博舍

教育部关于实施第二批人工智能助推   教师队伍建设行动试点工作的通知 人工智能 教师培训

教育部关于实施第二批人工智能助推   教师队伍建设行动试点工作的通知

教育部关于实施第二批人工智能助推教师队伍建设行动试点工作的通知

教师函〔2021〕13号

各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局:

为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》,深入推进人工智能等新技术与教师队伍建设的融合,推动教师主动适应信息化、人工智能等新技术变革,积极有效开展教育教学,教育部启动第二批人工智能助推教师队伍建设试点。在各地推荐基础上,经审核认定,决定在北京大学等单位(见附件)实施第二批人工智能助推教师队伍建设试点工作。现将有关事项通知如下:

一、强化顶层设计,统筹推进试点工作。各试点单位要立足新发展阶段、贯彻新发展理念、构建新发展格局,做好三至五年的试点工作整体规划,坚持统筹推进,加强系统集成,以教育新型基础设施建设为基础,以教师队伍建设改革为抓手,以落实立德树人根本任务为落脚点,积极推进人工智能、大数据、第五代移动通信技术(5G)等新技术与教师队伍建设的融合,形成新技术助推教师队伍建设的新路径和新模式,打造高水平专业化创新型教师队伍,支撑教育强国战略与教育现代化。高等学校要重点推进四项工作,包括创建智能化教育环境,提升教师技术素养与应用能力,推进教师大数据建设与应用,服务地方教育教学改革与创新等。地市和区县要重点推进六项工作,包括推动教师应用智能助手,创新教师培养模式,开展教师智能研修,提升教师智能教育素养,建设与应用教师大数据,智能引领乡村学校与薄弱学校教师发展等。

二、坚持问题导向,确定试点主攻方向。各试点单位要聚焦教师队伍建设的突出难题,明确试点工作的主攻方向。要着力推进师生应用智能助手(平台、系统、资源、工具等),促进教学方式和学习方式改革,为教师减负和赋能。要着力依托智能教育平台系统,探索推进人人协同、人机协同的“双师课堂”,解决区域、学校、城乡教育不均衡难题,探索缓解教师编制供给不足的新路径。要探索利用平台系统,提升教师作业设计和点评能力,减轻学生作业负担。要探索建立或应用教师能力诊断测评系统,诊断教师学习发展需求,开展精准培养培训。要建设和应用教师大数据,采集动态数据,形成教师画像,支撑教师精准管理,支持教师评价改革。

三、完善工作机制,形成协同推进合力。各试点单位要建立上下联动机制,地市和区县要遴选一批基础好的区域或学校建立实验区或实验校,高校要遴选基础好的院系或部门建立实验基地,先行先试,对拿得准的就快速推开、全面覆盖,确保试点工作落点准、部署快、推进实、成效好。要建立政企校企合作机制,注重引进信息化和人工智能等领域企业或专业机构,参与技术创新、产品设计、平台开发、资源建设等工作,确保技术先进性、引领性、适用性。建立专家指导机制,要引进高校科研团队或专家建立指导专家组,做好方案研制、试点推进、迭代升级的指导工作,教育部将通过人工智能助推教师队伍建设试点工作专家组,对各地试点工作进行跟踪指导与成效评估。

四、强化组织保障,确保试点工作成效。教育部负责试点工作的统筹指导,各省级教育行政部门负责组织领导本省份试点工作,各试点单位要成立组织领导机构,负责同志亲自推进,整合教育、财政、人力资源社会保障等部门的力量,强化部门协同,形成工作合力。试点单位要落实专门经费用于试点工作,确保申报的各项工作落到实处,教育部将通过国家级教师队伍建设的项目资源,为试点工作提供必要支持。试点单位要明确试点工作的预期成效,建立可量化、可监测的评价指标体系,做好督查落实,确保各项工作落地见效,教育部将采取专家评估和第三方评估等方式,对试点单位工作进行检查评估和工作验收,并视情况对试点单位进行调整。试点单位要及时总结推广试点的典型经验、先进做法,将年度工作进展、节点性成果、重要媒体宣传等及时报我部(教师工作司)。

教师工作司联系人:贾炎龙、王炳明,电话:010-66096771、66096873;邮箱:jsszhc@moe.edu.cn。

附件:教育部第二批人工智能助推教师队伍建设试点单位

教育部

2021年9月7日

人工智能赋能教师教育:基本逻辑与实践路向

近年来,自然语言处理、机器学习、人脸识别等智能技术快速发展,促使教育信息化逐渐呈现智慧特性,人工智能赋能教育创新发展已成我国教育改革的关键抓手。传统信息技术逐步实现智能升级,技术赋能教师教育的形态也实现重大变革。2018年,《教师教育振兴行动计划(2018—2022年)》推出“互联网+教师教育”创新行动,并强调应充分利用大数据、人工智能等新技术,助力教师教育理念与模式变革,推进教师教育信息化建设与应用。2022年,《教育部教师工作司2022年工作要点》指出,“推进第二批人工智能助推教师队伍建设试点工作,开发和应用教师智能助手,探索开展教师智能研修,推广完善‘双师课堂’。”基于此,本研究尝试聚焦人工智能赋能教师教育这一议题,理顺人工智能赋能教师教育的基本逻辑,并面向中小学教师群体开展问卷调研,从而进一步挖掘人工智能支持下教师教育变革所面临的现实困境,归纳提炼人工智能赋能教师教育的实践路向,以期为新技术时代教师教育变革提供有益参照。

一、信息技术赋能教师教育的历史变革

随着信息技术的不断升级与发展,一些具有“类人功能”的智能产品逐渐应用于教育教学领域,促使教育信息化样态逐渐具有智能属性。就教师教育而言,信息技术赋能教师教育的历史进程主要经历了三个发展阶段。

(一)电化教育时代:信息技术赋能教师教育的初步探索期

1978年4月,全国教育工作会议指出,应充分利用广播、电视等工具,大力培训师资。此次会议不仅有力地推动了我国电化教育的发展,也促进了广播、电视等现代化技术手段在教师教育中的应用,开启了信息技术赋能教师教育的初步探索。1981年10月,教育部颁文要求“发挥电化教育在提高师资水平中的作用”。20世纪80年代中后期,随着计算机技术和网络通信技术的不断进步,信息技术赋能教师教育的工具与方式逐步得以拓展。1996年,《中小学计算机教育五年发展纲要(1996—2000年)》指出,应面向师范生开展相关培训,提升计算机辅助教学的知识与技能,并强调教师需对计算机等电化教育教学手段予以掌握。归纳来看,在电化教育阶段,教师教育的实践理念与行动方式逐渐融入技术元素,但这一时期教师教育存在着信息共享滞后、技术应用水平低下等诸多问题,教师教育过程与投影、录音、录像、电视、计算机等传统教育技术媒体之间的融合尚处于浅层阶段。

(二)教育信息化时代:信息技术赋能教师教育的快速发展期

21世纪初,我国的教育信息化发展较为关注项目及工程建设,以远程教育、开放教育等方式为依托,致力于提供多样化的教育信息化服务。在教育信息化背景下,我国教师教育理念与方式发生重大变革,信息技术赋能教师教育也逐步从电化教育时代迈向教育信息化时代。2002年,教育部发布《关于推进教师教育信息化建设的意见》,对教师教育信息化原则、目标以及具体举措等诸多方面作了基本要求,为我国教师教育信息化快速发展奠定了行动方向。随后,我国教师教育信息化建设开始逐渐关注宏观指导与项目实践相结合的推进方式。《2009—2012年中小学教师国家级培训计划》等文件以具体的实践项目来推动教师教育信息化。随着互联网、云计算等技术的快速发展,教师教育体系也积极顺应信息技术发展趋势,致力于培养具有信息化教学技能的新型师资。但由于这一时期信息资源良莠不齐,教师教育过程的数据挖掘和分析还相对滞后,对于硬件设施投入与建设的关注高于软件设施,教师教育课程资源尚未实现有效的区域联通。

(三)“智能教育”时代:信息技术赋能教师教育的战略转型期

2017年,《新一代人工智能发展规划》中明确提出,应利用人工智能技术满足社会大众对于教育、医疗等方面的民生需求。随着机器学习、智能感知等智能技术与教育教学的整合成效逐渐凸显,2018年,《关于开展人工智能助推教师队伍建设行动试点工作的通知》中更是强调应提升教师对于人工智能的胜任力与适应力。2021年4月,教育部发布《关于开展第二批人工智能助推教师队伍建设试点推荐遴选工作的通知》,强调应通过建立师范生大数据评价管理机制、创新“人工智能+教师研修”模式等手段,促进人工智能、大数据等技术与教师队伍建设的有效整合,助推教师教育理念与模式的智能转型。此外,人工智能与教师培训的整合也逐渐得到广泛关注,2021年5月,教育部、财政部发布《关于实施中小学幼儿园教师国家级培训计划(2021—2025年)的通知》,强调应推进人工智能与教师培训融合发展,形成人工智能支持教师终身学习的新机制;《教育部教师工作司2022年工作要点》亦强调应推进人工智能助推教师队伍建设,发掘推广一批人工智能助推教师队伍建设的先进典型,推进教师资源数字化建设和教师队伍数字化治理。

二、人工智能赋能教师教育的基本逻辑

在“人工智能+教师教育”生态系统中,信息技术能够对教师教育的课程设置、教育模式、评价方式、应用实践、培训和终身学习等方面产生影响,解决教师培训方式变革以及教师教育的管理问题也是推进人工智能与教师教育体系深度融合的关键。

(一)课程层面:智能资源共享赋能教师教育课程体系完善

教师教育课程是构成教师教育体系的重要内容,这也是人工智能赋能教师教育的基本着力点。人工智能在资源推荐、资源整合等方面具有智能特性,人工智能赋能教师教育的一大优势在于可通过智能资源共享推进教师教育课程体系趋向完善。首先,人工智能可为教师教育课程资源的开发与获取提供技术保障。可通过智能化资源开发平台,设计与整合海量教案、课件、课堂实录、习题等教学资源数据,且利用大数据的智能匹配与分析功能为教师筛选出最优质的课程资源并为其推荐最适切的学习资料,有助于为教师专业发展提供精准化的培训课程资源。例如,华中师范大学“现代教育技术应用”课程通过引入虚拟仿真实验和桌面VR交互一体机,促进师范生自身学科内容与新兴形式资源的融合,设计、开发和生成多种沉浸式、交互式的教学资源。其次,人工智能可助力教师教育课程管理建设。基于智慧课程管理系统为教师及教师教育者提供留言、点评、交流、反思等信息共享功能,可实现海量的教师学习行为数据的精准采集与分类,并利用数据分析与共享技术为教师教育者改进课堂教学方式与内容设计提供证据支持。归纳来看,智能资源共享本身是一种信息共享,有助于拓展教师教育课程学习的资源内容与空间场域,此为人工智能赋能教师教育的课程逻辑。

(二)评价层面:机器学习赋能教师教育质量精准改进

机器学习赋能教师教育质量精准改进可被视为人工智能赋能教师教育评价的重要环节。首先,机器学习有助于实现教师教育过程性数据的精准挖掘。长期以来,教师教育质量缺乏相对全面的评价标准,教师教育质量评估往往侧重于结业考评、期末考评等总结性评价方式,较为忽视教师教育过程的数据记录与信息采集,教师教育者可能对于自身教学过程中的潜在问题也难以发觉。其次,机器学习立足于对海量数据全生命周期的伴随式采集、深度挖掘与分析,其能够通过挖掘数据背后的潜在关系,不仅能够实现基于理性证据的科学决策,也能够为教师教育质量的精准监测与改进提供实践路径。机器学习可通过智能传感、人脸识别、图像识别等技术实现在线教师教育数据、线下教师教育数据的有效采集与智能分析,有助于以大数据分析方式来可视化呈现教师教育质量分析结果。基于质量分析结果,教师教育者能够迅速识别其教育教学的缺点,并能够有针对性地予以改进,进一步掌握当前教师教育课程、管理、实践等方面存在的实质性不足,这为教师教育质量的精准改进提供了诸多便利。例如,黄慕雄等人以广东省教师教育大数据智慧系统为例,构建了一种多源多层的教师专业发展分析模型,采用较为成熟稳定的协同过滤推荐算法综合分析并精准制订培训发展方案,是满足教师培训机构为教师智能化制订培养方案需求的部分体现,为精准评估与改进教师教育质量提供了有效支持。

(三)管理层面:智能决策助力教师教育治理机制重塑

人工智能拥有规模化数据、深度学习算法以及高度计算力,其通过科学规范的数据聚类、数据认知、决策优化等过程,挖掘数据的复杂性关联和潜在价值,使智能决策得以实现。首先,智能决策为以单向性、强制性及刚性为核心特征的传统教师教育管理模式走向科学民主式的教师教育治理模式提供了重要支撑。基于智能决策理念的教师教育治理将由经验走向循证,经由“提出问题—获取证据—评价证据—应用实践—效果评估”科学流程,自始至终指向准确和明智的最佳教育证据筛选与应用,保障教师教育决策有据可循。其次,智能决策本身体现了一种数据治理的理念,其以规模化数据和智能算法为中介,促进教师教育决策过程由单一主体决策走向基于数据智能的多主体协作,有利于教育行政部门、教师培训机构、学校等决策主体构建基于证据的教师职前职后一体化协同机制,教师教育的决策者、参与者可通过协同完成数据收集、表征、组织、分析、交流等环节,精准定位并预测教师培训的需求与供给状况,尤其是应真正关照乡村学校在职教师专业发展的个性化需求,最终生成兼具技术理性与人文关怀的教师培训与研修方案。

(四)培训层面:智能互联助力教师培训空间极速拓展

自20世纪末《中小学教师继续教育规定》颁布以来,我国教师培训的规模、经费投入、相关制度和体系建设等飞速发展。然而,不少地区的教师培训工作也暴露出一些现实难题,如对教师培训的需求分析不够细致与准确、培训内容重复与泛化、培训空间满意度不高等。随着深度学习等智能技术的发展,教师教育空间将逐步实现虚拟空间与物理空间的无缝衔接,智能互联助力教师培训空间极速拓展成为现实。首先,基于智能互联理念的教师研修平台进一步提升了教师培训的针对性与有效性,有助于创设沉浸性更强的线上虚拟研修空间与“双师课堂”教学空间,可实现对教师认知结构、教学行为、教学风格与专业能力的智能监测与精准诊断,并实现精准化的课程推送、个性化的助学支持。其次,基于智能互联的教师培训助手系统为教师培训目标的实现释放了工作空间。AI教师能够将教师培训者从琐碎的机械性行为中解放出来,教师培训者将拥有更多的“自由时间”,这使其可以在更充分的自我认知基础上,更多反思教师教育课程设计、实践应用、沟通协作等方面的教师培训问题。再者,基于智能互联的跨区域培训云平台有助于拓展教师专业学习空间。“智能+教育”模式打破了教师培训的时空局限,进一步增强了教师培训的灵活性,有助于实现跨区域的教师培训新机制,有助于打造线上线下一体化的教师培训新机制,这对于实现偏远、贫困、落后地区教师教育与发达地区协同发展具有重大意义。例如,依托统一的宁夏教育云在线互动课堂平台,宁夏尝试推进名校名师与普通教师开展线上师徒结对,组建专业成长共同体,利用在线互动课堂、名师网络工作室等,实现城乡教师“智能手拉手”。

三、人工智能赋能教师教育的现实困境

遵循前文所述的人工智能赋能教师教育的基本逻辑,本研究基于教师教育体系构建的实际现状,从课程层面、评价层面、管理层面、培训层面出发,结合对10位区域教师进修学校管理人员、教师教育领域学者、中小学校长的访谈结果,编制了“人工智能支持下的教师教育改革调查问卷”。除基本信息题项、多选题“您认为人工智能支持下的教师教育可能存在哪些问题?”之外,问卷中各题项均采用李克特五点量表形式(从非常不符合到非常符合)予以呈现。首先,选择江苏省W市90位中小学教师进行预调研施测,基于预调研样本数据,对问卷进行信效度检验。数据分析结果显示,整体量表的KMO统计值为0.95,Bartlett球形检验结果的p值<0.001,表明问卷适合进行因子分析。对整体问卷进行探索性因子分析,抽取出4个公因子,累计方差解释率达到86.26%,表明因子结构较为可靠。依据因子载荷图可知,题项A1到A4构成课程维度,题项B1到B3构成评价维度,题项C1到C4构成管理维度,题项D1到D3构成培训维度,与本研究对人工智能赋能教师教育的基本逻辑的分析框架相一致,表明问卷具有较好的结构效度,可作为正式调研问卷。

之后,基于正式调查问卷,本研究选取浙江、江苏、上海等教育与经济发达地区的中小学作为调研学校,面向中小学教师投递电子问卷,调研结束后,回收有效问卷527份。本研究利用Cronbachsalpha、CR、AVE值检验问卷信效度。整体量表的Cronbachsalpha值为0.966,各分量表的Cronbachsalpha值在0.89与0.97之间,证明问卷具有较好的内在一致性信度;验证性因子分析结果显示,各分量表的CR(组合信度)取值范围在0.79与0.86之间,表明量表的组合信度较好。各分量表的AVE值均大于0.5,表明量表的收敛效度较好。此外,验证性因子分析结果显示,模型拟合较好,RMSEA、CFI、SRMR指标均达到测量学标准(RMSEA<0.08;CFI≥0.90;SRMR<0.06)。综合上述分析结果,可知问卷通过了信效度检验。

人工智能支持下的教师教育现状的描述性分析结果如下。总体而言,人工智能支持下的教师教育现状的均值水平为3.85,除评价层面以外,各子维度(课程层面、管理层面、培训层面)的均值水平均在4以下,由此可见,当前教师对于融入人工智能的教师教育、职后培训的感知情况并未达到理想程度,人工智能在推进教师教育改进方面尚存较大空间,因此,仍需进一步探索如何利用人工智能优化区域教师教育体系,提升教师教育的有效性、针对性、科学性、智慧性。在此诉求背景下,精准分析人工智能赋能教师教育变革所面临的现实困境,则成为归纳和提炼人工智能赋能教师教育实践路向的关键之举。具体而言,本研究将进一步结合调查分析结果,围绕课程、评价、管理、培训四个方面剖析人工智能赋能教师教育的现实困境(见图1)。

图1人工智能赋能教师教育的现实困境

(一)教师教育课程体系难以适应智能时代教师专业发展

在智能时代,教师教育的内容正发生重大变革,人工智能已成为教师教育工作的得力助手,开设一系列面向教师的人工智能课程具有一定的必要性。但就我国教师教育课程体系而言,其目前尚难以适应智能时代教师专业发展。首先,在课程层面,区域教师教育课程建设缺乏较为统一且清晰的课程标准,区域教师教育的课程科目、结构和类型较为单一的现象时常出现。而且,本研究调查结果显示,55.79%的教师认为,教师教育课程内容与教师所需的智能教育素养脱节;题项“教师教育的课程内容能够满足您的实际需求”均值为3.91。由于受人、财、物等多方面资源的影响,教师教育课程理念的变革难度相对较大,即使是面对人工智能等新技术的冲击,教师教育课程建设也具有滞后性与保守性,融入人工智能教育内容的教师教育课程特色难以有效凸显。其次,在教学内容方面,目前不少地区的教师教育教材体系陈旧,教学内容未能结合智能时代所需做到有效更新。数据分析结果显示,题项“当前的教师教育课程关注如何让教师有效应用人工智能产品”及“学习教师教育课程能够提升您的智能教育胜任力”的均值水平分别为3.95与3.94,这表明教师教育课程体系与人工智能等技术知识的融合力度与成效不足。再者,在教学方面,受困于不少教师教育者、受训在职教师及师范生的技术接受与整合能力存在欠缺,教师教育课程教学缺乏具有足够信息化胜任力的教师教育师资,导致智能技术赋能教师教育课程教学的过程受到教师能力的严重制约。

(二)基于证据的教师教育质量评价有待优化

在5G、人工智能、大数据等技术的支撑下,如何构建基于证据的教师教育质量评价体系是推动人工智能时代教师教育发展的一大难题。为尽可能地减少评价过程中的标准不一与价值冲突等问题,在从事教师教育评价活动之前,需要确立相应的指导标准和价值准则。对于我国教师教育评价实践而言,基于证据的教师教育质量评价亟待进行优化,教师教育质量评价体系尚待建立健全。综合来看,我国不少地区至今仍未形成循证式的教师教育质量评价标准体系,导致我国教师教育评价活动在实践中缺乏必要的规范性与科学性,48.39%的教师认为,对于教师教育效果的多维评价有待加强。此外,我国教师教育评价普遍存在着重视运用分数、成绩等量化指标评价的倾向,仍然留有“头痛医头、脚痛医脚”碎片化的评价方式,且数据分析结果显示,题项“培训专家能够利用人工智能对您的学习效果进行分析与评价”均值为3.96,这表明人工智能尚未全方位融入循证式教师教育质量评价体系,未能充分借助人工智能等新技术立体化地搜集教师教育活动的信息从而科学全面地评价教师教育效果,进而导致教师教育评价新格局尚未完全形成。

(三)大数据赋能教师教育管理存在决策偏差

人工智能浪潮风起云涌,其与大数据之间的关系相伴而行,人工智能功能的发挥离不开数据处理与运算的支持。决策者依托人工智能的分析及预测功能,可从“基于经验的分析”转向“数据驱动决策”,这在一定程度上有助于教育管理者系统把握教师的个体诉求与行为轨迹,并据此进行信息反馈和教学激励。但需要注意的是,智能技术是一把双刃剑,在帮助实现教师教育决策科学化的同时,其也会因人技关系异化而产生一系列问题。数据分析结果显示,人工智能赋能教师教育的管理层面均值水平为3.73,表明当前人工智能在优化教师教育管理方面尚存在一定的问题及弊病。首先,人工智能算法、决策使用的数据及数据处理方式均是由“人”来创建的,不可避免带有个体主观隐含的偏见。当主观的算法设计偏见或数据处理偏见渗透到教师教育管理过程中,将会给教师教育决策带来一定的偏差与错误。其次,人工智能算法具有自主决策、学习的能力,它的设计者难以预测最终的结果,也无法完全解读它是如何得出现有结论的。因此,教师教育决策的相关主体一定程度上将会陷入算法分析结果难以解读的困境,这将削弱决策者的公信力与可信度。再者,根据数据分析结果可知,45.92%的教师认为人工智能可能无法十分准确地量化教师教育成效。处于不断完善与发展阶段的人工智能算法及其所依赖的数据很有可能具有一定的局限性,这将导致一些非数据化或难以数据化的教师教育问题被排除在决策过程之外,进而给以数据作为决策基础的教师教育决策者带来一定的决策盲区,产生大数据赋能教师教育的信息偏差现象。

(四)教师培训与智能技术的整合存在效度困境

数据质量、算法功能对人工智能应用成效影响较大,无论是数据挖掘,还是智能算法设计,均无法做到尽善尽美,数据分析结果显示,人工智能赋能教师教育的培训层面均值水平为3.64,表明人工智能在教师培训实践中的应用依然存在效度困境。首先,使用算法和预测模型对教育现象进行度量将会造成一定风险,这主要取决于计算模型和算法是否符合教育逻辑、教育过程和教育中的人是否可以被量化和计算、对教育过程的量化是否能够反映教育本真,这需要进一步反思智能技术应用于教师培训的合理性与规范性,将其应用范围限定在可控风险领域之内。其次,智能技术在教师培训中的使用效能相对较低,其在培训资源建设、助学辅导、培训成效评价等方面的应用程度受人力、物力、财力等多方面制约。调查结果显示,59.20%的教师认为,人工智能技术与教师教育的融合性不强;41.18%的教师认为,学区或学校难以投入大量资源以支持智能化教师教育体系构建;另外,42.88%的教师认为,目前人工智能支持下的教师教育指导性政策与规章尚需完善。这表明不少地区不仅缺乏具有较高智能教育素养的教师教育专家以及足够的经费支持、资源保障,而且,也缺乏人工智能赋能教师培训的指导性政策与规章,进而导致区域教师教育部门在利用智能工具开展教师培训活动时易陷入“仅加大软硬件投入”的战略误区,忽视对教师教育者技术接受与整合能力的有效训练,进而削弱了智能技术在教师培训需求满足与资源建设方面的应用空间。

四、人工智能赋能教师教育的实践路向

随着人工智能与教师教育领域的不断融合,人工智能赋能教师教育也面临着如教师教育课程体系难以适应智能时代教师专业发展、基于证据的教师教育质量评价有待优化、大数据赋能教师教育管理存在决策偏差、教师培训与智能技术的整合存在效度困境等问题。综上,为推动人工智能在教师教育领域的合理应用,人工智能赋能教师教育体系构建应关注以下实践路向。

(一)加强数字化课程建设,推进教师教育资源智能化开放共享

以往教师教育资源虽然也包括微课、短视频、精品课等信息化形式,但随着新课标的颁布与新教材的逐步使用,教师教育数字化资源动态性缺位、资源建设质量不高、资源建设区域协同性差、资源建设针对性不强等问题逐渐凸显。在人工智能时代,教师培训课程、教师研修资料等均可被表征为较易传播与计算的数字形态,教师教育资源建设应加强数字化课程建设,推进教师教育资源智能化开放共享。首先,区域教育行政管理部门、各级各类教师培训机构及中小学校应携手打造智能化区域教师教育课程资源库,立足教师群体的数字画像以及教师培训专业标准,积极利用虚拟现实、增强现实、智能云等智能技术,关注教师教学技能网络模拟实训与教育理论在线学习,充分整合微课、慕课、直播课、公开课等数字化课程资源,推动数字化教师教育课程资源系统化建设。例如,首都师范大学聚焦于人工智能时代下的教师发展,由高校导师团队设计面向教师专业发展的在线课程,师范生制作开发课程,并且在课程开设期间与在职教师开展全程陪伴式的互助共学,师范生为在职教师解答与技术应用有关的困惑,而在职教师可以为师范生在教学方面提供经验分享。其次,构建数字化教师教育课程资源监管体系。地方教育行政管理部门、学科教研员、教育督学及督导专家等多方人员应组建数字化教师教育课程资源审查小组,确保数字化教师教育课程资源开发经过开发测试、内部评价、外部评价等严格流程,应利用机器学习、数据挖掘等智能技术,及时对参训在职教师或师范生的课程资源使用记录、共享渠道与心得体会予以电子存档。再者,应创设数字化教师教育课程资源的智能推送与共享机制。地方教育行政管理部门可依托“国培计划”“区域教师发展计划”等各级各类教师教育项目,着手建立优质数字化课程资源开发与遴选机制,遴选优质数字化资源,明确数字化教师教育资源流通标准与准入门槛,利用大数据分析与智能画像技术,通过智能筛选、提取和整合教师专业学习需求信息,基于在职教师专业学习的数字画像,有针对性地为教师推送定制化课程资源。

(二)立足评价改进,构建基于证据的教师教育质量监测体系

如前文所述,在评价层面,基于证据的教师教育质量评价机制还有待完善。评价对于教师教育质量的提升来说具有导向与指引作用,随着数据智能理念的不断深化,教师教育评价愈发关注数据式证据,如何利用数据信息呈现教师教育评价证据成为热点议题。因此,有必要立足于当前教师教育评价存在的现实问题,构建基于证据的教师教育质量监测体系。一方面,应基于智能数据挖掘,构建教师教育质量监测方案。从教师教育评价主体来看,教师教育质量评价受其主观判断影响,若教师教育评价所依赖的数据信息不够客观,将导致教师教育的评价结果有失公允。因此,应基于教师教育评价的实际诉求,智能挖掘与提取师范生、职后教师、教师教育者等评价利益相关者的数据信息,建立教师管理信息化系统,构建教师学分管理机制,建立教师数据的“驾驶舱”,对教师教育过程进行精准预警与监测。另一方面,创设基于证据可视化的教师教育质量分析机制。基于大数据分析、生物信息识别、图像识别、视频分析等技术,可从教师教育投入、过程、产出、背景等方面进行教育质量观测,动态采集教师教育行为和环境信息,严格落实数据筛选、数据比较、数据整合、数据呈现等一系列证据可视化流程,及时向主管部门、教育工作者、师范生、教师公开教师教育质量观测结果,注重教师教育质量评价结果与改进方案的可视化呈现,以便进一步明确教师教育质量的改进方向与提升路径。例如,宁夏充分利用大数据支撑教师智能研修行动并建设教师教育质量监测体系,为提升教师在教学设计、课堂组织、班级管理、教育研究等方面的综合能力,将教师管理信息系统、教师继续教育网络研修等平台整合融入宁夏教育云,基于教育云平台实现对教师专业发展状态的监管、测评与干预。

(三)聚焦数智融合,优化教师教育决策偏差调节机制

如前文所述,在管理层面,大数据赋能教师教育管理存在决策偏差。以往的教师教育决策存在主观判断、决策流程过于僵直与落后、决策技术过于单一等问题,人工智能时代教师教育决策虽可实现基于证据的教师教育决策,但其并不意味着教师教育决策绝对的合理化与准确化,教师教育决策仍有可能存在偏差问题(如决策偏见、决策失误等)。因此,应聚焦数智融合,优化教师教育决策偏差调节机制。首先,应构建基于数智融合的教师教育决策咨询服务体系。以师范教育、在职培训等多种形态为主体的教师教育体系涉及多个决策主体,且以往区域层面教师教育决策可能在师范教育与在职培训对接层面存在信息鸿沟,而且区域层面可能在城乡教师发展规划方面存在决策偏差。为此,可通过创设区域教师管理与发展服务平台,动态汇聚不同决策主体的建议与反馈意见,为地方教师教育管理者改进教师发展计划、教师研修项目管理服务、教师专业发展学分银行服务等提供信息支持与路向导引。其次,应关注教师教育决策偏差诊断与调节机制的创设。人工智能时代教师教育决策不仅应体现智慧化特性,而且应秉承基于证据的科学主义取向。应提升教师教育决策者的智能教育素养与数据素养,打通教师教育利益相关者间的决策信息共享通道,及时诊断区域教师培训与研修实践的主要问题与产生根源,智能分享与整合来自地方教师发展学院或中心、教育行政管理部门及高校教师教育基地的反馈信息,构建协同化地方教师教育决策咨询服务体系,有效提升区域教师教育决策的科学化和民主化。

(四)关注智能研修,创设基于分层分类的精准化教师培训体系

如前文所述,在培训层面,教师培训与智能技术的整合存在效度困境。以往师资培训一般采用讲座、讨论、观摩、进修、线上刷课等多种方式,但大多数培训方式属于短期行为,难以长期针对特定教师群体(如位处偏远的农村地区教师)开展教师专业培训。人工智能赋能教师网络研修平台与模式创建为教师终身学习与持续发展提供了重要支持。由此,为进一步推进人工智能赋能教师教育,满足不同类型教师群体的学习诉求,加快教师队伍数字化建设进程,推动教师数字化发展,有必要关注智能研修,创设基于分层分类的精准化教师培训体系。首先,教师培训部门或机构应着手建立研修专区,组建区域智能研修共同体,对参与在线研修的教师群体进行合理分类,以研修问题与实践案例为抓手,满足不同类别、层次、岗位的教师需求。教师教育者应基于教师研修数据进行智能追踪,尝试捕捉不同类型(如农村教师、城镇教师)、不同层次(如教学新秀、教学骨干、教学专家)教师参与智能研修的学习需求,以便构建线上与线下、必修与选修相融通的精准化教师研修模式。其次,应注重探索建立基于分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。最后,应基于大数据融合,探索建立分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。具体而言,应关注教师在学科、年龄、教龄等方面的实质性发展差异,评价方案的设计与实施应关注教师发展的过程性与阶段性数据的提取与筛选。也应着重提升教师教育者的信息化评价素养与智能技术胜任力,尝试通过教师个体发展画像的智能分析与评价,为受训教师后续的专业学习以及教师教育者的教学实践提供改进方向。

五、结语与展望

关于华南师范大学|统一认证|移动平台

Copyright©2023SouthChinaNormalUniversity.AllRightsReserved|华南师范大学版权所有

华南师范大学

全国高校人工智能师资培训通知

各会员单位、各相关高校院系负责人:

当前,人工智能发展已经进入新的阶段,特别是在移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术及经济社会发展强烈需求的共同驱动下,人工智能加速发展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征,为进一步探讨人工智能最新成果,中国自动化学会、江苏省自动化学会联合百度公司围绕深度学习、计算机视觉、AI+邮政行业应用举办全国高校人工智能师资培训班。本次培训面向全国高校相关院系专业负责人与教师,专注于人才培养、学科建设、课程体系与课程内容建设、授课艺术、产教融合、科研与教学、教学经验分享等。现定于2022年5月27-29日以线上+线下相结合的形式举办师资培训,现将有关事项通知如下:

一、时间地点

时间:2022年5月27-29日(共3天),5月26日线下报到

线下地点:南京-南京邮电大学仙林校区

线上地点:腾讯会议(具体会议号另行短信通知)

二、组织机构

主办单位:中国自动化学会

联合主办单位:江苏省自动化学会

承办单位:百度公司、南京邮电大学

三、培训证书

参与此次培训的教师,考评合格后颁发“全国高校人工智能师资培训班”结业证书。

 

四、培训内容:

作为智能时代的核心驱动力量,计算机视觉是AI领域最火热的细分领域之一,此次培训课程以计算机视觉相关应用研究方向的内容为主,亮点包含:

l 专家前沿报告:学界、工业界专家前沿热点前沿知识,探索深度学习实践课程体系,建设产学协同新思路;

l 理论与实践课程:全新课程升级,理论基础+高强度代码实践;丰富的实践案例让参训教师深度体验用深度学习解决实际问题的全过程;线下面授+无限次录播,教师技术水平飞跃式质的提升;

l 完整课程体系:全体系掌握计算机视觉领域内容,以及高阶的前沿技术和竞赛分享,所学即所用;

l 教学经验与方法:深度学习开课思路与教学方法研讨与经验分享,从输入到输出,解锁高校AI教学新思路。

具体日程如下:

时间

内容

5月26日

线下报道

5月27日

09:00-10:30

开幕仪式

10:30-11:30

理论:人工智能导论

11:30-14:00

午餐午休

14:00-16:00

理论:机器学习

16:00-16:30

实践:Kmeans鸢尾花聚类&SVM鸢尾花分类

16:30-17:30

理论:深度学习入门

17:30-18:00

实践:波士顿房价预测

5月28日

09:00-09:30

PaddleHub介绍

09:30-10:00

PaddleHub基本使用方法

10:00-11:00

PaddleHub综合实战(生活篇)

11:00-12:00

PaddleHub综合实战(行业篇)

12:00-14:00

午餐午休

14:00-15:00

理论:卷积神经网络入门

15:00-15:30

实践:宝石分类

15:30-16:00

AIStudio课程说明

16:00-16:30

实践:利用AIStudio开设课程

16:30-17:00

结业比赛发布

17:00-20:00

比赛实践

5月29日

09:00-10:00

飞桨高层API:AI+邮政

10:00-11:00

计算机视觉前沿应用

11:00-12:00

专家报告研讨

12:00-14:00

午餐午休

14:00-15:00

优秀代码解析

15:00-15:30

AIStudio开课分享

15:30-16:00

结业仪式

 

五、授课师资

本次培训邀请中科院研究所、复旦大学及百度资深工程师组成的讲师团队,培训过程注重理论与实践结合,深度讲授教学实践及工程案例应用。培训期间,十余名助教全程辅助教学,线下面对面的答疑,线上小组群随时答疑反馈,提供精准1对1教学服务,沉浸式互动教学。

六、培训亮点

l 教育部产学合作协同育人项目优先支持:参训教师将获得百度发布的教育部产学合作协同育人项目优先支持。

l 高效的实验室环境支持:培训平台采用百度深度学习平台飞桨(PaddlePaddle)和AI Studio实训平台,并提供丰富的行业真实数据集和支撑此次培训实践的CPU/GPU计算资源,免除软件环境安装维护的复杂性,让学员专注于模型训练。

l 理论+实践+行业专家导师:特色热点实践案例,权威专家面授课程与实践操作相结合。

l 丰富的配套学习资料:参训学员免费获赠返校开设深度学习课程所需的全套软硬件支持,包含完整课程体系、最专业的教材、全套PPT课件、配套实验案例、实践平台等深度学习课程套装。

l 专业教材及庞大算力支持:参训学员免费获赠专业教材,TeslaV100GPU算力卡。

l 产学同行深度交流机会:建立培训班同窗社群与专家建立长期互动联系,百度技术工程师一线交流反馈,加强产学协同合作机会。

 

七、培训对象

有志于在高校开展人工智能教育工作、培养人工智能领域人才的教师以及开展教育教学活动的师资合作伙伴。

参加培训的对象需具备:

1.学术方面

(1)了解机器学习的基本概念和基础知识;

(2)有一定Python和编程基础;对机器学习、神经网络有一定理论基础;

(3)具备高等数学、线性代数、概率统计基础知识;

(4)计算机、软件工程、电子信息、数据科学、物理相关学科背景。

2.意愿方面

(1)有意愿并有计划在未来一年内开设人工智能深度学习课程、讲座;

(2)有意愿和教学同仁分享深度学习、人工智能学科建设、教学经验的高校教师优先。 

3.其他要求

参与本期培训的学员,需要自备电脑并安装Chrome/Firefox/Safari浏览器最新版,持Win10企业版或旗舰版/Win7/MacOS/Linux等系统。

八、培训时间和地点

会议时间:2022年5月27日-5月29日,5月26日下午开始线下报道

会务费:本次培训班免收注册费(培训费用由百度公司承担价值8999元),往返交通及食宿费用自理

报到及会议地点:南京——南京邮电大学学科楼报告厅(计算机学科楼一楼)

会议推荐酒店如下,预定时请报“全国高校人工智能师资培训”

酒店名称及联系人:

300-600元·间/天

仙林宾馆联系人林海峰13913902677

白金汉爵联系人黄俊18951791588

七、报名流程

在线填写报名表——培训组委会审核——报名成功(审核通过者以邮件或短信形式通知)——发送参会回执

报名时间:即日起至2022年5月20日(名额有限,报满为止)

报名方式:在线报名—组委会审核—成功报名

(1) 在线填写报名表(点击链接或扫码填写):

https://iwenjuan.baidu.com/?code=njd5c8

 

九、组织工作

培训相关:

中国自动化学会:屈洋(15901363512),caa@ia.ac.cn

赵佳明(18211120057),zhaojiaming01@baidu.com

高婉莹(17880409577),v_gaowanying@baidu.com

会务联系人:范芳芳18310119560

 

 

 

 

主办单位:中国自动化学会

联合主办单位:江苏省自动化学会

承办单位:百度公司、南京邮电大学

关于举办腾讯云“人工智能与大数据师资培训班”的通知

腾讯云“人工智能与大数据师资培训班”——集中培训(12学时)

培训时间

培训主题

培训内容

专家

4月23日

上午9:00-12:00

大数据概论

1、大数据产生的背景

(1)大数据产生的原由

(2)大数据相关技术发展历程

2、大数据的特点与价值

(1)大数据的定义

(2)大数据的特性

(3)大数据的应用价值与应用场景

3、大数据的趋势、现状与挑战

(1)大数据发展重要里程碑

(2)大数据在各行业内的应用现状

(3)大数据仍面临的挑战

4、大数据专业就业前景

(1)大数据专业人才市场现状

(2)可就业方向介绍

(3)可就业方向技术栈

5、腾讯大数据应用

(1)腾讯内部基础服务框架

(2)腾讯内部使用的数据产品

(3)腾讯内部真实案例

林泽燕

腾讯高级开发工程师

4月23日

下午2:00-5:00

数据库概论

1、数据库种类介绍

2、关系型数据库中主要功能以及主要对象的介绍

3、分布式数据库产生的背景

4、分布式数据库相对传统数据库中的优势

5、分布式数据库就业前景

6、腾讯云数据库使用的案例介绍

7、数据库产业人才认证培训体系介绍

李亮举

腾讯数据库高级架构师

4月24日

上午9:00-12:00

TDSQL(MySQL版)入门

1、TDSQL(MySQL版)产品介绍

2、TDSQL(MySQL版)产品架构功能

3、数据复制与一致性实现

4、扩容原理的介绍

5、数据库中表种类介绍

6、分布式事务介绍

7、操作训练

李亮举

腾讯数据库高级架构师

4月24日

下午2:00-5:00

TDSQL(PostgreSQL版)入门

1、TDSQL(PostgreSQL版)发展历程及产品简介

2、TDSQL(PostgreSQL版)核心特性

3、TDSQL(PostgreSQL版)总体架构

4、TDSQL(PostgreSQL版)分布式事务保证

5、TDSQL(PostgreSQL版)高效的分布式join和并行

6、TDSQL(PostgreSQL版)容灾架构管理和策略

7、TDSQL(PostgreSQL版)数据安全策略和加密审计

8、操作训练

李亮举

腾讯数据库高级架构师

四、培训对象及要求

计算机、软件工程、网络工程、数据科学与大数据技术、智能科学与技术、人工智能等计算机类专业从事一线教学的教师,对大数据感兴趣或有志于将其用于教育教学的教师。本轮培训规模按30人控制。

五、培训师资/专家团队

林泽燕,腾讯高级开发工程师。研究方向:软件工程,数据分析。

现任腾讯青少年人工智能教育项目的研发负责人,5年TOB行业后台系统研发经验,有丰富的分布式系统和高可用架构实践经历,主导了腾讯智能客服机器人、车联网数据分析、会议系统等项目的后台系统搭建与研发。

李亮举,腾讯高级数据库架构师。研究方向:数据库的运维管理、性能优化。

10年数据库行业从业经验,具有丰富的数据库运管经验,精通MYSQL、TDSQL,拥有TDSQL-TCP、TDSQL-TCE认证,擅长处理TDSQL疑难问题和性能优化。对高可用架构等都有较深的了解。精通ORACLE并获得OCP认证。

六、培训方式及费用

本次研修班不收培训费,根据疫情防控需要,培训采取网络直播方式进行,由主讲团队线上直播授课,结合网络互动和主讲教师指导答疑等线上研讨活动。

七、报名方式

采用线上报名方式,参加培训的老师请于2022年4月15日前扫描下方二维码完成报名。报名后请加QQ群:796860450,以便开展培训管理。

八、结业与证书

参与培训并经考核合格后,由腾讯教育颁发“人工智能与大数据师资培训班”结业证书。

九、联系方式

报名联系人:丁嘉莉

电话:025-86118035

手机:18151005179

南京工程学院腾讯云人工智能学院

腾讯云计算(北京)有限责任公司

南京工程学院教师教学发展中心

2022年4月13日

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇