计算中心发挥出最大价值?人工智能计算中心有哪些运营评估维度?
郑纬民:我觉得特别要注重数据治理。算力提供了,数据该怎么提供?
随着《个人信息保护法》的出台,对数据的使用增加了很多合规性要求,作为地方政府主导建设的人工智能计算中心,除了算力以外,是否能够提供重要价值的相关的数据。如何在既遵守《个人信息保护法》,又能够让智能算法获得所需要的数据是人工智能计算中心运营中的一大课题。
再有就是运营要注意财务上的可持续性,一定要收费运行。避免用户无偿大量使用资源,这样看起来利用率很高,但很可能算的东西没有价值。对特殊的需要赋能支持的用户,可以采用发放机时券的方式来支持。这方面,过去不少超算中心,比如广州超算、无锡超算已经有很成熟的体系,可以借用。
人工智能计算中心的运营评估可以包括利用率、投资回报率、功耗以及应用效果等。其中,利用率我想多说一点,并不是100%的利用率是最好的,因为利用率越高,意味着作业排队时间越长,因此一般来说60%-70%左右的利用率就是个很好的平衡了,不必追求接近100%的利用率。
记者:结合数字经济和产业发展趋势,您认为未来人工智能计算中心的发展方向如何,会不会在一段时期的建设爆发后又迅速转入冷淡期?
郑纬民:人工智能与产业的结合刚刚开始,我对人工智能在各行各业的应用扩展还是充满信心的,我认为人工智能计算中心还是有很大的发展空间。对我们科研的创新,对企业的赋能,对人民生活的改善都会有很大的好处。
中国有能力“从头先进”
记者:中国“十四五”规划和2035年远景目标纲要提出,加强关键数字技术创新应用,加快推进基础理论、基础算法等研发突破与迭代应用。关键数字技术创新,中国已经取得了哪些优势?在当前国际环境下,面临哪些难题要“啃”?哪些与人工智能计算中心密切相关?预计未来发展趋势如何?
郑纬民:中国在基础理论和算法上还很难谈优势,但是基本上可以跟随第一梯队,就是美国人提出来的算法和理论,我们很快能够跟上并加以改进应用。
整个数字技术中,除了硬件的芯片制造产业链,我想特别强调,中国在基础软件方向还是有很多的课要补。我们现在大量的软件,包括操作系统、数据库、编译器、人工智能编程框架等,不是自己从头构建的,而是在开源基础上修改的。
应该说,能够在开源软件基础上进行大量修改,已经证明我们取得了很大的进步,对我国数字技术的自主化具有重大意义。但是我们如果对自己提出更高的要求,就必须拥有自主从头构建先进的基础软件的能力。
这里的“先进”是指,我们构建的新软件要比现有的软件在性能和功能方面有代差的优势。这方面产业界,华为的鸿蒙操作系统、人工智能编程框架MindSpore等给出了很好的范例。我们学术界,清华大学的时序数据库、图计算系统、储存系统也取得了一定的进展,我们期待国内的产业界和高校能够更加重视从头构建先进的基础软件,为中国和世界的数字产业界提供更多革命性的基础系统软件。因此,我特别强调“从头先进”这四个字,“从头”就是我们从头做,“先进”就是比现有的软件好10倍20倍,我们有这个能力,希望通过这个办法,来改善我们国家IT行业的现状。
(责编:曹淼、李源)分享让更多人看到
15张图表带你速览2023人工智能最新趋势
「中国人工智能研究论文总数已经超过了美国,成为全球第一」
「人工智能初创企业获得的资本青睐越来越少」
「主流NLP系统也存在种族歧视」
这些话题都出自斯坦福大学Human-Centered人工智能研究所近期发布的「2021年人工智能指数报告」。报告内容覆盖AI研发、技术性能、经济、教育、道德、多样性以及各国相关政策和国家战略等大量内容。
这份报告长达222页,包含大量数据和图表,我们从中精选了15份图表,带你速览这份斯坦福「2021年人工智能指数报告」,了解2021年人工智能发展现状。
作者|ElizaStrickland
编译|机器之能
「2021年人工智能指数报告」由斯坦福大学Human-Centered人工智能研究所,以及来自哈佛大学,经济合作与发展组织,thePartnershiponAI合作组织和SRIInternational的11名专家组成的指导委员会共同编制。这份报告引用了大量AI研究数据,引用了包括:arXiv的AI研究数据,Crunchbase的资金数据,以及对BlackinAI和QueerinAI等团体的调查。
报告对2021年度人工智能最新的研究趋势和进展进行了总结,并分析了资本、政策对AI技术的影响,以及深度学习、图像识别、语言识别等AI主要子领域的研究。
一
人工智能的盛夏
人工智能研究工作正处在爆炸增长期:2019年全球发布了超过12万篇人工智能研究领域的同行评审论文。自2000年以来,人工智能领域论文在同行评审论文中的占比,从0.8%一路攀升至2019年的3.8%。
二
中国在人工智能研究领域取得显著成就
自2017年中国研究人员发表的同行评审论文首次超过欧洲以来,中国的人工智能研究论文数量持续上升。到2020年,中国研究人员发布的人工智能研究论文在权威期刊的引用率已经领先全球。
AI指数指导委员会联合主任JackClark表示,这些数据对中国来说似乎是「学术成功的指标」,也在一定程度上映射出不同国家在人工智能生态体系建设方面的现状。他认为研究论文更像是一种学术权威认证,一个领域的学术性越弱,其行业实用性可能会越强。他指出:「中国有获得期刊出版物的明确政策,政府机构在研究中发挥更大的作用,而在美国,大部分这方面的研发主要集中在企业内部。」
三
快速训练=更好的AI
MLPerf以训练速度与硬件的关系为基础,分析了机器学习的系统性能,客观地对机器学习系统性能进行排名。通过对各种图像分类器系统在标准ImageNet数据库上进行培训,并根据训练时间进行排名。2018年,训练最佳系统需要6.2分钟;2020年,培训最佳系统需要47秒。这一进步也得益于近年来机器学习专用芯片的快速发展。
报告认为,硬件加速对机器学习的影响至关重要。系统训练耗时几秒和几小时的差别巨大,这种差异直接影响着研究人员的想法,以及研究的类型和数量,以及它可能影响到的研究风险。
四
AI不能理解「喝咖啡」?
在过去的几年里,人工智能在静态图像识别方面的进展突飞猛进,而计算机视觉未来必将朝着视频识别的方向发展。研究人员正在构建可以从视频剪辑中识别各种活动的系统,因为如果将机器视觉应用到现实世界(例如自动驾驶汽车、监控摄像头等),这种类型的识别可能会大有用处。计算机视觉性能的基准之一是ActivityNet数据集,其中包含来自2万个视频的近650小时镜头。在其中显示的200项日常生活活动中,人工智能系统在2019年和2020年都很难识别「喝咖啡」这项活动。这似乎是一个主要问题,因为喝咖啡是所有其他活动的基本活动。无论如何,这是未来几年值得关注的领域。
五
自然语言识别需要更难的测试
自然语言处理(NLP)的迅速崛起似乎遵循了计算机视觉的轨迹,在过去十年中,计算机视觉从学术领域的分支专业发展成为广泛的商业部署。今天的NLP也由深度学习驱动,JackClark认为,NLP继承了计算机视觉工作的策略,例如对大型数据库的训练和特定应用程序的微调。他说:「我们看到这些创新非常迅速地流向人工智能的另一个领域。」
JackClark表示,衡量NLP系统的性能正在变得很棘手,学术界一直在研发更为困难的AI测试系统和指标,但无论何种系统总会在六个月内出现新的AI击败它。这份图表显示了两个版本的阅读理解测试SQuAD的表现,人工智能语言模型必须根据一段文本回答多项选择题。2.0版通过包含无法回答的问题来使任务更加困难,模型必须识别这些问题,并且不回答。一个模型在第一个版本上花了25个月才超过人类的性能,但另一个模型只花了10个月就完成了更艰巨的任务。
六
NLP也存在「种族歧视」
语音识别和文本生成等任务的语言模型总的来说已经非常完善了。但即便在主流的成熟商业NLP系统中仍存在认知偏差,如果这些问题不得到解决,则可能会严重影响这些技术的商业应用。
例如AI系统也存在种族歧视问题,图表显示了几款较为成熟的商业化语音识别程序的错误率。
虽然系统存在认知偏差,但大多数研究人员只注重系统性能,而很少有人会去注意到这种偏差。这个问题在未来很可能会阻碍各种形式的人工智能发展,包括计算机视觉和决策支持工具。
七
AI就业市场全球化
据LinkedIn数据显示,从2016年到2020年,巴西、印度、加拿大、新加坡和南非的人工智能岗位增长最快。而这并不意味着这些国家的绝对就业机会最多(美国和中国仍占据AI就业机会的首位),但这些国家对人工智能的投入将会对人工智能技术以及整个社会的发展产生积极影响。LinkedIn发现,2020年的全球疫情并未对AI领域的工作岗位招聘造成丝毫影响。
值得注意的是,印度和中国的人才对LinkedIn的应用并不广泛,因此这些国家的人才市场状况在LinkedIn上的数据并不具有充分的代表性。
八
企业对AI的投资热度「不想停,也不会停」
自2015年以来大量资金持续涌入人工智能领域。2020年,全球企业对人工智能的投资飙升至近680亿美元,比前一年增长40%。
九
创业狂潮接近尾声
从前面一张图表可以看出,AI领域的企业投资持续增长,但在增长的背后,却是增速逐年放缓。这张图表显示,AI初创企业得到的投资越来越少。虽然疫情可能对初创企业的活动产生了影响,但AI初创企业数量下降的明显趋势始于2018年,从好的方面来看,这似乎是行业正在逐步走向成熟的信号。
十
新冠病毒带来的影响
虽然人工智能的许多趋势在很大程度上没有受到全球疫情的影响,但这张图表显示,2020年的AI投资更偏向于全球应对新冠病毒中发挥重要作用的单位。制药相关公司投资的激增就很好的说明了这一点。而对教育技术和游戏的投资增长,也与2020年疫情隔离导致人们把更多时间花费在电脑前有直接关系。
十一
风险?有风险吗?
大量企业在电信、金融服务和汽车等行业稳步增加人工智能工具的应用。然而,大多数公司似乎不知道或不关心这项新技术带来的风险。麦肯锡在一项研究中调查了企业对AI应用相关风险的认知,只有网络安全风险受到了半数以上受访者的关注。与人工智能相关的伦理问题,如隐私和公平,是当今人工智能研究领域最热门的话题之一,然而这些问题并未引起企业的足够重视。
十二
AI领域的博士们正在涌入企业
AI领域的学术工作有限,虽然高校增加了本科生和研究生级别的人工智能相关课程,终身制教师职位也相应增加,但学术界仍然无法吸收逐年新增的AI博士。这份图表仅代表北美地区的AI博士毕业生,这些毕业生中的绝大多数正在流向AI企业。
十三
AI的伦理问题
如前所述,很多公司对人工智能的伦理问题重视程度不足,但研究人员对此越来越关心。许多团体正在研究人工智能系统的不透明决策(称为可解释性问题),嵌入偏见和歧视,以及隐私入侵等问题。这份图表显示了人工智能会议上伦理问题的相关论文正在逐年增加,JackClark认为这非常值得高兴。他指出,由于有这么多学生参加这些人工智能会议,几年后,将有大量关注AI伦理的从业者进入行业。
然而,除了会议文件的增加外,在这一问题上业界并没有其他突出的进步。报告强调,人工智能系统中的偏差量化测试才刚刚开始出现。JackClark说,「这些评估体系,就像人工智能科学领域的一个新分支。」
十四
多样性问题(1)
解决人工智能系统中嵌入的偏见和歧视的一种方法是确保构建人工智能系统的群体的多样性。这不是一个激进的概念。然而,报告称,在学术界和行业,人工智能劳动力「仍然以男性为主」。这张图表来自美国计算机研究协会年度调查,数据显示,在北美人工智能相关的博士课程的毕业生中,女性仅占约20%。
十五
多样性问题(2)
来自同一调查的数据讲述了一个关于种族/民族身份的类似故事。这个问题在即将毕业的博士生中似乎相当明显,有许多优秀的科学、技术、工程和数学项目都以女孩和少数族裔为重点。这使我们想到了AI4ALL组织,或许社会可以更加关注这些群体,给他们更多的资助,或者以某种方式参与其中。
参考链接:
https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report_Master.pdf
https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/the-state-of-ai-in-15-graphs
机器之能面向正在进行数字化转型及智能化升级的各领域产业方,为他们提供高质量信息、研究洞见、数据库、技术供应商调研及对接等服务,帮助他们更好的理解并应用技术。产业方对以上服务有任何需求,都可联系我们。
zhaoyunfeng@jiqizhixin.com
原标题:《15张图表带你速览2021人工智能最新趋势》
阅读原文
中国科学院《人工智能前沿研究与产业发展报告2023》重磅发布!
2021/12/2810:53中国科学院《人工智能前沿研究与产业发展报告2021》重磅发布!C114通信网人工智能是数字经济新时代下的重要生产力,利用人工智能技术打造数字经济新引擎更是当下的发展风口。12月25日,中国科学院人工智能产学研创新联盟年会暨第三期人工智能创新大讲堂在北京举行,人工智能领域技术、产业等各方专家汇聚一堂,共同探讨如何用人工智能技术赋能数字经济新时代。会上重磅发布了中科院联盟人工智能年度报告和年度人工智能亮点成果。
会议现场,中国科学院院士、中科院软件所研究员冯登国,中国工程院院士、北京邮电大学教授张平,中国科学院科技战略咨询研究院院长潘教峰,中科院人工智能产学研创新联盟联合理事长、中国科学院自动化研究所所长徐波,中科院人工智能产学研创新联盟联合理事长、科大讯飞董事长刘庆峰等业界领军人物共话行业动态,会议由科大讯飞高级副总裁、研究院院长胡国平主持。
前沿动态分享新锐观点迭出
“十四五”规划纲要提出,要以数字化转型整体驱动生产方式、生活方式和治理方式变革,充分发挥我国数据、应用场景的优势,促进数字技术与实体经济深度融合。
当前,人工智能已成为新一轮科技革命和产业变革的重要驱动力量,利用人工智能推动产业高质量、现代化、智能化水平提升,是我国人工智能行业知名专家和领军企业家的矢志所在。
“以人工智能为代表的新一代信息技术,正深刻改变着世界发展格局。”作为联盟战略咨询委员会主任,中科院科技战略咨询研究院潘教峰院长在致辞中提出,当下各国争相竞力,谋占技术高地,中国也在不断发力,已形成了从中央到地方、从技术到产业纵横结合的人工智能发展体系。
他表示,从2017年成立至今,中国科学院人工智能产学研创新联盟多次承担国家重大任务,推动产学研合作及技术成果相继孵化落地。“我们期待联盟能够携手社会各界力量,紧密合作,共同推动中国科学院乃至中国人工智能事业的发展。”
中国科学院控股有限公司索继栓董事长在致辞中表示,加快发展新一代人工智能是推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源。他对联盟提出了三点建议:“一是坚守源头核心技术创新,实现关键技术自主可控;二是着力打造人工智能产业新生态,形成国家需求引导、产业集群引领、协同创新的新模式;三是护航数字经济行稳致远,重塑百花齐放、活力迸发的平台经济健康生态。”
中国科学院冯登国院士在《网络空间安全技术发展态势》主题演讲中将当前网络空间安全技术发展态势概括为以下几点:人工智能技术已成为网络安全技术的创新源泉;量子计算机等新型计算机技术促使高强度安全技术快速发展;5G落地应用与6G快速推进,牵引了网络安全技术高速发展;区块链为网络安全技术创新发展注入新的活力;大数据和云计算技术引领数据安全技术创新发展。
在《AI使能6G演进及应用》主题演讲中,中国工程院张平院士分享对AI+6G未来发展方向的看法。他认为,6G将走向人机物灵充分联结、虚实结合、智慧涌现的泛在智简网络。而泛在智简网络既作为智慧化的服务基础设施和创新生态的数字化材料元素,又因其引入的人灵境协同,将提供先进智能涌现、创新创造赋能的生态环境。同时,灵境协同增强后的个人、组织、城市、国家,将以守仁求和为理念,开展价值共创,共建人类命运共同体。
科大讯飞董事长刘庆峰以《产学研合作推动人工智能生态繁荣》为题发表主题演讲,分享了当前以科大讯飞为代表的企业在语音识别、机器翻译、自然语言理解等人工智能技术方面的进展。他指出,人工智能下一步研究的四个主要方向包括无监督训练、多模态融合、脑科学交叉研究、人机协同进化。
当前,人工智能要切实解决社会重大命题,必须要从单点应用突破到系统性创新。以教育领域为例,科大讯飞正切实用因材施教的系统性创新助力教育“双减”,使得学生无效练习、作业时间、焦虑情绪均取得显著降低,提升学习兴趣。
刘庆峰强调,人工智能是支撑幸福中国和工业强国的必然选择,而生态的繁荣决定了未来人工智能产业全球竞争格局,也是产学研联盟的重要基础,科大讯飞也期待着继续与联盟一同创新开放、合作共赢。
人工智能前沿研究与产业发展报告重磅发布
产业发展未来可期
2021年是“十四五”规划和第二个一百年奋斗目标的开局之年,政策加持之下,人工智能势头猛劲,数字经济方兴未艾,人工智能产业迎来了助推浪潮。年会现场,中科院战略咨询院张凤副院长代表联盟发布年度报告——《人工智能前沿研究与产业发展报告2021》。报告从人工智能国内外战略态势、技术趋势、产业发展与应用以及中科院研究亮点成果等四个方面,回顾并总结了2021年全球人工智能前沿研究与产业发展动态。
报告认为,2021年世界主要国家均已进入全面推进人工智能战略的阶段,人工智能监管已成为各国人工智能发展的重中之重,人才培养是各国AI发展的核心竞争力,AI基础设施的重要性愈发凸显。
针对中国人工智能发展现状,报告总结了五项特点:优化人工智能战略布局,推动产业融合发展;夯实学科建设基础,注重人工智能区域人才;完善人工智能标准体系,制定相关法律规范;加快人工智能政策落地,开展实验区规划建设;开展人工智能发展研究,为产业发展建言献策。
对于产业发展态势,报告分析认为,人工智能产业规模持续扩大,预计到2025年末中国人工智能核心产业规模有望达到4000亿。在智能语音市场,科大讯飞竞争优势明显,市场份额稳居第一。人工智能企业持续蓬勃向上,人工智能产业集群化现象明显。
应用环境向好,人工智能发展如虎添翼,一大批智慧应用也瞄准未来科技和产业发展的制高点成功落地应用,并取得显著成效。
现场,中科院联盟发布年度人工智能亮点成果,13家单位的14项成果入选,分别为:
自动化所--工业外观检测自动化技术方案,微电子所--标算研深度学习平台V1.0,上海微系统所--免开颅微创植入式高通量柔性脑机接口,重庆研究院--人工辅助验证智慧安保系统,深圳先进院--城市安全风险多维立体感知与应急处置协同,合肥研究院--智慧党建数字化平台,科大讯飞—讯飞开放平台,国科投资推荐的--智能配送机器人,科大讯飞—智医助理,中科曙光--新一代人工智能计算平台,寒武纪—思元370芯片,中科信息—人大智能化信息平台,云从科技—人脸识别技术,汉王科技--汉王视频智能分析平台。
现场,中科院自动化所研究员王金桥、中科院上海微系统所副所长陶虎、中科曙光高级副总裁任京暘聚焦各自前沿研究成果带来了技术落地应用进展分享。
拥抱人工智能,赋能数字经济,此次联盟年会和大讲堂不仅让国内外人工智能发展的最新政策、战略和成果得到分享,还为政府、企业、院所和公众搭建了对话平台,促进人工智能合作“生态圈”生生不息。相信在中国科学院人工智能产学研创新联盟的推动下,人工智能技术将成为强劲引擎,跑出经济发展加“数”度。
给作者点赞0VS0写得不太好中国科学院《人工智能前沿研究与产业发展报告2021》重磅发布!
版权说明:凡注明来源为“C114通信网”的文章皆属C114版权所有,除与C114签署内容授权协议的单位外,其他单位未经允许禁止转载、摘编,违者必究。如需使用,请联系021-54451141。其中编译类仅出于传递更多信息之目的,系C114对海外相关站点最新信息的翻译稿,仅供参考,不代表证实其描述或赞同其观点,投资者据此操作,风险自担;翻译质量问题请指正。
人工智能发展历程及未来发展趋势
4
低迷发展期:20世纪80年代中—90年代中
随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
5
稳步发展期:20世纪90年代中—2010年
由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化
6
蓬勃发展期:2011年至今
随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长新高潮
02
人工智能发展现状
全球各国充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷着重发展,抢滩布局人工智能创新生态。
国际形势
世界主要发达国家把发展人工智能作为提升国家竞争力,维护国家安全的重大战略,各国人工智能战略与政策各有着重点。
2013年以来,美、德、英、法、日、中等国都纷纷出台人工智能战略和政策。各国人工智能战略各有侧重,美国重视人工智能对经济发展、科技领先和国家安全的影响;欧盟国家关注人工智能带来的安全、隐私、尊严等方面的伦理风险;日本希望人工智能推进其超智能社会的建设;中国人工智能政策聚焦于实现人工智能领域的产业化,助力中国的制造强国战略。
因各国科学技术水平和实际国情存在重大差异,因此各个国家人工智能政策在研发重点和重点应用领域存在极大不同。
国内形势
近年来,中国人工智能产业发展迅速,语音识别和计算机视觉成为国内人工智能市场最成熟的两个领域。自2015年开始,中国人工智能产业规模逐年上升,据中国信通院数据,2015年到2018年复合平均增长率为54.6%,高于全球平均水平(约36%)。
下面从多个方面描绘中国人工智能的发展面貌:
01
论文产出:中国人工智能论文总量和高被引论文数均世界第一,人工智能领域论文的全球占比从1997年4.26%增长至2017年的27.68%,遥遥领先其他国家;高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国的高被引论文呈现出快速增长趋势,并在2013年超过美国成为世界第一
02
专利申请:中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的74%。专利技术集中在数据处理系统和数字信息传输等领域,其中图像处理分析的相关专利占总发明件数的16%。电力工程也已成为中国人工智能专利布局的重要领域
03
人才投入:中国人工智能人才总量居世界第二,但是杰出人才占比偏低。截至2017年,中国的人工智能人才拥有量达到18232人,占世界总量的8.9%,仅次于美国(13.9%);高校和科研机构是人工智能人才的主要载体。但按高H因子(又称H指数,用于评价科学家的科研绩效)衡量的中国杰出人才只有977人,不及美国的五分之一,排名世界第六
04
企业规模:中国人工智能企业数量为全球第二,北京是全球人工智能企业最集中的城市。截至2018年6月,全球共监测到人工智能企业总数达4925家,其中美国人工智能企业数2028家,位列全球第一
05
风险投资:中国已成为全球人工智能投融资规模最大的国家;根据2013年到2018年第一季度全球的投融资数据,中国已在人工智能融资规模上超越美国成为全球最“吸金”国家,但是在投融资笔数上,美国仍然在全球处于领先地位
06
产品应用:中国人工智能市场增长迅速,计算机视觉市场规模最大;应用范围广泛,语音和视觉类产品最为成熟。伴随着算法、算力的不断演进和提升,基于语音、自然语言处理和视觉技术,有越来越多的应用和产品落地
03
人工智能发展趋势
人工智能总体将向着规模化、安全化、健康化趋势发展;从全球层面来看,新一代人工智能产业将呈现四个发展趋势。
产业规模趋势
各国政府和产业界投入日益增长,人工智能技术的进一步成熟将带来更多的新产品、新服务,人工智能驱动的自动化将提升全要素生产率增长,产业规模将爆发式增长。
国际竞争趋势
近年来,世界各国紧密出台人工智能规划、政策和投资计划,从国家战略层面强化人工智能布局,在新一轮国际科技竞争将展现出新局面。中国未来将更加深度参与全球人工智能产业合作竞争,成为人工智能的重要推动者。
技术趋势
类脑智能蓄势待发,目前已有多国开始了“脑科学研究”;量子智能也将加快孕育,已成为全球公认下一代计算技术,将为人工智能带来革命性发展机遇。
风险趋势
随着人工智能逐渐普惠社会,人工智能安全风险和社会治理等问题将逐步提上日程。
亿欧智库发布“2018年中国人工智能产业发展城市排行榜”,从城市的企业规模、政策基础、学术基础、产业基础、资本环境五个层面测评城市发展人工智能的实力和前景
北上深杭牢牢占据AI城市实力第一梯队的位置,其他城市在企业规模、资本环境等方面远不及第一梯队城市,但已处于起步发展阶段,在AI商用化阶段有机会快速提升自身实力。返回搜狐,查看更多