国家人工智能先导区增至8个为何选中这5个城市
作者:金叶子
[中国人工智能区域发展与国家区域战略高度协同相互促进,区域要素汇聚加速人工智能产业引领。京津冀、长三角和粤港澳大湾区已成为我国人工智能发展的三大区域性引擎,人工智能企业总数占全国的83%,成渝城市群、长江中游城市群也展现出人工智能发展的区域活力,产业集聚区初显区域引领和协同作用。]
牛年的第一个工作周,国家人工智能创新应用先导区数量扩容。
工业和信息化部近日印发通知,支持创建北京、天津(滨海新区)、杭州、广州、成都国家人工智能创新应用先导区(下称“先导区”)。这是继上海(浦东新区)、深圳、济南-青岛3个先导区后,工业和信息化部发布的第二批先导区名单。至此,全国人工智能先导区已增至8个。
上海新兴信息通信技术应用研究院首席专家兼副院长贺仁龙接受第一财经采访时表示,AI(人工智能)先导区更多聚焦的是应用,中国在产业体量最有优势,比如我国的制造业占全球的28%,稳居世界第一,因此AI深入到实体经济,实现与实体经济深度融合,也能为实体经济转型升级服务。
“从第一批的3个先导区到第二批扩容至8个,地域上已经涵盖到长三角、京津冀、粤港澳、成渝四大战略区域。”贺仁龙说。
去年10月发布的《中国新一代人工智能发展报告2020》显示,中国人工智能区域发展与国家区域战略高度协同相互促进,区域要素汇聚加速人工智能产业引领。京津冀、长三角和粤港澳大湾区已成为我国人工智能发展的三大区域性引擎,人工智能企业总数占全国的83%,成渝城市群、长江中游城市群也展现出人工智能发展的区域活力,产业集聚区初显区域引领和协同作用。
应用创新加速产业落地
从层次上划分,AI主要有基础层、技术层、应用层三层。欧美在基础层起步早、投入大,中国则是在应用层和技术层涌现出诸多公司。目前,人工智能应用场景创新也正成为中国加速产业化落地和技术迭代的重要途径。
2019年,多地推动人工智能应用场景征集,北京冬奥、大兴机场、杭州大脑等代表性综合应用场景以及各领域丰富的行业场景,为人工智能技术创新与快速商业化创造了广阔土壤和良好环境。在2020年抗击新冠肺炎疫情过程中,人工智能技术加速与交通、医疗、教育、应急等领域深度融合,助力疫情防控取得显著成效。
中国信通院发布的《全球人工智能战略与政策观察(2020)》显示,目前从产业生态看,全球人工智能产业基础日趋坚实,比如技术局部突破,应用产品逐步丰富。应用领域逐渐从第三产业向第一、第二产业拓展。
同时,人工智能产业的发展,也有良好的政策环境。“十四五”规划建议指出,推动互联网、大数据、人工智能同各产业深度融合,推动先进制造业集群发展。
在去年末举行的2020中国人工智能高峰论坛上,工信部副部长刘烈宏表示,人工智能与5G、工业互联网融合发展。目前我国人工智能核心产业规模已超过千亿元,企业数量超过2600家,产业持续增长。
从行业规模看,据IDC预测,2020年全球人工智能市场规模为1565亿美元,同比增长12.3%。根据中国信通院数据研究中心测算,2020年中国人工智能产业规模为3031亿元人民币,同比增长15.1%。
为何选择这5地
本次增加的5个先导区,在产业领域各有侧重。
比如,北京国家人工智能创新应用先导区要结合北京国际科技创新中心建设的整体部署,发挥技术原创、产业生态、人才基础、发展环境等多重优势,加快核心算法、基础软硬件等技术研发,加速智能基础设施建设,打造全球领先的人工智能创新策源地。
具体来看,要聚焦智能制造、智能网联汽车、智慧城市、“科技冬奥”等重点领域,加快建设并开放人工智能深度应用场景,优化治理环境,持续推进人工智能和实体经济深度融合,打造超大型智慧城市高质量发展的示范区和改革先行区。
作为中国科技基础最为雄厚、创新资源最为集聚、创新主体最为活跃的区域之一,北京拥有1000多所科研院所和近3万家国家级高新技术企业,人工智能领域有效发明专利居全球首位。
值得关注的是,此次先导区对于北京的定位,是要结合北京国际科技创新中心建设的整体部署。
1月20日举行的国新办新闻发布会上,科技部副部长李萌表示,北京国际科技创新中心将围绕量子信息、人工智能、区块链、生命健康等新科技革命和产业变革前沿领域,推进关键核心技术攻关。
北京“十四五”规划建议指出,加快发展现代产业体系。坚持推动先进制造业和现代服务业深度融合,不断提升“北京智造”“北京服务”竞争力。大力发展集成电路、新能源智能汽车、医药健康、新材料等战略性新兴产业,前瞻布局量子信息、人工智能、工业互联网、卫星互联网、机器人等未来产业,培育新技术新产品新业态新模式。
天津(滨海新区)国家人工智能创新应用先导区则是要围绕京津冀协同发展战略,面向产业智能转型、政务服务升级和民生品质改善等切实需求,发挥中国(天津)自由贸易试验区政策优势,推动智能制造、智慧港口、智慧社区等重点领域突破发展等。
杭州国家人工智能创新应用先导区是要充分发挥城市数字治理、先进制造等方面的基础优势,进一步深化人工智能技术在城市管理、智能制造、智慧金融等领域的应用。
近年来,杭州把发展新一代人工智能作为建设“数字经济第一城”和“数字治理第一城”的重要内容。数据显示,杭州人工智能规模以上制造业企业和典型企业达523家,人工智能算力和专利数分别居全国第一、第二,产业竞争力位列全国第一梯队。
据《杭州日报》报道,杭州市经信局相关负责人介绍,杭州建设国家人工智能创新应用先导区,将充分发挥城市数字治理、先进制造等方面的基础优势,进一步深化人工智能技术在城市管理、智能制造、智慧金融等领域的应用。通过改革创新举措,积极探索符合国情的人工智能治理模式与路径,促进新技术、新产品安全可靠推广,着力打造城市数字治理方案输出地、智能制造能力供给地、数据使用规则首创地。
根据杭州设定的目标,到2023年,杭州人工智能总体发展水平达到全国领先、国际先进,城市数字治理模式创新取得显著成果,智造赋能能力获得明显提升,数据“采集—交易—使用”过程得到有效规范,公共服务平台基础支撑能力更加有力,以杭州都市圈为核心辐射带动长三角乃至全国人工智能产业能级跃升,以行业融合应用为引领的人工智能新业态、新模式、新场景加速贡献。
为推动先导区落地,接下来杭州将着力在城市智能治理、赋能制造转型、数据规范使用等方面深化探索实践,为全国人工智能创新应用提供“杭州样本”。从空间布局上来看,将以杭州城西科创大走廊、杭州高新区(滨江)为核心,推进中国(杭州)人工智能小镇、萧山信息港小镇、萧山机器人小镇、浙大科技园、工业互联网小镇、大创小镇等六大园区协同发展。
广州国家人工智能创新应用先导区则要紧扣粤港澳大湾区发展要求,聚焦发展智能关键器件、智能软件、智能设备等核心智能产业,面向计算机视觉等重点技术方向和工业、商贸等重点应用领域,不断挖掘人工智能深度应用场景。
不只是先导区建设,根据2021年广州市政府工作报告,广州今年的工作重点之一,就是实施产业链供应链提升工程,其中就包括加快人工智能与数字经济试验区建设。在做强做优先进制造业方面,将实施“智造”工程,推进建设超高清视频和智能家电、智能网联新能源汽车、智能装备等世界级先进制造业集群。实施“智行”工程,协同发展智慧城市和智能网联汽车,加快广汽智能网联产业园建设,推进创建国家车联网先导区等。
贺仁龙告诉记者,广州作为千年贸易之都和重要工业基地是粤港澳的中心城市,也是辐射东南亚、承载RCEP(区域全面经济伙伴关系协定)国际产业链的枢纽,先导区对整个区域的带动,和以产业链供应链的国际协同有重要引领和带动作用。
而成都则是目前西部地区首个人工智能先导区。
根据工信部的发文,成都国家人工智能创新应用先导区要立足“一带一路”重要枢纽与战略支撑点的区位优势,把握成渝地区双城经济圈建设机遇,以人工智能赋能中小企业为重要抓手,聚焦医疗、金融等优势行业,释放应用场景清单,促进技术-产业迭代发展。要结合西部地区特点,在政策、机制、模式创新上积极探索实践,打造有活力的产业生态圈和功能区,辐射带动区域人工智能融通发展。
成都市经信局数据显示,2020年成都人工智能产业企业达550余家、产业规模达200亿元,较2019年分别增长83%、67%。根据成都的规划,到2022年,成都人工智能的产业规模将突破500亿元,带动关联产业规模突破5000亿元。
预见2023:《2023年中国人工智能行业全景图谱》(附市场现状、竞争格局和发展趋势等)
人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。
本文核心数据:人工智能分类,人工智能行业产业链,人工智能行业全景图谱,中国人工智能发展历程,人工智能行业重点方向变化,工智能企业核心技术分布情况,中国人工智能市场规模,中国人工智能市场应用份额,人工智能在各行业中的应用情况,中国人工智能行业投融资情况,中国人工智能行业投融资轮次分布,人工智能各技术方向岗位人才供需,人工智能本科新专业高校名单,人工智能科技产业中国城市竞争力,工智能行业代表性企业区域,中国人工智能行业投融资事件数量地区分布,中国人工智能行业竞争派系,人工智能发展趋势,中国人工智能产业规模预测,中国新一代人工智能创新发展区数量
行业概况
1、定义
人工智能作为一门前沿交叉学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,将其视为计算机科学的一个分支,指出其研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能行业属于战略新兴产业,根据国家发展改革委发布的《战略性新兴产业重点产品和服务指导目录(2016)》来看,我国人工智能可分为三个下属行业,分别为人工智能软件开发、人工智能消费相关设备制造和人工智能系统服务。
2、产业链剖析:产业链涵盖行业庞大
人工智能产业链包括三层:基础层、技术层和应用层。其中,基础层是人工智能产业的基础,主要是包括AI芯片等硬件设施及云计算等服务平台的基础设施、数据资源,为人工智能提供数据服务和算力支撑;技术层是人工智能产业的核心,以模拟人的智能相关特征为出发点,构建技术路径;应用层是人工智能产业的延伸,集成一类或多类人工智能基础应用技术,面向特定应用场景需求而形成软硬件产品或解决方案。
行业发展历程:行业处在突飞猛进阶段
人工智能概念的提出始于1956年的美国达特茅斯会议。人工智能至今已经有60多年的发展历史,从诞生至今经历了三次发展浪潮。分别是1956-1970年、1980-1990年和2000年至今。
1959年ArthurSamuel提出了机器学习,推动人工智能进入第一个发展高潮期。此后70年代末期出现了专家系统,标志着人工智能从理论研究走向实际应用。
80年代到90年代随着美国和日本立项支持人工智能研究,人工智能进入第二个发展高潮期,期间人工智能相关的数学模型取得了一系列重大突破,如著名的多层神经网络、BP反向传播算法等,算法模型准确度和专家系统进一步提升。期间,研究者专门设计了LISP语言与LISP计算机,最终由于成本高、难维护导致失败。1997年,IBM深蓝战胜了国际象棋世界冠军GarryKasparov,是一个里程碑意义的事件。
当前人工智能处于第三个发展高潮期,得益于算法、数据和算力三方面共同的进展。2006年加拿大Hinton教授提出了深度学习的概念,极大地发展了人工神经网络算法,提高了机器自学习的能力,随后以深度学习、强化学习为代表的算法研究的突破,算法模型持续优化,极大地提升了人工智能应用的准确性,如语音识别和图像识别等。随着互联网和移动互联的普及,全球网络数据量急剧增加,海量数据为人工智能大发展提供了良好的土壤。大数据、云计算等信息技术的快速发展,GPU、NPU、FPGA等各种人工智能专用计算芯片的应用,极大地提升了机器处理海量视频、图像等的计算能力。在算法、算力和数据能力不断提升的情况下,人工智能技术快速发展。
行业政策背景:行业发展从技术过渡到产业融合
2017年之前,人工智能相关政策主要集中在人工智能技术研发突破方面。从2017年开始,政策的重点已经从人工智能技术转向技术和产业的深度融合,特别是2017年7月国务院印发的《新一代人工智能发展规划》明确指出要“加快人工智能深度应用”。
从2018年两会发言的不完全汇总也可以看出,人工智能+产业的融合将是未来的重点,包括科技部、工信部、民政部等官方部门和百度、腾讯、联想等民间代表,均提出了人工智能+产业、人工智能+医疗等。
2019年,两会更是将“智能+”写入政府工作报告,人工智能技术对于社会的赋能被给予最高层次的期待。在工业经济由数量和规模扩张向质量和效益提升转变的关键期,“智能+”的理念给人工智能等数字技术提供了最广阔的落地空间和回报想象。通过智能化手段把传统工业生产的全链条要素打通,可以更好地推动制造业的数字化、网络化和智能化转型,更能反向助推技术自身的迭代和进步。
2020年,明确人工智能作为“新基建”建设重要一环,“十四五”指出要推动互联网、大数据、人工智能等同各产业深度融合。并且各省市也在大力推动人工智能与产业融合,打造应用场景,示范项目。
行业发展现状
1、大数据和云计算为占比最高的核心技术
从人工智能企业核心技术分布看,大数据和云计算占比最高,达到41.13%;其次是硬件、机器学习和推荐、服务机器人,占比分别为7.64%,6.81%,5.64%;物联网、工业机器人、语音识别和自然语言处理分别占比5.55%,5.47%,4.76%。
2、行业呈现快速增长趋势
2017年7月,国务院印发了《新一代人工智能发展规划》,将人工智能上升到国家战略层面,受益于国家政策的大力支持,以及资本和人才的驱动,我国人工智能行业的发展走在了世界前列。初步估计,2020年中国人工智能行业市场规模约为1858.2亿元。
3、下游应用主要集中在政府城市治理和运营
2020年,中国人工智能市场主要客户来自政府城市治理和运营(公安、交警、司法、城市运营、政务、交运管理、国土资源、监所、环保等),应用占比达到49%,互联网与金融行业紧随其后,占比分别为18%和12%。
企业和政府对人工智能的应用逐渐升温。在决定企业产生经济效益的各个环节,都已能够看到人工智能的身影:AI核身帮助人们安全生活、远程交易、便捷通行;深度学习和知识图谱帮助企业在生产过程中分析预测、科学决策;人机对话提升了拜访登记、服务响应中的用户体验。
人工智能将催生新技术、新产品、新产业、新业态、新模式,实现社会生产力的整体跃升,推动社会进入智能经济时代。前瞻估算,目前中国大型企业基本都已在持续规划投入实施人工智能项目,而全部规上企业中约有超过10%的企业已将人工智能与其主营业务结合,实现产业地位提高或经营效益优化。
3、资本更倾向于人工智能企业的早期投资
2014-2020年,中国人工智能行业总计共有4796起投融资事件发生,总计融资金额为7685.39亿元。其中2014-2018年在融资事件及融资规模上呈现持续增长态势,2018年融资金额达1482.46亿元,融资事件965起。
2019-2020年,我国人工智能行业市场相较之前冷静不少,融资事件有所下降但是融资规模有所上升。2020年,我国人工智能行业投融资事件发生723起,总金额达1468.37亿元。2021年1-7月,共有融资事件506起,融资金额达到1839.92亿元,融资金额已经超过2020年总金额。
注:2021年数据截至7月27日。
从我国人工智能行业融资轮次分布情况来看,由于初创型企业融资金额与估值相对较合理,泡沫较小,因此对资本更倾向于人工智能企业的早期投资,2014-2019年,人工智能行业天使轮和A轮占比最高。
随着人工智能市场板块的逐渐成熟,早期的投资占比逐渐降低,人工智能投资轮次逐渐后移。2020年,A轮占比为42.20%,B轮则上升至20.22%,天使轮占比下降至9.23%。
注:2021年数据截至7月27日。
4、技术方面人才不足,高校开设相关专业
根据工信部发布的相关数据,人工智能不同技术方向岗位的人才供需比均低于0.4,说明该技术方向的人才供应严重不足。从细分行业来看,智能语音和计算机视觉的岗位人才供需比分别为0.08、0.09,相关人才极度稀缺。
注:岗位人才供需比=意向进入岗位的人才数量/岗位数量。
相对国外,我国高校人工智能培育起步较晚,但近年来我国人工智能学科和专业加快推进,多层次人工智能人才培养体系逐渐形成。2018年4月,教育部发布的《高等学校人工智能创新行动计划》提出,到2020年建立50家人工智能学院、研究院或交叉研究中心。
2019年,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,全国共有35所高校获首批建设“人工智能”本科专业资格。
行业竞争格局
1、区域竞争:北京人工智能竞争能力遥遥领先
从1990年至今,我国人工智能产业发展的城市格局几经变化,目前北京、上海、深圳、杭州等城市表现稳定,这些城市都将电子信息产业作为支柱产业之一,在互联网业发展中也排名靠前。这些城市均强化科研与人才优势、加速补充完善人工智能自身及面向行业落地的产业链、建设示范性智能应用场景、前瞻性布局人工智能相关标准体系、推动公共资源共享、提升城市环境与宜居性、支持系统性超前研发布局等措施将成为城市把握人工智能发展重大历史机遇的谋划方向。
其中北京在我国人工智能科技产业城市竞争力评价指数排名中以80.3遥遥领先于其他城市。排名第二的上海指数为30.5,其次是深圳和杭州分别为28.6和22.4.
从人工智能行业代表性企业的所属地分布来看,北京、深圳市人工智能代表性企业的集中地。同时北京也是2020年人工智能行业投融资事件数量最多的区域。2020年,北京、上海、广东三地聚集了全国74.29%的人工智能投融资事件数量,其中北京占比32.53%,上海占比21.76%,广东占比20%。浙江和江苏则紧随其后,分别占比7.91%和7.25%。
其中以城市据点来看,北京、深圳、上海、杭州四座国内一线城市已成为了我国人工智能行业发展的着力点,以点带面地带动京津冀发展区、粤港澳大湾区、长三角经济区的人工智能技术崛起,并覆盖全国。
2、企业竞争:参与者众多,主要分为三个派系
从企业的竞争来看,我国人工智能企业主要可以分为三个派系,分别是头部平台代表企业、融合产业活跃企业、技术层面代表企业。
人工智能平台的代表性企业主要有百度、阿里云、腾讯、华为、京东和科大讯飞为;而小米、平安科技、苏宁、滴滴是融合产业较活跃的企业;技术层企业代表有商汤科技、旷视科技、云从科技和依图科技作为独角兽公司。
从人工智能企业的核心技术布局来看,百度、腾讯、阿里云、华为等头部平台企业已布局了多项AI技术;而像平安科技、京东、小米等融合性公司,其技术布局主要针对应用层,针对性较强。
从专利授权量来看,截至2020年10月,百度、华为、腾讯的AI专利授权量分别排名全国前三,说明这三家公司的技术研发能力较强。
行业发展前景及趋势预测
1、“十四五”建设继续推进,高质量、现代化、智能化发展
近年来,人工智能在经济发展、社会进步、国际政治经济格局等方面已经产生重大而深远的影响。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》对"十四五"及未来十余年我国人工智能的发展目标、核心技术突破、智能化转型与应用,以及保障措施等多个方面都作出了部署。
2、核心产业规模达到4000亿,布局建设20个试验区
根据《新一代人工智能发展规划》,到2025年,我国人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展,人工智能核心产业规模将超过4000亿元,带动相关产业规模超过5万亿元;到2030年,我国人工智能理论、技术与应用总体达到世界领先水平。
此外,为加快落实《国务院关于印发新一代人工智能发展规划的通知》,科技部于2019年8月印发《国家新一代人工智能创新发展试验区建设工作指引》,旨在有序推动国家新一代人工智能创新发展试验区建设。截至2021年3月末,我国已有14个市+1个县获批建设试验区;至2023年,试验区数量预计将达20个左右。
以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院还提供产业大数据、产业研究、产业链咨询、产业图谱、产业规划、园区规划、产业招商引资、IPO募投可研、招股说明书撰写等解决方案。
更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动。
前瞻资讯
2021年中国人工智能行业区域市场发展现状对比北上广引领产业发展刘甜2021年从城市群来看,目前,我国人工智能企业主要分布在京津冀、长三角、珠三角、川渝四大都市圈。京津冀区域竞争力最强,长三角位列第二,珠三角位列第三。
从省市自治区来看,北京、广东、上海、浙江、江苏人工智能企业数量排名前五;从城市来看,北上广深AI企业数量最多,产业链发展相对完善。
人工智能行业主要上市公司:阿里巴巴(BABA)、腾讯(00700.HK)、科大讯飞(002230)、赛为智能(300044)、科大智能(300222)、海康威视(002415)、四维图新(002405)等
本文核心数据:人工智能企业在全国都市圈的分布、主要省市/城市人工智能企业数量占比
京津冀、长三角和珠三角城市群AI企业集聚,引领产业发展
根据中国新一代人工智能发展战略研究院发布的最新《中国新一代人工智能科技产业发展报告2021》数据显示,截至2020年,我国人工智能企业主要分布在京津冀、长江三角洲和珠江三角洲三大都市圈,占比分别为31.02%,30.23%和26.39%。
依托科技创新和互联网产业发展优势,京津冀、长江三角洲和珠江三角洲地区在人工智能科技产业的发展中走在了全国的前列。
由此可见,中国人工智能区域发展与国家区域战略高度协同相互促进,区域要素汇聚加速人工智能产业引领。京津冀、长三角和粤港澳大湾区已成为我国人工智能发展的三大区域性引擎,成渝城市群、长江中游城市群也展现出人工智能发展的区域活力,产业集聚区初显区域引领和协同作用。
北上广深AI企业数量较多
具体来看,在各省市自治区中,人工智能企业主要分布在北京市、广东省、上海市、浙江省、江苏省、四川省、山东省、湖北省、福建省和湖南省。其中,北京市占比最高,为29.73%;其次是广东省,占比为26.39%,主要分布在深圳市和广州市;排名第三的是上海市,占比为14.07%;排名第四的是浙江省,占比为8.81%,主要集中在杭州市。
从主要城市来看,人工智能企业分布密集的城市是北京市、上海市、深圳市和广州市,占比分别为29.73%,14.07%,13.99%和8.14%,是中国人工智能科技产业发展的前沿城市。西部地区的成都市和中部地区的武汉市同样是人工智能企业数量排名靠前的城市。
北上广地区人工智能产业链发展相对完善,细分领域龙头企业较多
从产业链来看,北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。
其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;
技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;
应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。此外,上海和广东地区人工智能产业链代表企业分布也较为广泛。
更多数据来请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资、IPO募投可研、招股说明书撰写等解决方案。
更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动。
阅读全文相关深度报告
2023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告前瞻产业研究院21363人订制打开APP,享受沉浸式阅读体验2023中国人工智能创新发展指数公布
日前,在安徽合肥举办的第五届世界声博会现场,中国电子信息产业发展研究院发布了2022中国人工智能创新发展指数(“合肥指数”)。这是国内首个以地区冠名的全国性人工智能专题研究成果,旨在全面系统反映我国人工智能的发展态势。
近年来,我国人工智能进入与经济深度融合应用新阶段,智能化转型全面推进,人工智能产业在全球的影响力不断增强。2017年至2021年,我国人工智能产业规模增长了2.6倍,占全球比重提升到16.8%。专利申请量占全球比重持续扩大,从2012年的13%增长到2021年的70.9%。
同时,我国各地人工智能产业蓬勃发展,融合应用不断推进,已建设11个“国家新一代人工智能创新应用先导区”和18个“国家新一代人工智能创新发展试验区”,形成了产业区域覆盖面积最广、应用场景最多、科技企业最集中的区域协同发展体系。
鉴于此,中国电子信息产业发展研究院从发展环境、创新能力、基础配套、资本投入和产业实力5个维度,构建了中国人工智能创新发展指数,也就是“合肥指数”的评价体系。
创新能力上,我国人工智能研发投入力度不断加大,从业人数不断增加。2021年,我国人工智能的研发强度为19.4%,从业人数增加到31万人,占全球比重的5.3%。
产业实力上,北京、广东、浙江和上海的产业集聚效应持续扩大,企业创新能力明显增强。研究院发布的2022中国人工智能企业竞争力研究显示,超70%的百强企业都位于北上广。
从总体指数来看,北京、广东和上海处于人工智能领域的领跑地位,安徽排在全国第6位,其中90%的科研成果、基础设施建设、示范应用场景和人才队伍集中在合肥。“合肥已经成为人工智能领域科技创新与产业发展最活跃的城市之一。”中国电子信息产业发展研究院院长张立说。(记者丁一鸣)
2023年人工智能行业研究报告
第一章行业概况1.1定义和分类人工智能(ArtificialIntelligence,AI)是一个广泛的计算机科学分支,它致力于创建和应用智能机器。在更深入的层次上,人工智能可以被理解为以下几个方面:
学习和适应:人工智能系统需要具有学习和适应的能力。这意味着这些系统能从数据中学习,并在新的、未曾见过的情况下,根据所学到的知识做出适应性的反应。
理解和解析:人工智能系统需要有能力理解和解析其所处的环境。这可能包括理解语言,识别图像,或者理解复杂的模式和关系。
决策和行动:人工智能系统需要能够基于其理解和学习,做出决策并采取行动。这可能包括自动驾驶汽车的导航决策,或者聊天机器人产生回应的决策。
自我改进:人工智能系统需要有能力进行自我改进。这意味着系统能够根据其性能的反馈,调整其行为以提高未来的性能。
人工智能可以按照不同的标准进行分类。以下是一些常见的分类方式:
(1)按照功能分类:
弱人工智能(NarrowAI):这类人工智能系统专门针对某一特定任务进行优化,例如语音识别或图像识别。它们只能在特定领域内表现出人类级别的智能。
强人工智能(GeneralAI):强人工智能系统能够执行任何人类智能能够执行的任务,理论上它们能够理解、学习、适应并执行任何一种可以由人类大脑完成的认知任务。
超人工智能:各个领域超越人类,创新创造领域超越人类,解决人类无法解决的问题。
当前,人工智能的发展仍处于“弱”人工智能阶段,只具备在特定领域模拟人类的能力,“工具性”仍是该阶段主要特点,同全面模拟或者超越人类能力的强人工智能、超人工智能差距巨大。
图智能的构成以及人工智能分级
资料来源:资产信息网千际投行平安证券研究所
(2)按照技术分类:
机器学习(MachineLearning):机器学习是一种让计算机系统从数据中学习的方法。机器学习算法使用统计学习理论,从输入数据中找到并学习潜在的模式。
深度学习(DeepLearning):深度学习是机器学习的一个子领域,使用神经网络模拟人脑神经元的工作方式,从复杂的、大量的数据中进行学习。
自然语言处理(NaturalLanguageProcessing):自然语言处理是计算机用来理解、解析和生成人类语言的技术。
计算机视觉(ComputerVision):计算机视觉是让计算机和机器能够“看到”和理解视觉信息的技术。
以上就是人工智能的一些主要分类,它们不同的特性和应用场景使得人工智能在各个领域都有广泛的应用。
1.2发展历程人工智能的历史已有七十余年的长河,其脉络可追溯到上世纪初的岁月。如今,AI已然深入到我们生活的每个角落,无论是医疗保健、汽车产业、金融业、游戏产业、环境监测、农业、体育、能源管理,还是安全领域,大量的AI应用都正在彻底改变我们的生活方式、工作习惯以及娱乐模式。这些技术的持续进步预示着第四次工业革命的到来。
(1)萌芽1900-1956
1900年,希尔伯特在数学家大会上宣布了23个未解决的问题,其中第二和第十个问题与人工智能密切相关,最终促进了计算机的发明。1954年,冯-诺依曼完成了早期计算机EDVAC的设计,并提出了“冯-诺依曼架构”。图灵、哥德尔、冯-诺依曼、维纳、克劳德-香农和其他的先驱者奠定了人工智能和计算机技术的基础。
(2)黄金时代1956-1974
1965年,麦卡锡、明斯基等科学家召开“达特茅斯会议”,首次提出“人工智能(AI)”的概念,标志着人工智能学科的诞生。随后,人工智能研究进入了20年的黄金时代,取得了一批令人瞩目的研究成果,如机器定理证明和跳棋程序,掀起了人工智能发展的第一个高潮。
在这个黄金时代,约翰-麦卡锡开发了LISP语音,成为此后几十年人工智能领域最主要的编程语言;马文-明斯基对神经网络有了更深入的研究,也发现了简单神经网络的缺点;接着开始出现多层神经网络和反向传播算法。
(3)第一次寒冬1974-1980
人工智能发展的最初突破极大地提高了人们的期望,使人们高估了科技发展的速度。然而,连续的失败和预期目标的落空使人工智能的发展进入低谷。
1973年,赖特-希尔关于人工智能的报告,拉开了人工智能冬天的序幕。此后,科学界对人工智能进行了一轮深入的拷问,使人工智能受到了严厉的批评和对其实用价值的质疑。随后,政府和机构也停止或减少了资助,人工智能在20世纪70年代陷入了它的第一个冬天。
有限的计算能力和大量常识性数据的缺乏使发展陷入瓶颈,尤其是过度依赖计算能力和经验数据量的神经网络技术,在很长一段时间内没有取得实质性的进展。
(4)应用发展1980-1987
专家系统模拟人类专家的知识和经验来解决特定领域的问题,实现了人工智能从理论研究到实际应用的重大突破。专家系统在医学、化学、地质学等领域的成功,将人工智能推向了应用发展的新高潮,1980年XCON在卡内基梅隆大学(CMU)正式启动,成为专家系统开始在特定领域发挥作用的里程碑,推动了整个人工智能技术进入繁荣阶段。
经过十年的沉寂,神经网络有了新的研究进展,并发现了具有学习能力的神经网络算法,这使得神经网络的发展在20世纪90年代后期一路走向商业化,被应用于文字图像识别和语音识别。
(5)第二次寒冬1987-1993
随着人工智能应用规模的不断扩大,应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、与现有专家系统数据库难以兼容等问题逐渐暴露出来。当时的人工智能领域主要使用约翰-麦卡锡的LISP编程语言。LISP机的逐步发展被蓬勃发展的个人电脑打败了,专用LISP机的硬件销售市场严重崩溃,人工智能领域再次进入寒冬。
硬件市场的崩溃和理论研究的混乱,再加上政府和机构纷纷停止对人工智能研究领域的资金投入,导致人工智能领域几年来一直处于低迷状态。但另一方面在理论方法的研究上也取得了一些成果。
1988年,美国科学家朱迪亚-皮尔将概率统计方法引入人工智能的推理过程;IBM的沃森研究中心将概率统计方法引入到人工智能的语言处理中;1992年,李开复利用统计方法设计开发了世界上第一个独立于扬声器的连续语音识别程序;1989年,AT&T贝尔实验室的亚恩-莱坤和团队将卷积神经网络技术应用在了人工智能的手写数字图像识别中。
(6)稳步发展1993-2011
人工智能的创新研究因网络技术的发展而加速,尤其是互联网的发展,使人工智能技术进一步实用化。
1995年,理查德-华莱士开发了新的聊天机器人程序Alice,它能够利用互联网不断增加自己的数据集并优化内容。
1997年,IMB的计算机Deepblue深蓝击败了世界象棋冠军卡斯帕罗夫。德国科学家霍克赖特和施米德赫伯提出了LSTM递归神经网络,至今仍被用于手写识别和语音识别,对后来的人工智能研究产生了深远影响。
2004年,美国神经科学家杰夫·霍金斯出版了《人工智能的未来》,2006年,杰弗里辛顿出版了《学习多层表征》,为神经网络奠定了一个新的架构,对未来人工智能中的深度学习的研究产生了深刻影响。
(7)深化阶段2012-至今
随着移动互联网技术和云计算技术的爆发,积累了难以想象的数据量,为人工智能的后续发展提供了足够的素材和动力,以深度神经网络为代表的人工智能技术的快速发展,大大跨越了科学与应用之间的“技术鸿沟”,迎来了爆发式增长。
2012年,多伦多大学在ImageNet视觉识别挑战赛上设计的深度卷积神经网络算法,被认为是深度学习革命的开始。
2014年,IanGoodfellow提出了GANs生成式对抗网络算法,这是一种用于无监督学习的人工网络。这是一种用于无监督学习的人工智能算法,由生成网络和评估网络组成,这种方法很快被人工智能的许多技术领域所采用。
2016年和2017年,谷歌推出的人工智能程序AlphaGo连续击败了前围棋世界冠军韩国的李世石,以及现任围棋世界冠军中国的柯洁,引起了巨大轰动。同时语音识别、图像识别、无人驾驶等技术不断进步。
2022年11月,OpenAI推出其开发的一个人工智慧聊天机器人程序ChatGPT。该程序使用基于GPT-3.5架构的大型语言模型并通过强化学习进行训练,成为AIGC现象级应用。
在2023年3月,OpenAI又推出了ChatGPT的升级版——GPT-4,迭代速度极快。其包含的重大升级是支持图像和文本的输入,并且在GPT-3原来欠缺的专业和学术能力上得到重大突破,它通过了美国律师法律考试,并且打败了90%的应试者。在各种类型考试中,GPT-4的表现都优于GPT-3。
1.3市场现状全球AI产业规模预计2030年将达到1500亿,未来8年复合增速约40%。目前全球人工智能企业的数量迅速增长,2022年,全球人工智能(AI)市场规模估计为197.8亿美元,预计到2030年将达到1591.03亿美元,从2022年到2030年,复合年增长率为38.1%。
图人工智能全球市场规模预测
资料来源:资产信息网千际投行PrecedenceResearch
2022年中国人工智能产业规模达1958亿元,年增长率7.8%,整体稳健增长。而从应用格局来看,机器视觉、智能语音和自然语言处理是中国人工智能市场规模最大的三个应用方向。根据清华大学数据显示,三者占比分别为34.9%、24.8%和21%。一方面,政策推动下国内应用场景不断开放,各行业积累的大量数据为技术落地和优化提供了基础条件。另一方面,以百度、阿里、腾讯和华为为代表的头部互联网和科技企业加快在三大核心技术领域布局,同时一系列创新型独角兽企业在垂直领域快速发展,庞大的商业化潜力推动核心技术创新。
图中国人工智能产业规模
资料来源:资产信息网千际投行艾瑞咨询
第二章商业模式和技术发展2.1产业链人工智能产业链主要分为基础层、技术层、应用层三个层级:
基础层以数据、算力、算法为核心;
技术层是建立在基础层的核心能力之上,通过打造一套人工智能系统使机器能够像人类一样进行感知与分析,其中最关键的领域包括计算机视觉(图像识别与分析)、语音识别与自然语言处理技术(语音识别与合成)、机器学习与深度学习(分析决策及行动)等;
应用层是将技术能力与具体场景相融合,帮助企业/城市管理者等客户降本增效,目前主要应用的场景有泛安防、金融、医疗、自动驾驶等领域。
在上述三个层级之外,通常面向终端时还涉及硬件交付,如摄像头、服务器、芯片等,所以人工智能产业链涉及业务方众多。
图:产业链
资料来源:资产信息网千际投行招商银行
上游
人工智能基础层是支撑各类人工智能应用开发与运行的资源平台,主要包括数据资源、硬件设置和计算力三大要素。
人工智能基础层主要包括智能计算集群、智能模型敏捷开发工具、数据基础服务与治理平台三个板块。
智能计算集群:提供支持AI模型开发、训练或推理的算力资源,包括系统级AI芯片和异构智能计算服务器,以及下游的人工智能计算中心等;
智能模型敏捷开发工具:主要实现AI应用模型的生产,包括开源算法框架,提供语音、图像等AI技术能力调用的AI开放平台和AI应用模型效率化生产平台;
数据基础服务与治理平台:实现应用所需的数据资源生产与治理,提供AI基础数据服务及面向AI的数据治理平台。
AI基础层企业通过提供AI算力、开发工具或数据资源助力人工智能应用在各行业领域、各应用场景落地,支撑人工智能产业健康稳定发展。
图:人工智能基础层分类
资料来源:资产信息网千际投行
通用计算芯片CPU、GPU全球市场基本被Intel、Nvidia等美国芯片厂商垄断,技术与专利壁垒较高,卡脖子现象严重。华为麒麟、巴龙、昇腾及鲲鹏四大芯片有望突破此壁垒。未来几年,全球各大芯片企业、互联网巨头、初创企业都将成为该市场的主要玩家。
图中国及全球人工智能基础层产业规模及年增长率
资料来源:资产信息网千际投行中国电子学会
计算力指数国家排名中美国列国家计算力指数排名第一,坐拥全球最多超大规模数据中心,这是美国算力的基础保障。中国列第二,AI算力领跑全球。日本、德国、英国分别位列第三至第五名。
计算平台方面,全球市场被亚马逊、谷歌、阿里、腾讯、华为等公司基本垄断,但小公司的计算平台凭借价格优势仍有生存空间。
中游
技术层作为人工智能产业的核心,主要依托基础层的运算平台和海量数据资源进行识别训练和机器学习建模,以开发面向不同领域的应用技术,对应用层的产品智能化程度起着决定性作用。根据技术层级分为通用技术层、AI软件框架层和算法模型层。
算法作为人工智能技术的引擎,主要用于计算、数据分析和自动推理。当前最为主流的基础算法是深度学习算法,深度学习可以从大量数据中自动总结规律,并使其适应自身结构,从而应用到案例中。随着基础算法的成熟和稳定,算法发展重点转向工程实现——软件框架,很多企业开始转向建设算法模型工具库,将算法封装为软件框架,提供给开发者使用。
图中国及全球人工智能技术层产业规模及年增长率
资料来源:资产信息网千际投行中国电子学会
目前美国是该领域发展水平最高的国家,以谷歌、Facebook、IBM和微软为主的科技巨头均将人工智能的重点布局在算法理论和软件框架等门槛高的技术之上。而我国基础理论体系尚不成熟,鲜有拥有针对算法的开放平台,百度的Paddle-Paddle、腾讯的Angle等国内企业的算法框架尚无法与国际主流产品竞争。
下游
应用层是基于技术层的能力,去解决具体现实生活中的问题。比如利用计算机视觉技术,实现金融、安防等多个领域的人脸识别;利用智能语音技术,实现智能音箱、录音笔等的语音识别;利用自然语言处理技术,用于智能客服的问答。
图全球及中国应用层产业规模及增速
资料来源:资产信息网千际投行中国电子学会
在实际的应用中,技术层和应用层的关系是相互交叉的,某个领域的应用可能用到多个维度的技术层的能力,比如金融行业的应用对于智能语音、计算机视觉、自然语言处理技术都会有需求;同样某个技术层的能力也可以广泛应用到多个不同的应用领域,比如计算机视觉技术可以广泛应用到金融、安防、医疗、交通、教育等多个维度。
2.2商业模式人工智能相关产业大概分为五类:销售智能设备、提供智能服务、智能平台变现、智能软件授权以及智能项目整合。不同的商业领域决定AI技术的变现能力,根据五类产业内容又可分为计算能力、数据、算法框架、应用平台和解决方案六类商业领域,其进入壁垒、演化路径与短期长期价值各不相同。
图:人工智能常见五种商业模式
资料来源:资产信息网千际投行
目前,国内外的中大型厂商都已经初步形成了各自不同的核心竞争力,依据五大类人工智能商业内容呈现出的最终形式大致可以分为以下三类公司。
人工智能创业公司:主要是依靠其对于某一垂直领域的技术研发或渠道优势,通过销售相关技术产品设备或服务获得盈利。人工智能领域创业的技术门槛较高,一旦成功产业化,则竞争压力相对较小。商业模式相对比较传统,在获得市场关注和盈利前,需要投资人在人才与研发环节持续投入。而获得源源不断的融资也靠创始人的声誉背书,因此这类企业短时间内的收入模型和盈利模式比较模糊。
人工智能平台:大型人工智能科技公司一般布局都在基础功能平台服务上,如大数据、云计算平台。现在越来越多的巨头也把资源投入到了AI领域,如微软旗下成熟的AI平台。大型科技巨头公司将主要精力花在布局基础设施上,且大型人工智能平台主要都是靠应用程序接口(API)来盈利,调用的API次数越多,收费越高。而在调用这些API的同时,用户通常还会涉及其他服务,如服务器、虚拟机、数据库等,这也将为企业盈利带来新的增长点。
人工智能咨询与定制服务:主要根据企业和客户的需求进行定制化的人工智能解决方案。现阶段,人工智能方案对于传统制造与服务类企业来说,规模化应用及成本控制难度较大。但随着未来AI技术的发展,与人工智能服务相关的产品成本必将下降,中小型企业也可以负担并愿意进行智能升级改造。
AI咨询与定制服务的商业模式较为独特,目前大致有以下两种模式:
成熟的AI专利应用,如开发一个独家专利的人工智能解决方案产品,并出售给下游用户,其产品可标准化、规模化量产。
客户定制化服务,比如为某家公司客户进行产品定制服务,服务的归属权归客户所有,服务公司无权转卖,此类定制服务价格较高,竞争能力强。
2.3专利申请量专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智能专利申请主要来源于中国、美国和日本。2000年至2018年间,中美日三国AI专利申请量占全球总申请量的73.95%。中国虽在AI领域起步较晚,但自2010年起,专利产出量首超美国,并长期雄踞申请量首位。
从专利申请领域来看,深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于AI科技热潮兴起后申请,并集中在应用端(如智能搜索、智能推荐),而AI芯片、基础算法等关键领域和前沿领域专利技术主要仍被美国掌握。由此反映出中国AI发展存在基础不牢,存在表面繁荣的结构性不均衡问题。
从专利权人分布来看,中国高校和科研机构创新占据主导地位,或导致理论、技术和产业割断的市场格局。欧美日人工智能申请人集中在企业,IBM、微软、三星等巨头企业已构建了相对成熟的研发体系和策略,成为专利申请量最多的专利人之一。其中,IBM拥有专利数量全球遥遥领先。而中国是全球唯一的大学和研究机构AI专利申请高于企业的国家。由于高校与企业定位与利益追求本质上存在差异,国内技术创新与市场需求是否有效结合的问题值得关注。
图AI领域主要专利权人分布
资料来源:资产信息网千际投行Derwent
通过对国内人工智能行业的各个专利申请人的专利数量进行统计,排名前列的公司依次为:中兴通讯、京东方A、四川长虹、视源股份、海康威视、浪潮信息、大华股份、航天信息等。
图国内人工智能行业专利数量Top10
资料来源:资产信息网千际投行iFinD
中国AI专利质量参差不齐,海外市场布局仍有欠缺。尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国AI专利国内为主,高质量PCT数量较少。
PCT(PatentCooperationTreaty)是由WIPO进行管理,在全球范围内保护专利发明者的条约。PCT通常被为是具有较高的技术价值。据中国专利保护协会统计,美国PCT申请量占全球的41%,国际应用广泛。而中国PCT数量(2568件)相对较少,仅为美国PCT申请量的1/4。
目前,我国AI技术尚未形成规模性技术输出,国际市场布局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实用新型专利和外观设计三类,技术难度依次降低。中国拥有AI专利中较多为门槛低的实用新型专利。此外,据剑桥大学报告显示,受高昂专利维护费用影响,我国61%的AI实用新型和95%的外观设计将于5年后失效,而美国85.6%的专利仍能得到有效保留。
2.4政策监管人工智能行业根据中国证监会颁布的《上市公司行业分类指引》(2012年修订)和国家统计局《国民经济行业分类》(GB/T4754-2017)隶属于“软件和信息技术服务业”(行业代码为I65)。根据《战略性新兴产业分类(2018)》隶属于“新一代信息技术产业”中的“人工智能”行业。
人工智能行业的行政监管部门为工信部,负责拟订信息产业的规划、政策和标准并组织实施,指导行业技术创新和技术进步,组织实施有关国家科技重大专项,推进相关科研成果产业化,推动软件业、信息服务业和新兴产业发展。
人工智能的自律协会包括:
中国软件行业协会:协助政府部门组织制定、修改行业的国家标准、行业标准及推荐性标准,并推进标准的贯彻落实;开展软件和信息服务行业的调查与统计,提出行业中、长期发展规划的咨询建议;根据软件行业发展需要,组织行业人才培训、人才交流等。
中国人工智能产业发展联盟:聚集产业生态各方力量,联合开展人工智能技术、标准和产业研究,共同探索人工智能的新模式和新机制,推进技术、产业与应用研发,开展试点示范,广泛开展国际合作等。
中国人工智能学会:组织和领导会员开展人工智能科学与技术的创新研究,促进人工智能科学与技术的发展;开展国内、国际学术交流活动,提高会员的学术水平;开展人工智能科学与技术的咨询与培训;组织开展对人工智能领域科学技术和产业发展战略的研究,向政府部门提出咨询建议等。
人工智能的行业政策包括:
资料来源:资产信息网千际投行
2020年国家标准化管理委员会、中央网信办国家发展改革委、科技部、工业和信息化部关于印发《国家新一代人工智能标准体系建设指南》的通知,将人工智能标准体系结构分为八大部分。
基础共性标准:包括术语、参考架构、测试评估三大类,位于人工智能标准体系结构的最左侧,支撑标准体系结构中其它部分。
支撑技术与产品标准:对人工智能软硬件平台建设、算法模型开发、人工智能应用提供基础支撑。
基础软硬件平台标准:主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑。
关键通用技术标准:主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑。
关键领域技术标准:主要围绕自然语言处理、智能语音、计算机视觉、生物特征识别、虚拟现实/增强现实、人机交互等方面,为人工智能应用提供领域技术支撑。
产品与服务标准:包括在人工智能技术领域中形成的智能化产品及新服务模式的相关标准。
行业应用标准:位于人工智能标准体系结构的最顶层,面向行业具体需求,对其它部分标准进行细化,支撑各行业发展。
安全/伦理标准:位于人工智能标准体系结构的最右侧,贯穿于其他部分,为人工智能建立合规体系。
图:人工智能标准体系结构
资料来源:资产信息网千际投行东吴证券
第三章行业估值、定价机制和全球龙头企业3.1行业综合财务分析和估值方法图:指数表现
资料来源:资产信息网千际投行iFinD
人工智能行业估值方法可以选择市盈率估值法、PEG估值法、市净率估值法、市现率、P/S市销率估值法、EV/Sales市售率估值法、RNAV重估净资产估值法、EV/EBITDA估值法、DDM估值法、DCF现金流折现估值法、NAV净资产价值估值法等。
3.2行业发展和驱动因子多个行业希望利用AI实现数字化转型
当前,数字化浪潮来袭,以人工智能为代表的新一代数字技术日新月异,催生了数字经济这一新的经济发展形态。过去20余年消费互联网的充分发展为我国数字技术的创新、数字企业的成长以及数字产业的蓬勃发展提供了重要机遇。人工智能等新一代信息技术的快速发展和应用,推动着各行各业加速向数字化迈进。伴随着数字技术的融合应用以及我国供给侧结构性改革的不断深化,加快AI等数字技术与产业经济的融合发展成为多个行业的共识。
大量人工智能高端人才
高端人才对于一个行业的影响毋庸置疑,甚至可以说,一个国家在人工智能领域的实力主要取决于少数精英研究人员的质量。目前世界范围内,美国仍然是拥有最多拔尖研究人员的国家,这就是为什么美国在人工智能发明的年代能够取得领先地位,并且进入应用的时代时,他们比自己的同行有优势。
近年来,我国企业对于机器学习、知识图谱等领域关注度逐年增加,尤其在金融、教育、医疗领域,并由此吸引了越来越多的人才从事相关领域的学习。在研究热度、就业前景、政策红利等多方面因素叠加下,未来我国有望培养大量该领域的高端人才。
移动互联网的推动
随着人工智能进入应用时代,数据的应用量得到了大幅提升。当今人工智能应用的核心,就是通过深度学习在海量数据中概括出人类难以发觉的细微联系的能力。数据可以被视为支撑人工智能运行的原材料。
我国拥有大量的移动互联网用户基础,为我国人工智能行业提供数据支撑。截至2021年上半年,我国手机网民规模为10.07亿,较2020年12月新增手机网民2092万,网民中使用手机上网的比例为99.6%
技术进步
(1)边缘计算技术:通过将边缘技术应用于人工智能,可以提供更快的计算和洞察力、更好的数据安全性以及对持续运营的有效控制。因此,它可以提高支持人工智能的应用程序的性能,并降低运营成本。
(2)分布式计算技术:可以将计算任务分派给多个分布式服务器进行下发,计算完成后再将结果通过不同的分布式服务器进行汇总,通过中央控制器合成展现。分布式计算架构与人工智能计算相辅相成,共同完成大数据处理和计算任务。
政府政策支持
政府政策在驱动中国人工智能发展方面的作用是显著的但常常被人误解。政府常常挑选优势企业进行补贴,或者发布命令规定应当发展的技术。如果人工智能对经济的影响远小于当前预期,那么投入人工智能的资源可能是一种浪费。
另外,由于许多人工智能技术都已经成熟,选择哪些进行支持对公共部门来说是一个问题。政府的参与绝不是技术领先的先决条件,但随着人工智能更深入地渗透到现实系统中,政府参与可能会加速技术产生经济影响。
3.3行业风险分析表:常见行业风险因子
资料来源:资产信息网千际投行
(1)美国对国内AI发展限制力度可能加大
限制我国高科技产业的发展,已经成为美国政治精英层的共识。AI作为未来全球科技的重要发展方向,美国对相关领域的出口管制力度,不但不会因中美双方的后续协商而有所缓解,甚至还有可能加大。目前,美国已经将主要AI技术列入“限制性出口清单”,虽然没有明确限制对象,我国作为其重要竞争对手,限制力度可能更为严格,国内企业在技术引进、产品进口等方面将面临更多限制。
(2)政策支持力度不达预期或调整
当前,国内人工智能发展还处在起步阶段,产业链各环节发展还较为薄弱,企业对政府在技术研发、财税优惠、公共服务平台搭建、投融资支持、政府采购、人才培养等方面支持还十分依赖。如果政策支持方向出现调整,或者力度不达预期,对企业的业务发展和公司业绩都会造成较大的影响。
(3)技术研发和产业化不及预期
人工智能作为计算机领域的交叉和新兴学科,近年来进入创新爆发期,产品周期明显缩短,技术创新迭代加速,企业面临着的技术层面的竞争更为激烈。如果企业在技术研发投入不足或者产业化不及预期,对整个公司的发展将造成严重影响。
(4)市场竞争激化的风险
目前,国内在应用领域企业较为集中,微创企业、传统互联网巨头、垂直行业企业都在积极进入,形成了“百家争鸣”的格局,而且未来在国家政策的支持下,行业新进入企业将可能增多,市场、利润争夺也将趋于白热化,企业盈利能力将可能受到挑战。
3.4竞争分析-SWOT模型优势
人工智能可以提供各种各样的应用来服务人类,比如京东和淘宝的智能推荐,无人车的自动驾驶。人工智能可用于完成最困难,最复杂甚至最危险的任务。我们可以利用人工智能的优势并充分利用它。人工智能还可以节省人力资源和提高效率,帮助我们完成单调,重复和耗时的过程。并且人工智能可以不停地工作,但人们不能这样做。同时人工智能能够比人们更快地完成复杂的任务,节省大量时间并加快进程,并且人工智能的成本与人力成本相比要低很多。
劣势
人工智能系统还无法超出场景或语境理解行为,并且具有不可预测性,用户无法预测人工智能会做出何种决策,这既是一种优势,也会带来风险,因为系统可能会做出不符合设计者初衷的决策。最后是安全问题和漏洞。机器会重结果而轻过程,它只会通过找到系统漏洞,实现字面意义上的目标,但其采用的方法不一定是设计者的初衷。例如,网站会推荐一些极端主义视频,因为刺激性内容可以增加浏览时间。再如,网络安全系统会判断人是导致破坏性软件植入的主要原因,于是索性不允许人进入系统。
机遇
无论人类社会自身的需求,还是由于人工智能的介入而产生的新需求,这些需求本身都为人工智能的发展提供了难得的机遇。虽然这些机遇不一定促成人工智能的进步,但它们的确是人工智能进一步发展的动力。人类总是期望人工智能可以更安全、更贴心地服务于人类,为人类创造更多的便利。
威胁
从技术层面来说,当前人工智能仍然面临着众多技术上的难题。技术上的难题关系着人工智能是否具有可靠性与高效性,能否取得人类信任,能否避免出现重大技术事故等。
从社会规范层面来看,人工智能的快速发展在一定程度上打破了传统的社会规范,也因此带来了一系列的社会问题。这些问题的出现,为人工智能的发展带来了诸多隐忧,甚至在一定程度上阻碍了人工智能的发展。人工智能能否解决人类对人工智能自身发展的担忧,在很大程度上决定着其自身的发展前景。
3.5重要参与企业中国主要企业有海康威视[002415.SZ]、工业富联[601138.SH]、京东方A[000725.SZ]、中兴通讯[000063.SZ]、科大讯飞[002230.SZ]、恒生电子[600570.SH]、澜起科技[688008.SH]、闻泰科技[600745.SH]、兆易创新[603986.SH]、圣邦股份[300661.SZ]等。
根据Google的综合数据,全球人工智能企业排名前十分别是:Nvidia,Microsoft,IBM,Google,OpenAI,Alphabet,DataRobot,Apple,Intel,SenseTime。
第四章未来展望整体趋势
人工智能作为第四次工业革命的重要抓手之一,已经成为各国科技领域争夺的焦点。中美两国在该领域各有千秋,竞争日趋激烈。国内人工智能政策环境较好,产业基础初步具备,市场需求十分旺盛。按照中央规划,未来人工智能核心产业、“AI+”(AI与传统产业融合)均是战略发展重点。
基础层
该层主要为人工智能提供算力支撑和数据输入,包括AI芯片、算力基础设施和大数据服务等。AI芯片方面,未来随着产业自身发展以及科创板的推进,国内AI专用芯片尤其是边缘端芯片领域的投资标的可能增加,一些视觉、语音算法研发企业已经注意到该领域的发展潜力,开始增加该板块的投资。
基础设施方面,服务器、云计算、超算等算力都开始向AI倾斜,尤其是GPU服务器需求增长更为迅速,国内主要服务器企业也在持续发力,竞争优势开始凸显。
技术层
该层是人工智能的核心,除了开源技术框架主要为国外AI巨头所掌控之外,我国企业在算法、语音和视觉技术等方面的布局已经相对完善。
应用层
该层是我国AI市场最为活跃的领域,国内AI企业多集中在该板块。尤其是语音、计算机视觉、知识图谱等相对成熟的技术,在AI产品、融合解决方案市场(安防、医疗、家居和金融等)上都得到了广泛应用,随着我国“AI+”战略的实施,该领域的市场空间更为广阔。