博舍

走进人工智能 gpu在人工智能的应用领域

走进人工智能

前言:

深度学习通过训练深层神经网络模型,可以自动学习和提取数据的特征,包括更准确的图像识别、自然语言处理、医学诊断等方面的应用。

文章目录序言背景算法的创世纪技术支持应用领域程序员如何学总结序言

深度学习是一种机器学习方法,其目标是通过模拟人脑神经网络的结构和功能,让机器能够从大量的数据中自动学习和提取特征,从而实现智能化的数据处理和决策。深度学习的核心思想是建立多层次的神经网络,通过层与层之间的连接和信息传递,对输入数据进行逐层的特征提取和抽象,最终实现对复杂任务的准确预测和分类。

背景

深度学习的基本概念包括神经网络、前向传播、反向传播和深度学习框架等。神经网络模仿人脑神经系统中的结构和功能,由多个神经元连接组成。

起源和早期探索(1943-1956年):深度学习的起源可以追溯到1943年,当时神经生理学家WarrenMcCulloch和逻辑学家WalterPitts合作提出了第一个人工神经元模型。随后,1956年举行的达特茅斯会议被视为人工智能领域的里程碑事件,启发了深度学习等领域的研究。

进入冬眠期(1960-1980年):在20世纪60年代至80年代,深度学习进入了一个相对低谷的时期。由于当时计算能力的限制和缺乏有效的训练算法,深度神经网络的研究受到了限制,人工智能研究的重心转向了符号推理和专家系统等领域。

重新崛起(1980-2010年):随着计算能力的提升和新的理论突破,深度学习在20世纪80年代和90年代重新崛起。其中,1986年,Rumelhart、Hinton和Williams提出的反向传播算法为深度学习的训练提供了一种有效的方法。此外,1998年,YannLeCun等人的工作展示了卷积神经网络在图像识别方面的潜力,为深度学习的应用提供了重要的突破。深度学习的复兴(2010年至今):2010年以后,深度学习开始进入新的黄金时代。这得益于大规模数据集的可用性、计算能力的飞速提升以及新的神经网络架构的出现。其中,Hinton等人的工作在ImageNet竞赛中展示了深度卷积神经网络的卓越性能,引发了对深度学习的广泛关注。此后,深度学习在计算机视觉、自然语言处理、语音识别等领域取得了重大突破。

算法的创世纪

深度学习是一种革命性的人工智能技术,为算法带来了巨大的革新,同时也开创了一个全新的时代。其强大的特征提取能力和端到端学习方法使得深度学习在图像识别、语音处理、自然语言处理等领域取得了惊人的成果。本文将详细讲解深度学习对算法带来的革新以及创世纪的过程。

深度学习的革新体现在表征学习与特征提取方面传统的机器学习方法通常需要人工设计和选择特征,但随着问题复杂性的增加,手工设计特征变得困难且耗时。而深度学习通过多层神经网络模型自动学习和提取数据的特征,无需依赖人工特征设计。这种自动化的特征提取能力使得深度学习在图像、语音和文本等领域表现出色,为算法的发展带来了巨大的推动力。

深度学习引领了算法的创世纪过去,神经网络作为一种模拟人脑神经元连接的模型已经存在多年,但由于计算能力和数据规模的限制,神经网络的发展相对缓慢。然而,随着计算机硬件和大规模数据的可用性提升,深度学习算法在2006年至2012年期间取得了突破性进展。重要的里程碑包括深度信念网络(DBN)的提出和卷积神经网络(CNN)在图像识别竞赛中的惊人表现。这些里程碑推动了深度学习的快速发展,使其成为当今人工智能领域最具影响力的技术之一。深度学习的创世纪得益于硬件和软件的支持图形处理器(GPU)的发展为深度学习计算提供了强大的计算能力,使得大规模的神经网络训练成为可能。同时,深度学习框架(如TensorFlow、PyTorch)的出现使得模型训练和部署更加简单和灵活。这些硬件和软件的进步为深度学习的广泛应用提供了基础,推动了其在各个领域的成功应用。

技术支持

深度学习作为一种强大的人工智能技术,背后依赖着多个关键技术支持,这些技术支持是深度学习能够取得巨大成功的基础。在本文中,笔者将详细讲解深度学习背后的技术支持,使读者更好地了解其原理和实现方式。

神经网络架构:神经网络是深度学习的核心组成部分。深度学习采用多层神经网络模型,其中包含输入层、多个隐藏层和输出层。这些层之间的神经元通过权重连接,并通过激活函数进行非线性变换。这种层级结构使得神经网络可以从数据中学习更高级别的特征和模式。

反向传播算法:反向传播是深度学习中用于训练神经网络的核心算法。它通过计算损失函数对网络参数的梯度,并将梯度从输出层传播到输入层,从而更新网络的权重和偏置。反向传播算法实现了误差的反向传递和参数的优化,使得神经网络能够逐步调整自身以更好地拟合数据。

优化算法:深度学习中的优化算法用于最小化损失函数并寻找最优的网络参数。常用的优化算法包括梯度下降、随机梯度下降(SGD)、Adam等。这些算法通过不断调整网络参数,使得神经网络在训练过程中逐渐逼近最优解。

计算加速硬件`深度学习的训练和推理过程对计算资源的需求非常高。为了加快深度学习模型的训练速度,研究人员提出了各种计算加速硬件,如图形处理器(GPU)和专用的深度学习加速器(如TensorProcessingUnit)。这些硬件可以并行执行矩阵运算和张量操作,大幅提升深度学习的计算效率。

大规模数据集和云计算:深度学习模型通常需要大量的数据进行训练,而随着互联网的发展,我们可以轻松地收集和存储海量数据。大规模数据集为深度学习提供了更多的训练样本,使得模型能够更好地学习数据的分布特征。同时,云计算平台的出现为深度学习提供了强大的计算和存储资源,使得大规模模型的训练和部署变得更加可行和高效。

开源框架和工具:为了方便研究人员和开发者使用深度学习技术,许多开源的深度学习框架和工具被开发出来,如TensorFlow、PyTorch、Keras等。这些框架提供了丰富的函数库和API,简化了深度学习模型的构建、训练和部署过程。

应用领域

作为一位笔者,我将详细阐述深度学习在几个实体应用领域的重要性和突破。深度学习作为一种强大的人工智能技术,以其出色的模式识别和特征提取能力,在各个行业中都发挥着重要作用。

医疗保健:深度学习在医疗保健领域具有巨大潜力。它可以用于医学影像分析,如肿瘤检测、疾病诊断和脑部扫描等。深度学习还可以用于生物信息学,分析大规模的基因组数据,帮助研究人员了解疾病的发病机制和个体化治疗。此外,深度学习还可以应用于医疗记录的自动化处理和医疗咨询系统的开发,提高医疗保健的效率和准确性。

金融服务:深度学习在金融服务领域的应用越来越广泛。它可以用于信用评分和风险管理,通过分析大量的金融数据,帮助银行和金融机构识别潜在的欺诈行为和风险因素。深度学习还可以应用于股票市场的预测和交易策略的优化,帮助投资者做出更明智的投资决策。此外,深度学习在高频交易、智能客服和虚拟助理等金融应用中也发挥着重要作用。

交通和智能交通:深度学习在交通领域有着广泛的应用。它可以用于交通流量预测和拥堵监测,帮助城市规划者优化交通流动和减少交通拥堵。深度学习还可以用于智能驾驶和自动驾驶技术,通过对传感器数据的实时分析,实现车辆的自主导航和智能决策。此外,深度学习还可以应用于智能交通信号控制和交通事故预测,提高交通安全性和效率。

零售和电子商务:深度学习在零售和电子商务领域的应用也越来越重要。它可以用于商品推荐和个性化营销,通过分析用户的购买历史和行为模式,向用户提供个性化的推荐和购物建议。深度学习还可以应用于商品图像识别和视觉搜索,使用户可以通过图片搜索相关的商品。此外,深度学习还可以用于供应链管理和库存优化,帮助企业提高运营效率和客户满意度。

媒体和娱乐:深度学习在媒体和娱乐领域有着广泛的应用。它可以用于视频内容分析和标记,实现自动视频标签和内容搜索。深度学习还可以应用于音乐生成和推荐,帮助用户发现新的音乐和艺术家。此外,深度学习还可以用于虚拟现实和增强现实技术,提供更沉浸式和交互式的娱乐体验。程序员如何学

作为一个程序员,理解和应用深度学习技术需要坚实的基础知识、实践的经验和持续的学习。通过系统学习基础知识、参与实践项目和追踪最新技术,你将能够在深度学习领域取得更好的发展,并为实现各种创新和应用提供强有力的支持。

要理解和应用计算机视觉技术,你需要采取一系列有针对性的学习和实践步骤。下面我将分成三个自然段,为你详细讲解。

1.建立坚实的数学和统计基础:深度学习是建立在数学和统计学的基础上的。作为程序员,需要掌握线性代数、微积分和概率论等数学知识,并理解它们在深度学习中的应用。这将帮助理解深度学习的原理和算法,并能够更好地进行模型调整和优化。

你可以通过参加在线课程、阅读相关书籍和论文,以及参与深度学习社区来学习这些基础知识。建议学习一门编程语言,如Python,因为它在计算机视觉领域应用广泛,并且有许多优秀的开源库和工具可供使用。

2.深入学习深度学习的理论知识:学习深度学习的理论知识是必不可少的。可以通过阅读经典的深度学习教材和论文,掌握深度学习的基本概念、模型架构和训练算法。了解不同类型的神经网络(如卷积神经网络、循环神经网络和生成对抗网络)以及它们的应用场景和特点。

此外,参与开源社区和团队合作也是提高实践能力的好方法。与其他深度学习开发者分享经验和交流,可以加速你的学习和成长。

3.·持续学习和实践:深度学习是一个快速发展的领域,不断更新的技术和算法需要保持学习的状态。定期阅读最新的研究成果和论文,关注深度学习领域的新兴技术和趋势。同时,通过不断实践和解决实际问题,提升自己的深度学习

实践项目和编程实验:深度学习的实践是提高技能的关键。可以选择一些经典的深度学习项目,如图像分类、目标检测或自然语言处理,尝试使用深度学习框架(如TensorFlow或PyTorch)实现这些项目。

总结

作为读者,您可能会好奇深度学习在不同领域的应用。无论是医疗、金融、交通还是娱乐,深度学习都有着巨大的潜力。它能够帮助医生诊断疾病、帮助金融机构预测市场趋势、改善交通流量管理,并为我们提供更智能化的娱乐体验。随着技术的进一步发展,我们可以期待深度学习在更多领域中的应用,为我们的生活带来更多的便利和创新。

同时也带来了一些挑战和考验。作为读者,我们应该保持警觉,关注伦理和隐私的问题。深度学习需要大量的数据来训练模型,而这些数据可能包含个人隐私信息。因此,我们需要确保数据的安全性和隐私保护,并制定相应的法律和规范来规范深度学习的应用。

最后,我想鼓励各位读者积极参与到深度学习的学习和研究中来。深度学习是一个开放且不断发展的领域,每个人都可以为其发展做出贡献。无论您是学生、研究者还是行业专业人士,都可以通过学习深度学习的基本原理和实践技巧,掌握这项强大的技术,推动社会的进步和创新。

营造人工智能大模型产业生态

不久前举办的中关村论坛人工智能大模型发展分论坛发布的《中国人工智能大模型地图研究报告》提出,我国自2020年进入大模型快速发展期,目前与美国保持同步增长态势。当前,我国人工智能大模型已发布79个。此前召开的中共中央政治局会议提出,要重视通用人工智能发展,营造创新生态,重视防范风险。推动人工智能大模型产业化应用,是加快实现我国人工智能领域高水平科技自立自强的应时之举,也是推动我国产业优化升级、实现经济高质量发展的重要一招,更是提升国家竞争力、维护国家安全的关键举措。

营造良好的人工智能大模型产业生态,应着力解决目前我国人工智能大模型发展面临的高端算力技术不可控、大规模高质量数据集少、算法可靠性和可解释性弱等核心问题。目前,由GPU、FPGA、ASIC等加速芯片异构而成的人工智能高端算力芯片技术面临“卡脖子”风险。在高效低碳的算力网络基础设施方面,跨省域互联互通与动态调配的机制尚未建立,规模化的高端算力供给能力亟待提升。同时,高质量数据供给不足影响了大模型“智商”。这体现在高价值公共数据开放程度不足、行业及企业数据要素市场化流通不够充分、用于大模型训练的数据集规模较小等。此外,算法可解释性不强也影响了大模型的产业化应用。拥有千亿级参数的大模型算法,开发难度大、训练难度高、决策过程及结果的可解释性差、合规评估难,直接对行业大模型开发的进程有所影响。

基于此,要抢占人工智能大模型产业发展制高点,必须加强源头技术创新,打赢软硬件基础设施国产化攻坚战,化解大模型关键核心技术被“卡脖子”的风险,多措并举推动人工智能大模型产业化应用。

首先,推进新型算力生态基础设施建设。实施高端算力芯片研发重大专项扶持计划,鼓励头部企业联合高水平大学“揭榜挂帅”。建立新型研发机构,推动国产高端算力芯片实现突破。在国家“东数西算”工程背景下,推动新型算力网络基础设施建设的顶层设计,建设国家公共算力开放创新平台,搭建算力生态链,推动全国算力资源互联互通、协同共享与优化配置。

其次,构建规模大、质量高的数据生态。完善国家公共数据开放标准和平台,推动高价值公共数据开放与多元化授权运营,引导行业、企业大数据有条件开放、融通并进场交易,形成多模态、多领域的大规模数据集。打造数据集精细化标注的众包服务平台和数据质量评估标准体系,建设高质量中文语料库。构建敏感领域数据隐私保护的监管体系和技术服务体系。

再次,打造稳定可靠的算法开源生态。建立大模型算法及工具开源平台,完善具有稳定性、可靠性和安全性的算法监测标准和技术体系。实施行业大模型产品和服务的登记备案、安全评估及潜在风险预测的审查机制。鼓励平台企业积极开展算法创新探索与应用,赋能中小企业降本增效并创新商业模式,深化数字化转型并引领高质量发展。

最后,加强人工智能大模型的战略规划和深度治理。制定人工智能大模型产业发展规划,对大模型技术研发和产业应用给予相应的政策、资金和人才等支持。推动算力、算法、数据、应用场景等上下游产业无缝衔接与协同联动,实现大模型产业相关要素跨语言、跨模态、跨任务、跨行业融合发展。加强人工智能大模型深度治理的国际合作,推动技术向善发展,促进大模型产业高质量发展。(本文来源:经济日报作者:何喜军张惠娜)

(责任编辑:武晓娟)

人工智能的12个典型案例

但以亚马逊的推荐系统为例,它是一个交易性人工智能平台的强大引擎。人们可能已经观察到它的能力,这个系统可以不断学习。本质上,大批购物者正在“教导”亚马逊人工智能系统,以便更好地展示可能出售的商品。也就是说,将一件商品与过去展示的另一件商品相匹配将促进销售,可以将半关联的概念联系起来(例如灯架与摄影设备)。

另一方面,这种高端的人工智能系统需要庞大的计算平台来处理所有这些数据。对于使用小型服务器的用户来说很难为此类系统提供支持。显然,亚马逊网络服务公司拥有世界领先的计算平台。

3.Pandora

对于那些认为人工智能将会取代人类工作的人们来说,Pandora人工智能系统就是一个与人类合作的例子。首先,Pandora通过音乐专业人员的帮助来分析和分类歌曲。Pandora着眼于歌曲的450种属性进行分类,从声乐风格到节奏感。

当其人工智能算法工作时,根据大量用户对其歌曲库的响应,结合了来自用户的大量推荐。然后,人工智能系统可以批量分组和呈现对于用户具有意义的歌曲。

4.Cogito

这无疑是人工智能最活跃的领域之一:在销售和客服电话中使用人工智能,可以增强与客户的情感联系。具体地说,使用人工智能互动比人类更具移情能力。当然,这是人工智能使用的一个前沿。

Cogito(拉丁语的意思是“自我意识”)使用了人类互动的关键真理:它不仅仅是词语的表达意义,而且是词语的表达方式、情绪、节奏和感觉。

Cogito软件可以实时分析对话,提供有关正确和错误的线索和提示。也许对话者可能切入太多主题,或者反应不够快。应用程序提供基于颜色的警告和更新。该软件可以分析数百条线索,以确定对话的情感质量。

5.Nest

推动人工智能增长的关键因素之一是资金雄厚的厂商之间的竞争,希望在早期获得市场份额。以谷歌公司旗下的家用恒温器Nest为例,其部分目标是将谷歌公司的人工智能构建到设备中,用来应对苹果Siri和亚马逊Alexa的不断增长。

Nest使用人工智能来适应人类的行为模式,获得恒定的输入线索,并在家中工作时做出更准确的反应。在业主设置系统一段时间之后,Nest可以自己整合输入。

无论如何,智能家庭设备(物联网设备)无疑是争夺人工智能市场支配地位的关键战场。让一整组智能家庭设备协同行动,它们可以响应家庭成员的指令,并根据其行为学习,这显然是人工智能在家庭应用中的未来。

6.Boxever

总部位于爱尔兰的Boxever公司推出其Boxever“个性化平台”,其主要目标是旅游业。其基于云计算的平台允许旅游公司创建一个单一的客户视图,从而为客户提供更有效的营销。它的目标是通过单独针对客户来改进销售过程。如果人工智能可以在一对一的基础上定制交互过程,理论上它可以更有效地服务(并销售给)客户。

Boxever公司的方法承认竞争的关键部门是客户体验。如果零售商更加谨慎地满足客户的需求,将会在电子商务竞争中获胜。而使用智能软件比人工销售代表的成本要低得多。

7.AIRobotics、Humanoid和其他

人工智能为机器人的应用提供动力,其中包括加州大学伯克利分校的BRETT和麻省理工学院的MITdog。Sophia就是一个受到媒体热捧的人工智能机器人的例子,它和NBC电视台主持人JimmyFallon在“今夜秀”上聊天和唱歌。

除了流行文化的喧嚣之外,还有各种规格和大小的人工智能机器人。例如iRobot公司的RoomBA980吸尘器采用了人工智能技术,可以在家中完成各种清扫工作。该公司声称,Roombas公司已售出1000多万台RoomBA980吸尘器。

8.垃圾邮件过滤器

人工智能的核心就是学习。而使用机器学习和其他人工智能技术,软件系统将变得更智能,无需人工协助。

当然,采用人工智能防止垃圾邮件是一个迫切需要机器学习的领域。工作人员(甚至是团队)难以跟上垃圾邮件的增长。例如,Gmail会部署机器学习算法来过滤(大部分)垃圾邮件。

为此,垃圾邮件过滤器试图更快地跟上垃圾邮件发送者的工作,他们不断采用创造性的方法来欺骗收件人。垃圾邮件过滤器中的人工智能会持续扫描元数据,例如发件人的位置或主题行中的关键字。如果无法学习,垃圾邮件过滤器将在几天之后无法运行。

人工智能技术是使用来自人类的输入:因为对于一个用户具有价值的优惠券对于另一个用户来说则是垃圾邮件。特定用户如何对邮件流进行分类必须是垃圾邮件过滤器学习的一部分。

9.网上银行业务

银行为用户提供方便的优惠:扫描其支票并将其金额存入移动设备中,无需去实际的分支机构存款。其问题是:这样做需要机器来阅读用户的签名,这是一项既混乱又令人困惑的工作——甚至对工作人员来说也是如此。

在其他供应商中,MitekSystems公司采用专门从事基于软件的身份验证。其人工智能技术利用计算机视觉和机器学习使移动到银行的交易安全。

例如,Mitek公司采用视觉算法对银行交易中的无数ID格式进行分类。其核心是光学字符识别(OCR)软件,它扫描文档并将数据转换为可编辑的格式。可以使用人工智能调整OCR软件以准确提取个人签名或指纹。

10.贷款和信用卡处理

当消费者申请信用卡或贷款时,消费者信用评分(FICO)(通常在300到850分之间)将起到至关重要的作用。在过去,贷款工作人员审查了这些贷款和信用卡申请。虽然仍有很多工作人员,但许多关于信用卡的决定或者是否接受消费者的申请,都是由机器学习系统做出的。

同样,学习是这个过程的核心部分。银行管理人员可以设置他们希望当前信贷标准是宽松还是紧缩的参数。但他们希望银行的机器学习系统能够随着时间的推移而学习,以便更密切地确定哪些申请人是安全的借贷者。

11.Lyft和Uber

没有人工智能和机器学习技术,共享单车是不可能存在的。具体来说,票价、预计到达时间以及它将要走的路线:这些都是人工智能计算出来的。

人工智能即时进行大量计算。如果没有一个分析情况的机器学习系统,然后将结果数据路由到用户和驱动程序的应用程序,这些计算的数量和复杂性将是不可能的。当然,Lyft和Uber公司将其记录在自己的系统上,这两家公司拥有关于用户模式的大量数据。

在未来,这些服务预计将出现无人驾驶汽车的时代(尽管这种情况发生时最多仍然模糊不清)。如果没有人类驱动程序的元素,运行系统的过程将成为更纯粹的逻辑机器学习计算。从理论上说,这将导致共享乘车服务的成本下降,甚至可以节省雇佣驾驶员的成本。

12.社交网络

主要的社交媒体网络是人工智能发展的核心驱动力。特别是Facebook公司似乎采用了人工智能的各方面功能。例如,其算法定义了用户的时间轴,决定是否在其时间轴上显示或不显示其朋友的某些帖子。Facebook公司知道,如果某个用户的每位朋友都被展示出来,那么时间表就将变得很混乱,以至于它会让人感到厌烦。因此,时间轴算法可以了解用户与谁进行交互以及其通常忽略的对象。

对于Facebook而言,最重要的是,社交网络使用人工智能来帮助个性化为用户提供广告的方式,因此它具有一定程度的广告显示相关性。需要注意,Facebook允许用户评论广告与时间线的相关性;每个用户评论都有助于系统学习并变得更精细。由于他们使用人工智能微调显示系统的方式,Facebook和谷歌在整个网络广告市场的比例非常高。

此外,Facebook使用图像识别人工智能技术来识别照片中的人脸,因此它可以邀请用户为其添加标签。毫不奇怪,考虑到照片对Facebook的重要性,Facebook在面部识别技术上投入了大量资金。采用机器“读取”照片是当今人工智能时代最为显著的进步之一。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇