博舍

复旦人工智能教授:未来3 人工智能不能代替的职业

复旦人工智能教授:未来3

今年5月1日国际劳动节当天,

第一波AI失业潮到来,

科技巨头IBM公司宣布暂停7800人的招聘,

称这些岗位的工作将由AI取代,

此前3月底,高盛集团发布报告,

预计全球将有3亿工作岗位会被生成式AI取代,

其中律师和行政人员受影响最大。

AI生成美女图,以假乱真

AI超现实创作:上班族在地铁里看金鱼、瓜农川普

在中文网站,因为ChatGPT和Midjourney,

也陆续出现了第一批失业的设计师和文案编辑。

未来3-5年,什么样的工作会被AI取代?

哪些行业是相对安全的?

如果想要成为AI工程师,需要什么样的能力?

以及文科生可以转AI吗?

一条采访了复旦大学人工智能专家张军平教授,

针对以上问题做了解答。

自述:张军平

编辑:刘亚萌

张军平教授行走在复旦校园里

ChatGPT-4的出现是令人震惊的,我们做AI研究的,知道迟早会有这么个东西出来,不过没想到这么快,以及跑出来的性能这么好。

3月份以来,我朋友圈里很多人都在晒ChatGPT-4的聊天截图,非常狂热。再加上MidjourneyV5一起,大家都很担心,自己的工作会不会被AI取代?

人机共存场景

一条编辑部经由Midjourney生成

这个担忧是合理的。

ChatGPT-4最令人惊艳的一点,是它的“涌现功能”,就是当它训练的数据量足够大的时候,这个复杂的系统,就诞生了其各组成部分所没有的属性——接近人类的“思维模式”和“智力表现”。

里面有个思维链,帮助ChatGPT-4去“链式思考”。就像我们有时候做作业,到了某个节点,做不出来,然后家长说“你再想一想”,其实也没说什么,但是这个学生就觉得我可能还有一些东西没掌握,通过慢慢想和一点点的引导,就突然把一个正确答案得出来了。

所以你在对话框里,让ChatGPT-4“再想想”,它也会再给你一个改进过的答案,大家就会觉得很惊讶。

因为AI对生产效率的提高,一个优秀的人才可以做很多工作,由一小部分人运营一个大市值公司的现象,以后可能会越来越多。你看Midjourney就是个典型,员工只有11人,但是年营收1亿美金。

AI生成“失火”的白领工位

细看来,未来3-5年内容易被取代的工作,有两个标准:脑力工作和简单易重复。确实白领受影响比较大。

笔译和客服已经被替代得差不多了。

我自己的生活里,现在接快递电话,好多是机器人。国内科研工作者写论文要翻译成英文,以往可能要找国外的母语翻译者,以后说不定可以尝试ChatGPT-4翻译,它速度快,把领域内的专有名词限定下,应该会很不错。

Office365里嵌入ChatGPT,能自动生成简报、表格

接下来最危险的是办公室文员、人力资源,还有做财务报表的。微软Office365已经把ChatGPT嵌入到Word、PPT和Excel里了,可以自动生成简报、PPT和表格,你以往费心学习的这些Office技能价值就下降了。

有个段子说“财务不会被AI替代,因为它不能做替罪羊”,虽然有点道理,但生产效率提高了,意味着公司对财务的人才需求压缩,你的就业空间就变小。

另外还有律师行业。我们知道律师很重要的一块工作是熟练法条和查找以往的案例,查找的过程是非常耗时间的,律所里应该专门有一部分人做这块工作。

换成AI的话,它把所有的案例都收过来,ChatGPT用对话的方式给你,速度非常快,那么以前做这部分工作的律师,就不再需要了。

程序员们在工作

一条编辑部经由Midjourney生成

ChatGPT-4也会生成代码的,部分程序员会受到影响,尤其是前端。因为前端设计比较模块化,并没有涉及到很复杂的计算。OpenAI有个演示,就是在纸上画个草图,然后ChatGPT-4就给你跑出来了一个网页。

从公司的角度,有可能以后会更加倾向于ChatGPT写代码。因为每个人写代码的风格是不一样的,一个员工走了,新员工过来,因为不顺手,可能要重写代码。那么ChatGPT的一致性会更好,从公司的角度来说,更加有效率。

AI生成的风格插画

受Midjourney影响的插画师、设计师,我网上看到有些人已经被裁员。你人完成一副插画可能要花2天时间,机器几分钟就出来了,效果还很好,这在迫使大家去做更具有创新性的工作。

一个有意思的现象是,一部分AI研究者自己的工作,都被AI干掉了。

据说现在美国一些大学,在自然语言处理、计算机视觉和语音识别方向的教职,不再增加了。

然后我们就讨论是为什么?以往科研院校,3-5年会出些成果,细细碎碎的需要那么些人去做,但是ChatGPT-4出来之后,它把很多问题都解决了,剩下都是一些非常难啃的硬骨头,那么你是不需要那么多教职去做的,就导致一些岗位被减掉。

制作漆器的手工艺人

首先,跟实体相关的工作,比如医生、护工、驾驶员,还有小众手工艺者,比如做古琴的、做陶瓷的艺术家,都是依赖个人经验来做的,被AI替代的概率较小。

因为一直以来AI大多在做认知相关的任务,感知这块下的功夫少,现阶段跟实体相关的都做不好,与人类相比,机械手比较初级,拧一个瓶盖还是很难的事情。

就连打扫卫生,对我们人类来说是“简单易重复”,但对机器却是一个模糊的概念,没有办法程序化或形式化。

那么对于白领工作,还有一部分比较安全,就是大数据进入不了的行业。

《滚蛋吧,肿瘤君》剧照

我们想想ChatGPT是怎么起来的?它的数据都是Billion级的,就是10亿级以上,这就意味着这么多数据,很有可能都是不设隐私的,才能被它调用。

如果一个行业涉及到隐私,数据不能公开,不能上模型训练,那么AI就挤不进去。比如说医疗、银行、生物等领域,相对来说是安全的。

所以我的一些学生,他们就不在互联网公司找工作了,而是会去一些数据相对封闭的领域,稳定一些。

如果高中生选专业,只考虑就业前景的话,我觉得人工智能方向目前还是最好的,所谓“不入虎穴焉得虎子”。

我们有个新名词叫做AIforScience,用人工智能帮助科学发展,以后各行各业都需要AI的辅助,要由懂AI方向的人来操作,那么就会有一个非常大的人才缺口。

AI研究员

一条编辑部经由Midjourney生成

一个好的AI研究者或工程师,需要三个基本素质:数学基础、编程能力、英文。学英文是因为要跟踪国际最前沿的技术,读文献资料,然后对编程能力的要求,要比数学高一些。

现在不像以前那样需要了解特别深的人工智能知识,如果你是计算机或其他理工科专业,转AI的话门槛并没有那么高。

首先,现在的研究大部分是模块化,深度网络都是一些模型,就像积木一样在搭。算法方面,在ArXiv上你能够快速知道最新的算法是什么样子,代码呢本身就有很多网站,比如Github上的代码是共享的。这三点,就使得你现在进入这个行业是比较容易的。

文科生也有机会转AI的,我们复旦有中文系的学生,转到我们做自然语言处理的这个组,做得还挺好的。

机器人与女孩一起在农场工作

一条编辑部经由Midjourney生成

首先,我们确实需要追赶,不追不行,要不然就会被卡脖子。

据说GPT5已经训练完了,那我们什么时候能追上国外的?目前有两派,一派是乐观派,觉得问题不大,2-3个月能追上。另一派是悲观派,觉得需要1年至1年半。

可能你觉得1年时间不算太久,其实这里面有些麻烦的地方。

目前AI主流的发展路径是三大块:模型、算力、大数据。

乐观的地方是,模型框架前辈们都做好了,几乎是公开的,研究人员把它做大、做深就行了。

深度学习之父GeoffreyHinton

2006年GeoffreyHinton就提出来了深度学习模型,之后有一个图像分类竞赛上采用了大规模数据集ImageNet,2012年GeoffreyHinton就带着他的学生为这个竞赛做了新的深度学习模型,一下子就令人震惊了,比上一届冠军性能提升了将近10个百分点。

这是什么概念呢?如果你是用传统机器学习方法来做,每年就提高0.3-0.4个百分点。这意味着,深度学习的方法比传统机器学习方法,加快了20年左右。所以那时候,大家都转到做深度学习模型。

但是深度学习模型,是需要强大的算力的,在特定的GPU芯片上面跑。

据说ChatGPT有1万块A100的GPU做支撑,单块A100的售价在1万美元左右,光是GPU成本就是1亿美元(约合6亿人民币),这就是为什么OpenAI不到100人的小公司,微软投资了20亿美元上去的原因之一。所以大模型,几乎只能由大公司、大机构来做。

但是我们国家,目前在算力上有瓶颈,因为2022年12月份,美国对中国禁售了A100以上的GPU。这样国内没法用A100(有替代品,但通讯模块受限),但国外还能用比A100更好的卡,这就有点麻烦了。

现在我们做研究成本很高,也是因为GPU,以往你发文章只需要时间和人力成本,但是现在一篇论文的成本说不定在10万人民币左右。

再一个就是大数据,中文语料库推不上去。

ChatGPT有10亿级以上的数据做预训练,它都是英文的,但是我们中文的每个平台,都设了一个进入的门槛,防止你大范围搜索,另外还有格式的问题,这就导致我们堆数据,没有国外那么方便。

而且ChatGPT-2之后就没有开源了,你也不知道确切的差距到底在哪里。

现在国内的AI投资很火,资本层面的驱动还是蛮重要的。而且我们复旦前段时间发布了一个Moss系统,还开源了,相对来讲还是一个比较小的模型,大家都还是在努力的。

上海街头的机器人

一条编辑部经由Midjourney生成

从历史上来讲,人工智能不到90年,我们一般认为它的开端,是1936年的图灵机,期间一直经历涨跌的过程。

七八十年代它经历第一次寒冬,当时如果你说自己是做人工智能的,是拿不到项目的。在90年代初,又经历了第二次寒冬。

我自己是从小喜欢看科幻小说,接触AI是在1997年,当时更流行叫自己是做机器学习而非人工智能的。

我的感受是到了2012年,也就是GeoffreyHinton带着学生赢得了竞赛那一年,人工智能才真正迎来腾飞。

2016年AlphaGo对弈韩国围棋手李世石

到了2016年AlphaGo赢了李世石,然后2017年谷歌研究出了Transformer网络,这之后才有了ChatGPT的一系列工作,还有自动驾驶、AI金融、AI医疗等各个领域都在前进。

但其实到2022年,AI行业有点往下走的趋势了,因为大家觉得该做的都做了,并没有看到很好的应用,很明显的是有些大公司的深度学习这块,已经在裁员了。但突然今年3月一下子ChatGPT-4出来了,就又把大家都拉了回来。

所以它有兴盛期,也有衰败期。我自己在这个领域待久了,对于ChatGPT-4掀起的热潮看得比较冷静一些吧。AI的研究范围是很宽泛的,很多问题很难,难以在短时间内变现,人类对智能的理解还有很长的路要走。

作为一名研究者,乐趣还是在于探索未知,你在未知里面可以找到一点点进步,那个愉悦感就很令人满足了。

原标题:《复旦人工智能教授:未来3-5年,哪些工作会被AI取代?》

阅读原文

未来最不可能被人工智能取代的十个职业

人工智能(ArtificialIntelligence)的快速发展为人们的生活带来了便利,同时,也将为劳动力市场带来翻天覆地的变化。麦肯锡公司(McKinsey&Company)的一项研究发现,60%的职业中约有30%的任务将会被计算机取代。人们开始对人工智能的发展产生危机感,但从目前看来,仍有一些工作在短时间内是很难被人工智能取代的。

教师

教师并不是单纯的输送知识的机器,而是负责引导学生形成正确的价值观和学习习惯,所谓“传道授业解惑”。因此,尽管机器人拥有海量的数据库,比任何人类教师都知识渊博,但它们仍然无法完全取代教师的位置,未来在教育领域更可能以助教的角色存在。

建筑师

虽然目前机器人已经可以完成绘制图纸的任务,但是,诚如李开复所说:“机器人不能发明创造”,成为一个建筑师,需要抽象审美、艺术创造、空间想象力,建筑师最重要的工作——设计,是人工智能无法代劳的。

艺术家(音乐家、画家)

2018年,佳士得拍卖行在网上拍卖由AI创作的画作,获得$432,500的高价,目前也有人工智能独立作曲的案例。虽然人工智能可以通过图像采集、曲谱合成等算法完成一件“艺术作品”,但绘画和音乐中所包含的创作者的情感却只能由人类艺术家灌注,情感是人类相对于人工智能的最大优势,这一点在短时间内不会改变。

护理人员

这一职业属于“富有同情心的工作”,需要工作者拥有细心、耐心和爱心。虽然比尔盖茨说过:“人工智能需要解决这些传染病问题……我们需要帮助医护人员有所作为。”但机器人涉足护理领域,指的绝不是替代护士的工作,而是帮助减轻护理人员的工作量。

图片来源:觅知网,已获授权

记者

在BBC预测的300多种职业未来的”被淘汰率“中,记者被人工智能取代的概率仅为8.4%。这项工作不止是信息的采集,更重要的是与被研究对象的交流和洞察社会的能力,这恰恰是人工智能目前所缺乏的。人工智能或许可以胜任编撰稿件的基础工作,但无法取代完全这一职业。

企业高管

人工智能可以通过运算做出短期内有利于企业盈利的决定,但它们无法进行长足的规划,制定新的商业战略。这些重要的决策需要由有判断力的人来做出,而不是将决策权交到人工智能的手中。

图片来源:觅知网,已获授权

外交家

一名外交家需要的不仅仅是出色的语言能力,还要有辨识力、理性思考的能力和广博的学识。这一工作的复杂需求远远超出机器人所能处理的范围,因此被认为暂时无法被人工智能代替。但是,目前人工智能可以应用于安保系统、同声传译等领域,为外交工作带来了不少便利。

心理医生

随着人们生活与工作压力的增大,心理医生这一职业的存在也越来越不可或缺。2017年,麻省理工人工智能实验室的科学家们研发了准确率高达87%的EQ-Radio情绪检测仪。虽然人工智能可以对人类的情绪及心理做出一些简单的分析,但更深层次的分析和治疗还是需要心理医生来进行。

图片来源:觅知网,已获授权

律师

2017年,机器人律师CaseCruncherAlpha在案例预测的比赛中打败了100名剑桥法律系学生,但是,尽管人工智拥有预测的准确度,但它们却无法胜任繁杂琐碎的诉讼程序,更无法基于人情世故和法律量刑做出平衡,因此律师和法官将是很难被人工智能取代的职业。

运动员

我们不能否认机器可以比人体的构造更优越和精密,但人工智能无法体现“更高、更快、更强“的奥林匹克精神,或许有一天人工智能可以应用在运动场上陪练,但它们不会有真正登上赛场的那一天。

图片来源:觅知网,已获授权

人工智能的加入提升了劳动力市场的效率,关于人工智能与人类的平衡问题一直在被讨论,虽然人工智能发展得越来越完备,但机器人在短期内不可能完全取代人类。

人工智能否取代教师中科院院士:缺情感,无法替代许多工作

2015年6月3日,一台“机器人”在九江学院一间教室里为学生讲课。

未来,教师这个职业会消失吗?

5月13日,一场探讨“人工智能与未来教育”的高峰论坛在华东师范大学举行。十余名专家作了主题演讲,探讨人工智能将如何影响教育、改变教育等问题。

多名学者认为,目前看来,因为情感能力、认知能力等方面的局限,人工智能尚无法取代教师,但凭借数据处理等方面的优势,人工智能在教育领域大有可为。

也有专家指出,人工智能神经元呈指数型成长,未来完全可以承担创造性工作,甚至获得情感能力。

讨论:机器人未来会取代教师吗?

多位学者在当天的发言中认为,至少在短期内,人工智能仍无法取代教师。

中国科学院院士、华东师范大学信息科学技术学院院长褚君浩相信,机器人教师可以汇聚好老师经验,在未来完全可以承担具体的教师工作。

但他也指出,现阶段机器人耗能大,且无法融入情感等,无法替代教师的很多工作。“人有精神来驱动,有哲学来指导他,所以能够做出很好的成绩。” 

华东师范大学计算机科学与软件工程学院副院长蒲戈光认为,当下人工智能革命的本质,是机器对知识的处理取得巨大进步。“但是人类的优势,就在于破坏知识和创造知识。”

沪江网创始人伏彩瑞也对人工智能完全取代教师持有怀疑态度。“我还是琢磨着,一直到最后它也不如人聪明。”他说。

伏彩瑞提出,未来十年会是人工智能和人的智能并举的时代,机器人能承担很多重复性的枯燥工作,而教师的工作重点,会是机器做不到的事,包括培养孩子的综合素质、情商等。

不过,也有多名技术领域的专家指出,人工智能发展迅猛,未来完全可能胜任创造性工作,甚至具备情感能力。

机器学习与量化金融专家邹昊表示,人工智能神经元的数量增长是指数式的,认知技术、情感技术都是发展重点。未来,机器人在和学生的沟通当中,完全有可能习得如何了解他们的情感和需求。

他表示,未来几十年,人工智能完全可能胜任创造性工作。

专家:记忆教育将走向创新教育

科大讯飞副总裁吴晓如在发言中指出,短期内,人工智能完全替代教师并不可能。当前环境下,应该更多地考虑,师生怎么在人工智能背景下更好地教、更好地学。

他举例,现阶段大班制教学中,教师往往只能掌握前几名和后几名学生的情况,对大部分学生学业情况其实并不了解。

“这就需要老师有更多双眼睛和耳朵关注更多的学生。”他认为,这就是人工智能可以作为的地方,“我们要让学校里面越来越多地添置一些基础数据采集设备。”

他认为,随着数据越来越多,学校的智慧系统会越来越强大。不仅可以提高课堂效率,甚至可以指导教和学的过程。

值得一提的是,发言中多名学者都提到,人工智能的发展将重新界定教育内容。未来,研究性学习、创造性思维培育等将是教育的重心所在。

中国教育三十人论坛成员、南京师范大学教育科学学院教授项贤明认为,未来“知识中心主义”慢慢会淡出教育舞台,“全人教育”会占据核心,“记忆的教育将走向创新的教育”。

(文中涉及演讲内容由记者根据论坛现场整理,未经嘉宾本人审定。)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇