博舍

语音识别人工智能技术的分类应用有哪些 人工智能的语音识别应用有哪些方面呢

语音识别人工智能技术的分类应用有哪些

语音识别人工智能技术的分类应用有哪些?语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。

根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolatedwordrecogniTIon),关键词识别(或称关键词检出,keywordspotTIng)和连续语音识别。其中,孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现,如在一段话中检测“计算机”、“世界”这两个词。

根据针对的发音人,可以把语音识别人工智能技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。

另外,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。

语音识别人工智能技术的应用领域非常广泛,常见的应用系统有:语音输入系统,相对于键盘输入方法,它更符合人的日常习惯,也更自然、更高效;语音控制系统,即用语音来控制设备的运行,相对于手动控制来说更加快捷、方便,可以用在诸如工业控制、语音拨号系统、智能家电、声控智能玩具等许多领域。

智能对话查询系统,根据客户的语音进行操作,为用户提供自然、友好的数据库检索服务,例如家庭服务、宾馆服务、旅行社服务系统、订票系统、医疗服务、银行服务、股票查询服务等等。

人工智能之语音识别技术【科普】

03语音增强

主要任务就是消除环境噪声对语音的影响。目前,比较常见的语音增强方法分类很多。其中基于短时谱估计增强算法中的谱减法及其改进形式是最为常用的,这是因为它的运算量较小,容易实时实现,而且增强效果也较好。此外,人们也在尝试将人工智能、隐马尔科夫模型、神经网络和粒子滤波器等理论用于语音增强,但目前尚未取得实质性进展。

声学特征提取

人通过声道产生声音,声道的形状决定了发出怎样的声音。声道的形状包括舌头,牙齿等。如果我们可以准确的知道这个形状,那么我们就可以对产生的音素进行准确的描述。声道的形状在语音短时可以由功率谱的包络中显示出来。因此,准确描述这一包络的特征就是声学特征识别步骤的主要功能。接收端接收到的语音信号经过上文的预处理以后便得到有效的语音信号,对每一帧波形进行声学特征提取便可以得到一个多维向量。这个向量便包含了一帧波形的内容信息,为后续的进一步识别做准备

本文主要介绍使用最多的MFCC声学特征。

01MFCC简介

MFCC是Mel-FrequencyCepstralCoefficients的缩写,顾名思义MFCC特征提取包含两个关键步骤:转化到梅尔频率,然后进行倒谱分析

Mel频率倒谱系数的缩写。Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征

02MFCC提取流程

MFCC参数的提取包括以下几个步骤:

预滤波:CODEC前端带宽为300-3400Hz的抗混叠滤波器。

A/D变换:8kHz的采样频率,12bit的线性量化精度。

预加重:通过一个一阶有限激励响应高通滤波器,使信号的频谱变得平坦,不易受到有限字长效应的影响。

分帧:根据语音的短时平稳特性,语音可以以帧为单位进行处理,实验中选取的语音帧长为32ms,帧叠为16ms。

加窗:采用哈明窗对一帧语音加窗,以减小吉布斯效应的影响。

快速傅立叶变换(FastFourierTransformation,FFT):将时域信号变换成为信号的功率谱。

三角窗滤波:用一组Mel频标上线性分布的三角窗滤波器(共24个三角窗滤波器),对信号的功率谱滤波,每一个三角窗滤波器覆盖的范围都近似于人耳的一个临界带宽,以此来模拟人耳的掩蔽效应。

求对数:三角窗滤波器组的输出求取对数,可以得到近似于同态变换的结果。

离散余弦变换(DiscreteCosineTransformation,DCT):去除各维信号之间的相关性,将信号映射到低维空间。

谱加权:由于倒谱的低阶参数易受说话人特性、信道特性等的影响,而高阶参数的分辨能力比较低,所以需要进行谱加权,抑制其低阶和高阶参数。

倒谱均值减(CepstrumMeanSubtraction,CMS):CMS可以有效地减小语音输入信道对特征参数的影响。

差分参数:大量实验表明,在语音特征中加入表征语音动态特性的差分参数,能够提高系统的识别性能。在本系统中,我们也用到了MFCC参数的一阶差分参数和二阶差分参数。

短时能量:语音的短时能量也是重要的特征参数,本系统中我们采用了语音的短时归一化对数能量及其一阶差分、二阶差分参数。

MFCC提取一般流程

模式匹配 和语言处理

通过语音特征分析以后接下来就是模式匹配和语言处理

声学模型是识别系统的底层模型,并且是语音识别系统中最关键的一部分。声学模型的目的是提供一种有效的方法计算语音的特征矢量序列和每个发音模板之间的距离。声学模型的设计和语言发音特点密切相关。声学模型单元大小(字发音模型、半音节模型或音素模型)对语音训练数据量大小、系统识别率,以及灵活性有较大的影响。必须根据不同语言的特点、识别系统词汇量的大小决定识别单元的大小。

语言模型对中、大词汇量的语音识别系统特别重要。当分类发生错误时可以根据语言学模型、语法结构、语义学进行判断纠正,特别是一些同音字则必须通过上下文结构才能确定词义。语言学理论包括语义结构、语法规则、语言的数学描述模型等有关方面。目前比较成功的语言模型通常是采用统计语法的语言模型与基于规则语法结构命令语言模型。语法结构可以限定不同词之间的相互连接关系,减少了识别系统的搜索空间,这有利于提高系统的识别。语音识别过程实际上是一种认识过程。就像人们听语音时,并不把语音和语言的语法结构、语义结构分开来,因为当语音发音模糊时人们可以用这些知识来指导对语言的理解过程,但是对机器来说,识别系统也要利用这些方面的知识,只是如何有效地描述这些语法和语义还有困难:

小词汇量语音识别系统。通常包括几十个词的语音识别系统。中等词汇量的语音识别系统。通常包括几百个词至上千个词的识别系统。大词汇量语音识别系统。通常包括几千至几万个词的语音识别系统。这些不同的限

制也确定了语音识别系统的困难度。模式匹配部是语音识别系统的关键组成部分,它一般采用“基于模式匹配方式的语音识别技术”或者采用“基于统计模型方式的语音识别技术”。前者主要是指“动态时间规整(DTW法”,后者主要是指“隐马尔可夫(HMM)法”。

隐马尔可夫模型(HMM)是语音信号处理中的一种统计模型,是由Markov链演变来的,所以它是基于参数模型的统计识别方法。由于其模式库是通过反复训练形成的与训练输出信号吻合概率最大的最佳模型参数而不是预先储存好的模式样本,且其识别过程中运用待识别语音序列与HMM参数之间的似然概率达到最大值所对应的最佳状态序列作为识别输出,因此是较理想的语音识别模型。

动态时间归整)算法:在孤立词语音识别中,最为简单有效的方法是采用DTW(DynamicTimeWarping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现较早、较为经典的一种算法,用于孤立词识别。HMM算法在训练阶段需要提供大量的语音数据,通过反复计算才能得到模型参数,而DTW算法的训练中几乎不需要额外的计算。所以在孤立词语音识别中,DTW算法仍然得到广泛的应用。

小结:语音识别在移动终端上的应用最为火热,语音对话机器人、智能音箱、语音助手、互动工具等层出不穷,许多互联网公司纷纷投入人力、物力和财力展开此方面的研究和应用。语音识别技术也将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。尤其是在智能家居系统中语音识别将成为人工智能在家庭重要的入口,同时,未来随着手持设备的小型化,智能穿戴化也将成为语音识别技术的重要应用领域。返回搜狐,查看更多

更所资讯请关注我们!一个有维度的人工智能平台!dmindAI精彩等你来

语音识别技术应用领域有哪些?分别介绍应用领域

随着语音识别技术的不断发展和进步,也应用到越来越多的产品跟领域中。它们都少不了语音识别芯片、语音识别模块的支持。那么市面上有哪些语音识别模块好用呢?哪些领域又运用到语音识别技术呢?语音识别模块哪个好用为大家推荐一款由九芯电子完全自主研发的无须外围元件,直接对接外部TD01系列语音识别模块,集成了了一颗高性能、低成本的离线语音识别芯片。TD01系列语音识别模块具有语音识别及播报功能,需要外挂spl-Flash,存储词条或者语音播放内容。这款模块还具备有工业级性能,同时还具有识别率高、简单易用、更新词条方便等优势。这款语音识别模块被广泛应用在AI人工智能产品、智能家居遥控、智能玩具等多种领域上。

语音识别技术的应用领域:智能家电遥控

语音识别技术应用领域介绍

如今很多家电都已经智能化了BCM3037KPF,用一个小小的遥控器就可以把家里所有的电器用语音操控起来,比如客厅的电视、空调、窗帘等。以前要一个个遥控器换着操控,如今只需要结合到一个遥控器就可以让这些操作轻松实现。

语音识别技术的应用领域:智能玩具

语音识别技术的智能化也让玩具行业进行了变革,越来越多的智能玩具被研发出来,比如智能语音娃娃、智能语音儿童机器人。我们可以用语音跟它们做些简单交流,完成一些简单的任务等等。

语音识别技术的应用领域:汽车语音控制

当我们驾驶汽车在行驶过程中,必须时刻握好方向盘,但是难免有时候遇到急事需要拨打电话这些,这时候运用汽车上的语音拨号功能的免提电话通信方式便可简单实现。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以用语音的方式进行操作。

语音识别技术的应用领域:工业控制及医疗领域

在工业及医疗领域上,运用智能语音交互,能够让我们解放双手,只需要对机器发出命令,就可以让其操作完成需要的任务。大大提升了工作的效率。

语音识别技术在个人助理、智能家居等很多领域都有运用到,随着语音识别技术在未来的不断发展,语音识别芯片的不敢提高,给我们的生活带来了更大的便利和智能化。

人工智能在生活中的应用都有哪些

0分享至

人工智能发展到现在人机对弈,智能家居,同声传译,人工智能生活助手等如雨后春笋般层出不穷。现在越来越多的企业有已经提出了AI+的概念,那么人工智能在生活中的应用都有哪些?

人工智能一共分为自然语言处理、计算机视觉、语音识别、专家系统以及交叉领域等五个领域。今天我就通过人工智能的六个方向讲一讲人工智能在生活中的有趣应用,来帮助大家更好地理解人工智能,尽享科技带给我们的便捷生活。

【第一方面:自然语言处理】

自然语言处理是一门融语言学、计算机科学、数学于一体的科学。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统,是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。自然语言处理的目的是实现人与计算机之间用自然语言进行有效通信的各种理论和方法。

1、多语言翻译。

自然语言处理的一个主要应用方面就是外文翻译。生活中遇到外文文章,大家想到的第一件就是寻找翻译网页或者APP,然而每次机器翻译出来的结果,基本上都是不符合语言逻辑的,需要我们再次对句子进行二次加工排列组合。至于专业领域的翻译,如法律、医疗领域,机器翻译根本就是不可行的。

面对这一困境,自然语言处理正在努力打通翻译的壁垒,只要提供海量的数据,机器就能自己学习任何语言。机器从0开始进入一个领域(零成本进入)大概2周时间。所以,进入哪个领域都能高度垂直的做下去。比如,法律类专业文章翻译,优质法律文章的总量是有限的,让机器学习一遍这些文章,就可以保证翻译95%的流畅度,而且能做到实时同步。

2、虚拟个人助理。

虚拟个人助理是指使用者通过声控、文字输入的方式,来完成一些日常生活的小事。大部分的虚拟个人助理都可以做到搜集简单的生活信息,并在观看有关评论的同时,帮你优化信息,智能决策。

同时部分虚拟个人助理还可以直接播放音乐的智能音响或者收取电子邮件,这些都是虚拟个人助理的变化形式之一。虚拟个人助理应用在我们生活中的方方面面,音响、车载、智能家居、智能车载,智能客服多个方面。一般来说,听到语音指令就可以完成服务的,基本上都是虚拟个人助理。

3、智能病例处理

自然语言处理还可以将积压的病例自动批量转化为结构化数据库,机器学习和自然语言处理技术能自动抓取病例中的临床变量,生成标准化的数据库。随后变量抽提、思路生成到论文图表导出的全过程辅助智能算法能挖掘变量相关性,激发论文思路,同时提供针对临床科研的专业统计分析支持。

其水平相当于受过8年临床医学教育的医学研究生,这样下来同样同读一篇50页的病历,抓取和理解其中的所有临床信息速度比医生平均快2700倍,大大地提高了医院的办公效率,求医难这个问题将得到很多的缓解。

【第二方面:语音识别】

语音识别是一门交叉学科。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情,如今人工智能将这一理想变为现实,并带它走入了我们日常的生活。

1、智能医院。

依靠人工智能技术和大数据,医院可以实现智能语音交互的知识问答和病历查询,语音录入能取代打字,让您通过说话的方式,就可轻松与电脑、平板电脑、移动查房设备进行录入。每一个人说的话都会被转录成文字并显示在您的HIS系统、PACS系统、CIS系统等希望输入文字的位置。此外还可以对健康风险进行预测和对患者分群进行分析。

2、口语评测。

在语音识别方面还有一个比较有趣的应用——语音评测服务,语音评测服务是利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用。在语音测评服务中,人机交互式教学,能实现一对一口语辅导,就好像是请了一个外教在家,从此解决了哑巴英语的问题。

【第三个方面:计算机视觉】

计算机视觉是一门研究如何使机器“看”的科学,更进一步地说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。通过计算机视觉,电脑将处理更适合人眼观察或传送给仪器检测的图像。计算机视觉的主要任务是通过对采集的图片或者视频进行处理以获得相应场景的三维信息。

1、智能安防。

随着各级政府大力推进“平安城市”建设的过程中,监控点位越来越多,视频和卡口产生了海量的数据。尤其是高清监控的普及,整个安防监控领域的数据量都在爆炸式增长,依靠人工来分析和处理这些信息变得越来越困难,利用以计算机视觉为核心的安防技术领域具有海量的数据源以及丰富的数据层次,同时安防业务的本质诉求与AI的技术逻辑高度一致,从可以从事前的预防应用到事后的追查。

2、人脸识别打拐。

当前,全国拐卖儿童犯罪活动较为猖獗,受害人及受害家庭数以万计。据民政部估计,目前,全国流浪乞讨儿童数量在100万-150万左右。在河南、云南以及两广沿海等地乡村地区,买卖儿童几近市场化,形成了一个完整的地下黑色利益链。可以寻回被拐卖儿童这件事迫在眉睫,刻不容缓。目前计算机视觉所应用的“人像识别、人脸对比”最快可以让被拐儿童在7小时内被寻回,这是计算机视觉在安全领域的巨大应用,今后也将越来越多地应用在打击犯罪等方面。

【第四个方面:专家系统】

专家系统是人工智能中最重要的也是最活跃的一个应用领域,它是指内部含有大量的某个领域专家水平的知识与经验,利用人类专家的知识和解决问题的方法来处理该领域问题的智能计算机程序系统。通常是根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,去解决那些需要人类专家处理的复杂问题。

1、无人汽车。

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标。从20世纪70年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,在可行性和实用化方面都取得了突破性的进展。

中国从20世纪80年代开始进行无人驾驶汽车的研究,国防科技大学在1992年成功研制出中国第一辆真正意义上的无人驾驶汽车。2005年,首辆城市无人驾驶汽车在上海交通大学研制成功。世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。

2、天气预测

随着手机的普及,现在越来越多的人已经习惯观看手机中的天气预测,而在天气预测中,专家系统的地位也是决定性的。专家系统可以首先通过手机的GPRS系统,定位到用户所处的位置,再利用算法,对覆盖全国的雷达图进行数据分析并预测。

用户就可以随时随地地查询自己所在地的天气走势。天气预报中再无“局部地区有雨”的字眼,取而代之的是“您所在街道25分钟后小雨,50分钟后雨停”。给您配上一位专属的天气预报员,让您收到的天气预报能精准到分钟和所在街道。

3、城市系统

城市系统是将交通、能源、供水等基础设施全部数据化,将散落在城市各个角落的数据进行汇聚,再通过超强地分析、超大规模地计算,实现对整个城市的全局实时分析,让城市智能地运行起来。城市系统率先解决的问题就是堵车。今年杭州的城市大脑,通过对地图数据、摄像头数据进行智能分析,从而智能地调节红绿灯,成功将车辆通行速度最高提升了11%,大大改善了出行体验。

【第五个方面:各领域交叉使用】

其实人工智能的四大方面应用其实或多或少都涉及到了其他领域,然而交叉应用最突出的方面还是智能机器人。机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。

1、物流机器人

物流机器人是结合机器人产品和人工智能技术去实现高度柔性和智能的物流自动化的技术变革的引领者。在消费升级下的市场压力,海量SKU的库存管理、难以控制的人力成本,都已经成为电商、零售等行业的共同困扰。而物流机器人管理成本低,包裹完整性强,可以满足各种分拣效率和准确率的要求,投资回报周期短。它的出现可有效提升生产柔性,助力企业实现智能化转型,也将越来越多地应用在日常生活中。

孩子一直是家长的心肝肉,而如何让孩子赢在起跑线也是各路家长无比关心的问题,这时候早教就显得尤为重要了。早教其实就是让孩子有效的玩耍,让孩子在玩耍的过程中学到很多知识,开发孩子的脑力,动手能力,反应能力,审美能力,培养兴趣及习惯。

市面上的早教机构价格昂贵,师资力量不足,同时还可能存在一定的安全隐患,这时候萌宠机器人的存在就很大的缓解了这一问题。语音功能让它就像孩子的小伙伴一样和孩子交流,记忆功能还可以记住宝宝的使用习惯,很快找到宝宝想听的内容。同时提供快乐儿歌、国学经典、启蒙英语等早期教育内容,且云端内容可以持续更新。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇