人工智能三个阶段 弱人工智能 强人工智能 超人工智能 即使神也要臣服于科学
人工智能是计算机学科的一个分支,被认为是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能不仅仅是机器人,机器人只是其容器,机器人有时候是人形,有时候不是,但是人工智能自身只是机器人体内的大脑。人工智能是大脑的话,机器人就是身体,而且这个身体不一定是必需的。
人工智能的概念很宽,所以人工智能也分很多种,我们可以按照实力将人工智能分为以下三大类。
弱人工智能:擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。弱人工智能是能制造出真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,但这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。说到底只是人类的工具。即使是弱人工智能在古代语言还原中还是文物还原中都起到极大作用,长期困扰专家的西夏文现在已经可以人工智能识别。我们现在就处于弱人工智能转向强人工智能时代。
强人工智能:人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多。这里的“智能”是指一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。
强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。可以独立思考问题并制定解决问题的最优方案,有自己的价值观和世界观体系。有和生物一样的各种本能,比如生存和安全需求。在某种意义上可以看作一种新的文明。例如银翼杀手和人工智能中的大卫就已经是强人工智能。
人工智能士兵银翼杀手战争兵器白起超人工智能:牛津哲学家,知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。当达到超过人类以后人工智能的发展将呈指数级爆发,人工智能将极大的推动科学进步,纳米技术和基因工程在人工智能的辅助下将得到极大提高,即使在弱人工智能时代,都已经可以识别西夏文和希伯来文。如果能达到超人工智能,以往逝去的人甚至都可以复活。甚至秦皇汉武,武安君白起。超人工智能想复刻多少,不过瞬间的事情。如果人类能达到这个阶段没有被强人工智能取代,人类自身说不定可以永生。电影出现的超人工智能例如人工智能电影结尾出现的透明人。
超人工智能现在,人类已经掌握了弱人工智能。其实弱人工智能无处不在,人工智能革命是从弱人工智能,通过强人工智能,最终到达超人工智能的旅途。这段旅途中人类可能会生还下来,可能不会,但是无论如何,世界将变得完全不一样。不过,到目前为止,人类的大脑是我们所知宇宙中最复杂的东西。因此,从弱人工智能到强人工智能的发展之路任重而道远。
美国未来学家雷·库兹韦尔说:“2045年左右,人工智能将来到一个‘奇点’,跨越这个临界点,人工智能将超越人类智慧,人们需要重新审视自己和机器的关系。”现在,在中国的大城市里,大量基于人工智能技术和大数据的应用软件的出现,正在塑造一个全新的工作形态,全职工作越来越少,短期工作和即时就业越来越多,我们面临着一个“更少工作的未来”。所以,人类在享受人工智能带来的经济增长和生活质量改善的同时,也应该关注自身机能的发展问题,机器将“进化”得越来越聪明,而一部分人将“退化”。到时候,不管你是一位高收入的律师,还是流水线上的普通工人,当你的雇主发现使用机器或软件成本更低时,你都有可能失业。
人工智能机器学习的四个阶段
原标题:人工智能机器学习的四个阶段机器学习是人工智能应用研究较为重要的分支,它的发展过程大体上可分为4个阶段。
第一阶段是在20世纪50年代中期到60年代中期,属于热烈时期。在这个时期,所研究的是“没有知识”的学习,即“无知”学习;其研究目标是各类自组织系统和自适应系统;其主要研究方法是不断修改系统的控制参数以改进系统的执行能力,不涉及与具体任务有关的知识。指导本阶段研究的理论基础是早在20世纪40年代就开始研究的神经网络模型。
随着电子计算机的产生和发展,机器学习的实现才成为可能。这个阶段的研究导致了模式识别这门新科学的诞生,同时形成了机器学习的两种重要方法,即判别函数法和进化学习。塞缪尔的下棋程序就是使用判别函数法的典型例子。不过,这种脱离知识的感知型学习系统具有很大的局限性。无论是神经模型、进化学习或是判别函数法,所取得的学习结果都很有限,远不能满足人们对机器学习系统的期望。
第二阶段在20世纪60年代中期至70年代中期,称为机器学习的冷静时期。本阶段的研究目标是模拟人类的概念学习过程,并采用逻辑结构或者图结构作为机器内部描述。机器能够采用符号来描述概念(符号概念获取),并提出关于学习概念的各种假设。
本阶段的代表性工作有温斯顿(Winston)的结构学习系统和海斯・罗思(HayesRoth)等的基于亚辑的归纳学习系统。虽然这类学习系统取得较大的成功,但只能学习单一概念,而且未能投人实际应用。此外,神经网络学习因为理论缺陷未能达到预期效果,机器学习的研究转入低潮。
第三阶段从20世纪70年代中期至80年代中期,称为复兴时期,在这个时期,人们从学习单个概念扩展到学习多个概念,探索不同的学习策略和各种学习方法。机器的学习过程一般都建立在大规模的知识库上,实现知识强化学习。龙其令人鼓舞的是,本阶段已开始把学习系统与各种应用结合起来,并取得很大的成功,促进了机器学习的发展。
在出现第一个专家学习系统之后,示例归约学习系统成为研究主流,自动知识获取成为机器学习的应用研究目标。1980年,在美国卡内基梅隆大学(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。此后,机器归纳学习进人应用,1988年,国际杂志《机器学习》(MachineLearning)创刊,迎来了机器学习蓬勃发展的新时期。
展开全文机器学习的最新阶段始于1986年,一方面,由于神经网络研究的重新兴起,对连接机制(connectionism)学习方法的研究方兴未艾,机器学习的研究已在全世界范围内出现新的高潮,对机器学习的基本理论和综合系统的研究得到加强和发展。
另一方面,实验研究和应用研究得到前所未有的重视。人工智能技术和计算机技术快速发展,为机器学习提供了新的更强有力的研究手段和环境。具体地说,在这一时期符号学习由“无知”学习转向有专门领域知识的增长型学习,因面出现了有一定知识背景的分析学习,神经网络由于隐节点和反向传播算法的进展,使连接机制学习东山再起,向传统的得号学习发起挑战,基于生物发有进化论的进化学习系统和遗传算法,因吸取了归纳学习与连接机制学习的长处面受到重视。
基于行为主义(actionism)的增强(reinforcement)学习系统因发展新算法和应用连接机制学习遗传算法的新成就而显示出新的生命力,1989年瓦特金(Watkins)提出Q-学习,促进了增强学习的深入研究。
机器学习进入新阶段的重要表现在下列方面:
(1)机器学习已成为新的边缘学科并在高校形成一门课程。它合应用心理学,生物学和神经生理学以及数学,自动化和计算机科学形成机器学习的理论基础。
(2)结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。
(3)机器学习与人工智能各种基础问题的统一性观点正在形成,例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。
(4)各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。
(5)数据挖掘和知识发现的研究已形成热潮,并在生物医学、金融管理、商业销售等领域得到成功应用,给机器学习注入新的活力。
(6)与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。返回搜狐,查看更多
责任编辑: