人工智能的三次沉浮,和可能的寒冬
手机前瞻网注册/登陆
选择栏目
人工智能的三次沉浮,和可能的寒冬图灵TOPIA2021-11-3018:32作者|图灵 来源|图灵TOPIA(ID:turingtopia)
如果将眼光放长远一点,历史上已经经历了三次发展浪潮,也经历了两次低谷。换言之,人工智能的泡沫已经破灭两次了。让我们先来回顾一下人工智能这三起两落的历史,从历史中来找寻现在的意义,推导出我们可能面临的未来。
第一次浪潮和第一次低谷:
达特茅斯会议推动了全球第一次人工智能浪潮的出现,这次浪潮从1956年一直持续到1974年。当时乐观的气氛弥漫着整个学界,在算法方面出现了很多世界级的发明,其中包括一种叫做增强学习的雏形(即贝尔曼公式),增强学习就是谷歌AlphaGo算法核心思想内容。
70年代初,AI遭遇了瓶颈。人们发现逻辑证明器、感知器、增强学习等等只能做很简单、非常专门且很窄的任务,稍微超出范围就无法应对。当时的计算机有限的内存和处理速度不足以解决任何实际的AI问题。研究者们很快发现,要求程序对这个世界具有儿童水平的认识这个要求都太高了——1970年没人能够做出人工智能需要的巨大数据库,也没人知道一个程序怎样才能学到如此丰富的信息。另一方面,有很多计算复杂度以指数程度增加,这成为了不可能完成的计算任务。
第二次浪潮和第二次低谷:
在80年代,一类名为“专家系统”的AI程序开始为全世界的公司所采纳,而“知识处理”成为了主流AI研究的焦点。专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了80年代AI研究的主要方向。但是专家系统的实用性仅仅局限于某些特定情景,不久后人们对专家系统的狂热追捧转向巨大的失望。另一方面,1987年到1993年现代PC的出现,其费用远远低于专家系统所使用的Symbolics和Lisp等机器。相比于现代PC,专家系统被认为古老陈旧而非常难以维护。于是,政府经费开始下降,寒冬又一次来临。
第三次浪潮:
1993年后,出现了新的数学工具、新的理论和摩尔定律。人工智能也在确定自己的方向,其中一个选择就是要做实用性、功能性的人工智能,这导致了一个新的人工智能路径。深度学习为核心的机器学习算法获得发展,积累的数据量极大丰富,新型芯片和云计算的发展使得可用的计算能力获得飞跃式发展,现代AI的曙光又再次出现了。一个标志性事件发生在2016年3月,谷歌DeepMind研发的AlphaGo在围棋人机大战中击败韩国职业九段棋手李世乭。随后,大众开始熟知人工智能,各个领域的热情都被调动起来了。
深度学习的发展,让人工智能进入新的发展高潮。技术尤其是算法层面的局限,决定了这次人工智能浪潮的“天花板”。深度学习算法带来的“技术红利”,将支撑我们再发展5~10年时间,随后就会遇到瓶颈。在人工智能领域,技术的进步不是线性的,而是线性积累和间断式突破交替进行的。我们必须要达到一个“技术奇点”,才能实现根本上的突破,达到通用人工智能甚至是超级人工智能的水平。大概率的可能性,未来几年人们对人工智能怀有巨大的热情和非理性的期待,但同时会渐渐发觉推进起来越来越费劲,仿佛有个无形的“天花板”挡在那里,迟迟不能获得突破,人们的耐心被渐渐耗尽,人工智能的下一个冬天也就来临了。
就一般产业而言,线性发展的成分更重一些,即使产业不能再往前推进了,依然能够保持比较高的产业成熟度。人工智能产业则不同,如果以百分制来衡量一个产业的发展程度,人工智能不是从1慢慢发展到100,而是要么是90分以上,要么是10以下。试想一下,你有一个智能助手,如果他的智力水平一直在10岁以下,你能接受么?那样的智能助手更多的是个玩具,不能委以重任,毕竟谁也不会将重要的事情交给一个小孩子来做。再比如翻译领域,一旦智能系统能够达到人类水平的翻译能力,那将是一次彻底的颠覆,人类翻译员将彻底消失;但是,在没达到那种水平之前,翻译系统基本就是个摆设,你不能通过那套系统来与外国人顺畅的交流,也不能将看到的整段材料马上转换成另一种语言。
人工智能的泡沫,更多的是产业化和商业应用层面的。很多做人工智能应用的企业,如果发现将方案落地的期待落空,那他整个商业价值存在的根基就不存在了,整个产业将会消失,大量企业也会倒闭。
如果真的要面对那样一个未来,我们应该怎么应对呢?我提出几点参考建议:
第一,适度降低对人工智能的技术期待,理性设定商业模式。企业要仔细评估技术的发展潜力,不要抱有不切实际的幻想。寻找并设计一些智能水平不是太高就能具有商业价值的应用模式,并基于此来构建竞争壁垒。比如在自动驾驶领域,我们要做好L4在10年内无法实现的心理准备,寻找一些L3级别就能具有商业价值的应用领域。
第二,现在就开始准备“过冬的粮草”。泡沫破灭之后,融资会变得越来越难,依据公司本身的造血能力维持基本没戏。所以,现在尽可能的多融资吧,并且在未来几年省着点花,争取能挨过寒冬。
第三,实行曲线救国策略,发展一些“伪智能”业务,拓展业务领域。如果哪天发现“纯人工智能”这条路走不通,可以考虑发展一些周边产业,只要能带来现金流就行。虽然挂羊头卖狗肉有点缺德,但能保存“革命的火种”,也算一件好事。
编者按:本文转载自微信公众号:图灵TOPIA(ID:turingtopia),作者:图灵
本文作者信息
图灵TOPIA(人工智能)
关注(1441)赞(3)
邀请演讲广告、内容合作请点这里:寻求合作
咨询·服务
研究报告
产业规划
园区规划
产业招商
项目可研
市场调研
投资选址
IPO咨询
相关阅读年轻人在小红书“卷”电动车
盒饭财经06-2119:00XR行业已进入行业拐点,四方面技术创新值得关注
第一新声06-2118:21养车市场陷入低价内卷,“虎猫狗”还没等到春天|中场战事
连线出行06-2118:04科技力、品牌力、出海力,长城汽车「三力」重塑成长
节点财经06-2117:20「直播带高校」,何以成风潮?
数字力场06-2117:00精彩推荐2023年中国医疗机器人行业市场现状分析:主要集中在康复机器人【组图】太阳能:公司首个吉瓦级项目!拟17亿元投资建设300兆瓦项目支持L3级及更高级别的自动驾驶功能商业化应用【行业深度】洞察2023:中国磷化工行业竞争格局及市场份额分析-发现趋势,预见未来关于前瞻|加入我们|联系我们|品牌合作
违法和不良信息举报电话:400-068-7188举报邮箱:service@qianzhan.com
Copyright©1998-2023FORWARD前瞻网
人工智能简史:从两次低谷到三次崛起
如今人工智能已然成为香饽饽,在各行业都开始得到应用。然而大家可能不知道的是,人工智能并非近些年才兴起的,它经历了两次低谷和三次崛起,才发展成当下热门的技术。因此人工智能简史其实也是看做一段励志的崛起史。
人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。
巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。
后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MITAILAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。
人工智能的第一次高峰在1956年的这次会议之后,人工智能迎来了属于它的第一段HappyTime。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”
人工智能第一次低谷
70年代,人工智能进入了一段痛苦而艰难岁月。由于科研人员在人工智能的研究中对项目难度预估不足,不仅导致与美国国防高级研究计划署的合作计划失败,还让大家对人工智能的前景蒙上了一层阴影。与此同时,社会舆论的压力也开始慢慢压向人工智能这边,导致很多研究经费被转移到了其他项目上。
在当时,人工智能面临的技术瓶颈主要是三个方面,第一,计算机性能不足,导致早期很多程序无法在人工智能领域得到应用;第二,问题的复杂性,早期人工智能程序主要是解决特定的问题,因为特定的问题对象少,复杂性低,可一旦问题上升维度,程序立马就不堪重负了;第三,数据量严重缺失,在当时不可能找到足够大的数据库来支撑程序进行深度学习,这很容易导致机器无法读取足够量的数据进行智能化。
因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。
人工智能的崛起1980年,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。这是一种,采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。
这套系统在1986年之前能为公司每年节省下来超过四千美元经费。有了这种商业模式后,衍生出了像Symbolics、LispMachines等和IntelliCorp、Aion等这样的硬件,软件公司。在这个时期,仅专家系统产业的价值就高达5亿美元。
人工智能第二次低谷
可怜的是,命运的车轮再一次碾过人工智能,让其回到原点。仅仅在维持了7年之后,这个曾经轰动一时的人工智能系统就宣告结束历史进程。到1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。
人工智能再次崛起:上世纪九十年代中期开始,随着AI技术尤其是神经网络技术的逐步发展,以及人们对AI开始抱有客观理性的认知,人工智能技术开始进入平稳发展时期。1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个重要里程。
2006年,Hinton在神经网络的深度学习领域取得突破,人类又一次看到机器赶超人类的希望,也是标志性的技术进步。
2016年,Google的AlphaGo赢了韩国棋手李世石,再度引发AI热潮。
AI不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从70年代personal计算机的兴起到2010年GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。
人工智能从两次低谷到三次崛起充分证明了,是金子总会发光。也许当时的技术还不足以支撑人工智能这个想法的实现,但是通过历代IT人的努力,属于人工智能的时代终究是来了。这次,人工智能的浪潮终将把你我卷入其中,让我们张开双手,去拥抱这一天吧!
深度学习—人工智能的第三次热潮
深度学习的历史趋势迄今为止深度学习已经经历了3次发展浪潮:
20世纪40年代到60年代,深度学习的雏形出现在控制论(cybernetics)中;
20世纪80年代到90年代,深度学习表现为联结主义(connectionism);
直到2006年,才真正以深度学习之名复兴。
初识几个概念自动从数据中学习出特征与橙子类型的各种算法,那么这个模型的样子就是你的规则库。
深度学习处于人工智能的哪个位置认识深度学习一、神经网络的基本单元——神经元用数学模型模拟的人工神经元里面处理的是所有树突的信号源及相关强的计算。
计算公式是这样的:s=p1w1+p2w2+p3w3+b
二、神经网络的结构三、深度学习的概念深度神经网络(深度学习)是一种具备至少一个隐层的神经网络,即隐藏层的层数很多。
深度学习与传统方法的区别监督学习深度学习中的监督式学习包括卷积神经网络、循环神经网络等。
非监督学习深度学习中的非监督式学习包括确定型的自编码器方法、基于概率型受限玻尔兹曼机的对比散度方法等。
深度学习常用的方法自编码器卷积神经网络循环神经网络深度学习无监督式方法自编码器自编码器可以作为一种特征降维的方法。
当我们使用4个值表示四个类别的时候:
用4个值表示4个类别是不紧致的,存在压缩表示的可能性,比如2个值就可以表示这四个不同的数。
深度学习有监督式方法卷积神经网络深度学习有监督方法卷积神经网络深度学习有监督方法—循环神经网循环神经网络的来源是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面结点的输出。即:循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上一时刻隐藏层的输出。
傅园慧说:“在澳洲训练非常辛苦,我已经快死了,简直是生不如死”。从文字上来可能是愤怒的。“鬼知道我经历了什么,我太累了”,虽然文字上是辛苦的,但是人脸表情、语音情绪不是,所以总结起来还是开心的。
介绍强化学、AIphaGo和迁移学习强化学习不学习,看电视—家长训斥、挨打
好好学习—奖励棒棒糖
AIphaGo迁移学习深度学习的多种应用场景安防监控智慧城市医疗健康智能家居深度学习在智能运维中的应用方法智能运维的发展过程KPI异常检测算法使用自编码器结合聚类算法对KPI进行快速聚类规律一致的模式
抖动剧烈的模式
异常的模式
运维中常见的KPI数据是一种时间序列数据,它具有数据实例多、维度高的特点。为了降低数据分析工作的开销,提高分析效率,我们希望将海量的时序数据曲线分为若干类别,从而减少需要考察的曲线数目。
因此,需要对大规模辅助KPI标注、辅助构建故障传播链。
使用LSTM做KPI趋势预测写在最后近年来,在AIOps领域快速发展的背景下,IT工具、平台能力、解决方案、AI场景及可用数据集的迫切需求在各行业迸发。基于此,云智慧在2021年8月发布了AIOps社区。
社区先后开源了数据可视化编排平台-FlyFish、运维管理平台OMP、云服务管理平台-摩尔平台、Hours算法等产品。
可视化编排平台-FlyFish:
项目介绍:https://www.cloudwise.ai/flyF...
Github地址:https://github.com/CloudWise-...
Gitee地址:https://gitee.com/CloudWise/f...
行业案例:https://www.bilibili.com/vide...
部分大屏案例: