博舍

王晓宁:“人工智能+教育”在中国——现状、问题与未来初探 人工智能教育领域弊端有哪些呢

王晓宁:“人工智能+教育”在中国——现状、问题与未来初探

   在全球快速进入智能化时代的过程中,我国的“教育信息化”在推进程度上确实称得上先行一步,而“人工智能+教育”作为教育信息化的升级版,也正引发教育界内外高度关注。     从2020年国家自然科学基金“教育信息科学与技术”这一学科领域的申报态势来看,国内立足智能教育的竞争已趋白热化:将人工智能技术向教育垂直领域进行渗透的意识非常热切,理论与实践探索正在全面铺开。当然,就目前技术与教育结合的有效性、适切性、合理性甚至合法性而言,尚需细化。而从当前特征、现存问题与解决之道三个方面看,国内教育界的确已经迎来智能时代教育的挑战。 

现状:基础先进,探索热切,潜力尚待激活

1.技术界基础先进,教育界探索热切     从世界范围看,不少发达国家和国际组织在部署信息化/数字化/智能化战略,以维系传统大国地位、保持战略主动性和战略自主权时,纷纷将美国和中国作为对标国家。     可以说,中国在人工智能技术领域包括教育智能化领域的繁荣发展,已经在全球范围内引发高度关注,受重视程度甚至超过预期。时下的海外畅销书《第四次教育革命——人工智能如何改变教育》中,对于中国人工智能领域繁荣势头的追捧式解读极具代表性,该书称:“美国在人工智能领域的领先地位会慢慢减弱——而中国渴望填补这一空白,努力在2030年之前将自己打造成全球首要的人工智能创新中心”。值得关注的是,该书所涉及的诸多议题虽有一定新意,但对于中国教育领域人士而言并不陌生,甚至已经进行了超过其理论宽度的现行实践。可见,借助技术基础的繁荣发展,中国的“人工智能+教育”有着堪称热切的先行探索。 2.在线教育抗疫,激发底层潜力     2020年新冠疫情期间,中国智能教育模式经受了大考,给全球同行留下深刻印象。“停课不停学”的大规模在线教育实验展现了中国教育信息化与智能化的底层潜力,启发了中国乃至全球教育界对智能时代教育发展抱持乐观期待。     中国在新冠肺炎疫情期间进行的大规模在线教育,让教育者、受教育者、科技研发者等人群,都有机会亲临教育一线、摸清需求、萌发创意并涌现人才,形成教育推动大众科技创新、科技反哺教育变革的良性循环。教育创新与科技创新既是抗疫的有力工具,也在成为反弹的新经济增长点。在后疫情时代,社会将进入智能化和数字化快车道,线上力量正在兑换为线下力量,为构建基于智能技术的新型教育教学模式、教育服务供给方式,推动教育治理体系和治理能力的现代化,提供深度变革的内生力量。 

挑战三大问题,打牢智能时代教育根基

1.技术受限,效果模糊

     中肯地说,在目前的全球人工智能产业当中,金融、营销、安防、客服领域在IT基础设施、数据质量、新技术接受周期等人工智能发展基础条件方面表现较优,其商业化渗透率和对传统产业的提升程度较高。然而由于数据储备、数据感知、数据标准化受限,跨介质互联困难,情感计算与认知计算难以突破等约束条件,教育的智能化发展确实还慢一拍。迄今为止,多数智能化教学解决方案的落地效果仍然表现一般。而在校外教育方面,在线教学的用户体验粗糙且教学效果模糊,用户对新技术的接受周期较长,更加智能化的产品还需要一定长度的探索期。而与此同时,校内师生的信息素养不高,且信息化设备使用频率较低,也导致智能教育核心教学数据缺失,最终加大了教育数据挖掘分析的难度。 2.重复建设,粗放演进     现在,各方面对于智能化教育在所谓的“精准化监测与个性化评价”这一功能上的探索过于集中,用力过于聚焦,却很少针对过度监控、过度反馈、过度迎合的谨慎反思。而所谓粗放,是指当前教育领域的这只“人工智能大筐”,实际上装进了与人工智能沾边或不沾的各类技术,装进了各路概念、噱头甚至利益诉求,实质的进步、真实的助力在一定程度上被淹没在粗放的统计口径与表面的繁荣里。在政策的大力支持与市场对智能化的强烈需求背景之下,“人工智能+教育”的模式仍然亟待清晰化与规范化。 3.审慎不足,导向模糊     从国际经验看,不少国家对于教育与技术的结合都有相对审慎一面,尤其强调教育智能化要首先体现其价值性,然后再体现其工具性——要为承载国家的共同价值与文化基础优先作出努力。这成为各国尤其是发达国家发展智能化教育的普遍起点。而这强有力地形塑了智能技术的应用方向和智能教育的发展根基。对照来看,我们在这一层面上的理性反思尚显不足。那么就可能出现导向模糊——教育领域难以对人工智能应用技术提出准确需求,而技术人员难以深度理解教育,供应方难以设计出符合理性需求的应用形态——这也是当前人工智能技术参与教育过程并大力发展智能教育时最为掣肘的问题。 

以理性态度尊重规律,支撑智能时代教育变革

1.宏观策略不可“一刀切”,中国教育的巨大体量与智能技术的迅速更迭需要从容应对。

     对比世界主要发达国家来看,中国教育体量巨大、东中西部社会经济发展程度很不平衡,同时中国的信息化智能化技术发展又处在世界前沿,存在诸多复杂变量和不确定因素,并不是一味地加大作为、严密规划与管控就有望起到理想效果的。因此,有必要在“有为和无为”之间进行辩证思考,明察进退,有所取舍,以粗线条引导,而非以事无巨细的规制来推动宏观治理,要引导商用、民用、市场等角色发挥作用并自我调节。     进一步看,我国教育端和受教育端所具备的信息化素养与技能,绝大部分是在宏观的互联网经济大背景下形成的,“看不见的手”所发挥作用不可小觑。此外,从世界银行的视角来看,对教育技术的投入首先要将可持续性放在首位——软硬件投入巨大、优质数字资源生成困难、生命周期短促、跟进投资不可预估等问题,都启示我们:在宏观层面,要有适当的策略性留白。 2.中观布局不能急于求成,必须尊重智能时代教育的独特发展节奏。     如前所述,国际经验与中国发展实践都显示,相比于智能化技术在金融、营销、医疗、安防等诸多领域的率先落地与渗透,教育智能化领域由于数据储备、数据感知、数据标准化受限,跨介质互联困难,情感计算与认知计算难以突破等约束条件,自然呈现的发展规律确实是慢一拍。因此,在智能教育发展节奏上不能急于求成。     与此同时,教育领域是“人”的密集程度最大的领域,教育涉及的人群是超大规模的、甚至是全民的,其复杂性与牵涉面超乎寻常,智能时代的教育在理念更新、模式变革、体系重构,尤其是利益重组上不能激进。     此外,要区分群体教育和个体教育的不同规律。同辈压力和集中的时空氛围,可以让群体情境下的智能化教育更好地结合线上的优势资源与线下的立体化传授;而个人情境下的智能化教育则需要更多地探索如何维系注意力的特殊节律,尊重碎片化、娱乐化、热点化、轻量化等需求,不能过多地强调和依赖个人自律和所谓的素质素养等。 3.微观上不“过度迎合”,辩证看待个性化培养潮流。     首先,智能化的教育技术对师生微观状态的精准诊断、即时反馈、全程记录等固然有其便捷,但也有可能带给其过度关注与过度追踪的压力,在某种程度上会将“人人皆学、处处可能学、时时可学”异化为无所不在的钳制和逼迫。     其次,智能化技术辅助进行的个性化诊断与个性化培养固然有其价值,但若不善加使用,也会在某种程度上过度强化初始的、不成熟的、未定型的个体偏好,强化路径依赖,反而很可能抹杀师生在其他维度、广度和深度上的潜力,影响个体自身在竞争合作中的准确定位,进而过早设置隔阂与专业鸿沟,障碍对具备广阔视野和全局观念的“通才型”人才的培养。     最后,“建立终身电子学习档案和数字画像——对学习者的学习成果进行统一认证和核算”等发展思路的提出,也需要辩证看待——人为设计的评价体系,从识别、赋值、感知、记录,多数时候仍是粗线条、显性化、线性化的,丢失了很多维度甚至是关键性信息。将不先进的教育评价思路用先进的技术如区块链等手段来承载,很可能会进一步形成环环相扣的时空限制,进一步收窄可能性与多样性,更遑论数据隐私和技术霸权等问题的潜在负面影响。有冗余、有散漫、有策略性留白,才会有缓冲和创新的空间,这也是智能时代教育必须体认的教育史所传承给这个时代教育者的精神启示和宝贵财富。 

来源:https://mp.weixin.qq.com/s/XohFhSpQRCQPu2h5II5YJg

人工智能与教育丨教育领域人工智能的应用现状、影响与挑战——基于OECD《教育中的可信赖人工智能:前景与挑战》报告的解读与分析

OECD预测,人工智能将引发未来几十年教育领域的巨大变革,包括课堂教学与教育系统,且直接影响到教育政策制定者、教育管理者、教师、学生、家长等利益相关者。同时,人工智能将推动实现可持续发展目标4中的全球教育目标,即“确保包容公平的优质教育,并为所有人提供终身学习机会”。人工智能在教育领域的使用还将实现巨大的社会价值,提升人的创造力,减少经济、社会及性别层面的不平等问题,促进包容性和可持续发展,进而实现全人类福祉。

(二)人工智能在课堂教学中的应用现状

美国新课堂创新合作者(NewClassroomsInnovationPartners)基于人工智能开发了“面向每一个人的教学:数学”(TeachtoOne:Math)模式,可以在大数据的支持下根据每个学生的具体情况制定合适的学习与教学方案。2012年,该模式在芝加哥、纽约及华盛顿特区的8所学校试点实施,主要应用于初中数学。该模式的目标是对学生技能的发展与进步做出持续回应,定期评估学生的技能水平,通过人工智能算法定位内容传递,并为学生指定不同的教学模式。该模式依靠持续的形成性评估得出数据,以确定学生之间的学习差距。学生每天都可以访问电脑仪表盘(computerdashboard),获取个人进度信息、技能发展任务,以及各种教学资源的链接,学生可以按自定的步调进行学习。这个过程中生成的大量数据将反馈给基础信息系统。最新版“面向每一个人的教学:数学”模式能为学生个性化学习路径的每日重新配置和两周教学周期的设计提供信息,还能通过动态的电脑仪表盘为教师提供有关班级和学生表现的实时信息,帮助教师及时支持学生学习。

在中国,好未来教育集团的人工智能实验室开发了多种类型的数字方案,为学生高考备考提供帮助。其中,“适应性测试及学习计划”(adaptivetestandlearningplan)系统最具代表性。该系统从各方面数据中挖掘大量评估性问题,以更好地了解每一位学生当前的知识水平,有助于学生选择合适自身的线下课程。该系统还为学生设计和定制学习计划,将相关材料发送给学生家长,帮助家长了解孩子的备考问题。

2.为特殊需求学生的学习提供支持与帮助

全球各国(尤其是经济落后国家)长期面临如何为所有学生提供更具包容性的受教育机会的问题。包容性教育是可持续发展目标4所倡导的全球目标之一,目的是确保所有人士平等地获得各级各类教育。OECD认为,人工智能可以有效地支持特殊需求学生的学习,包括视听觉障碍或社交技能(语言或交流)障碍的学生,帮助特殊需求学生从教育中受益。

3.其他功能

(三)人工智能在学校管理与教育系统中的应用

人工智能在学校管理与教育系统层面的应用主要是预测模型及评估模型的建构,为教育机构和教育系统提供反馈,服务于教育决策。目的在于提高高质量初等、中等教育的学业完成率,减少学生辍学率,以及改造教育评估工具(如标准化评估工具等)。

1.创建预警系统,有效降低学生辍学率

辍学问题是一个重要的全球教育问题,不同发展水平的国家关注的学生辍学阶段不同。OECD报告称,在低收入国家,2015年高中阶段学生辍学率为60%;2018年小学、初中及高中教育的完成率分别是68%、44%和21%,该数字距离2030年普及教育的目标相差巨大。各国教育工作者及教育政策制定者希望寻求正确的指标来预测学生辍学情况,在此基础上找到正确的干预措施降低学生辍学率。因此,人工智能将成为重要的预测工具。相比其他工具,人工智能预警系统使用纵向数据作为预测基础,可进一步改善学校的辍学预警系统。在人工智能的辅助下,学校管理者能更创新地使用现有学生数据,改进和设计学校的干预措施,更有效地预测并降低学生辍学率。

人工智能预警系统已经在发展水平较高的国家得到广泛使用。以美国为例,许多数字供应商为地区和州的学校提供了人工智能预警系统,实时帮助学校校长和地区领导者应对学生辍学问题。人工智能预警系统的优点之一是能及时地为学校提供反馈。此外,该系统通常采用仪表盘的形式,使面临辍学风险的不同类型学生的情况可视化,并对这部分学生采取适当的干预措施。在发展水平较低、收入较低的国家,辍学问题同样是教育面临的一个严峻问题。例如,印度已经开发了辍学预警系统与对应的干预措施,并开展了有效性评估。

当前,人工智能预警系统虽在学校管理和教育系统中发挥了一定作用,但还未完全成熟。其局限性在于人工智能系统仍可能出现预测误差,即忽略一些需要帮助的学生,没有及时给予帮助。因此,使用人工智能预警系统的前提是必须保证人工智能提供的是可信任的且有使用价值的预测建议。

2.改进技能评估工具,扩展技能评估范围

在经济社会变革的时代中,综合技能的重要性与日俱增,如问题解决技能、协作技能、社交技能、情感技能等。由于大多数国家的教育系统评估方式仍以标准化评估为主要特征,各国教育政策制定者和人才市场倡导改进技能评估工具,在以知识内容与能力为主的评估范围基础上进行新的扩展,将各种综合技能纳入评估范围。

基于游戏的评估(Game-basedAssessment)为教育系统提供了评估综合技能的新工具。基于游戏的评估在形成性评估中具有很大的价值,通常使用人工智能模拟的增强现实、虚拟现实和自适应能力,不仅可以适应个别学生的能力,也可以用于总结性评估。例如,将评估项目合并到游戏环境中,使学生在一个有趣的、沉浸式体验的环境中展示他们的学习成果。该评估工具已被广泛且有效地应用于科学、技术、工程和数学(STEM)教育。

三、数字时代劳动者技能的变革与发展

(一)传统技能面临自动化引发的挑战

人工智能在经济领域得到迅速使用和传播的同时,正规教育系统应进一步培养劳动者的新知识与技能。OECD的一项最新研究预估,未来15~20年内,自动化会导致14%的现有工作消失,32%的工作可能会产生根本性变革。

人工智能在某些方面的能力已经超越人类,如记忆力和计算力。人工智能能够更高效地完成重复性和预测性的任务,以及大量数据处理、输入或分类的任务。但人类在沟通、情感、价值观、创造力等方面仍占据优势。因此,劳动者必须具备人工智能无法实现的技能,才能避免在工作中被机器取代。此外,2019年OECD发布的《OECD技能展望》(OECDSkillsOutlook)报告显示,当前人们对互联网的使用常常局限于获取信息与通信。培养更高阶的认知技能,即在技术含量高的环境中发挥读写能力、计算能力及问题解决能力,互联网的使用方式才能更多样化和综合化。

(二)综合认知技能的重要性增强

在数字时代,综合认知技能变得越来越重要。相对于其他综合技能而言,综合认知技能更难以自动化或被人工智能取代,是实现人类福祉与社会良性运转的重要技能。其中,创造力与批判性思维得到了新时代劳动力市场的需求与重视。由于互联网信息传播速度快,信息数量大,传播范围广,创造力与批判性思维对互联网使用者而言不可或缺。

拥有批判性思维的劳动者在使用互联网检索信息时,能够阅读复杂的数字文本,可以区分互联网信息来源是否可信。创造力能支持劳动者开发与建构新的问题解决方案,包括需要使用人工智能或机器人的方案。除创造力与批判性思维外,沟通、协作技能等社会情感技能也属于重要的综合认知技能。

(三)逐步推进实施综合技能培养

为了应对经济与社会的转型与变革,各国教育系统和教育机构制定了各种技能培养方案,帮助劳动者学习和掌握综合技能,适应人工智能带来的技能转型。

OECD国家的学校课程大都已经正式推进综合技能培养方案的实施,以各级学校学生和高等教育学生为对象,培养与发展学生的创造力、批判性思维及其他创新技能。综合技能的培养也在G20国家中越来越普及,包括中国和印度。但在综合技能培养过程中,各国教育工作者常常不了解综合技能的概念与意义,不清楚如何将综合技能的培养纳入日常教学实践中。为解决该问题,OECD与11个国家的学校网络开展合作,为教育决策者及教育一线工作者提供了针对性的课程和教案,支撑他们推进综合技能的培养方案。同时,OECD还提供了专业发展计划的案例,帮助教育工作者学习有效培养综合技能的成功经验,教育工作者才能够成功地调整教学方法和课程计划,进而有效地帮助学生在学习知识内容的同时,发展创造力和批判性思维等综合技能。

另一项重要的综合技能培养方案是开放充足的、针对性强的高等教育课程。在该方案推进过程中,STEM教育发挥了至关重要的作用,为学生提供了许多具有针对性的综合技能学习课程。同时,许多新课程开放计划与商业界合作后也取得了一定成果。OECD与15个国家的高等教育机构合作,计划未来在高等教育领域创新性地开发与实践综合技能培养课程。

四、人工智能给教育带来的问题与挑战

人工智能在教育领域的快速发展,给教育工作者和教育政策制定者带来了新的问题与挑战,主要源于对人工智能的信任度以及如何塑造人工智能的可信赖应用。

(一)建立公众对人工智能的信任

教育对人们未来就业和生活机会有巨大影响,人工智能在教育中的透明度、可解释性及问责制非常重要。例如,人工智能用于教育决策的制定将直接影响学生的个人利益。为了充分发挥人工智能在教育中的潜力,教育政策制定者、教育工作者及其他利益相关者应建立公众对人工智能的信任。

在其他方面,人工智能引导自主决策或建议(例如,基于人工智能的中小学/大学的自动招生决策)可能会出现两种情况:一是打破学校招生系统先前的偏见,提高公平性;二是引发无法预估的后果,如生源好的学校在人工智能新系统的引导下招生,如若其招生标准与算法缺乏透明度与解释性,学校的受益群体将产生变动。因此,增强对人工智能的信任只能依靠标准和算法的透明度和可解释性。关于如何解决透明度问题,OECD认为扩大人工智能的开放性是一种解决方案。但对于某些人工智能(如深度学习)而言,可解释性仍然是个很难解决的问题。

OECD国家在建立公众对人工智能的信任上有不同的方式和策略。欧盟建构了可信赖人工智能的准则,提出人工智能应该是透明的、可追溯的、可解释的。同时,欧盟认为公众应有权被告知他们正在与人工智能系统进行交互,并且应该将人工智能的优势与局限传达给人工智能的实践者或终端用户。

(二)解决个人数据隐私与安全问题

虽然人工智能对教育与学习带来了积极影响,能帮助学生对数字时代未来的发展做准备,但大多数人工智能的使用者仍是未成年人,且人工智能算法或数据本身存在一定偏差,会引发个人数据的隐私和安全问题。

人工智能引发的隐私及数据安全问题通常源于大规模的个人数据收集与使用。人工智能为了提高其功能的针对性与有效性,以收集与使用个人数据为主要方式,收集和存储数据的过程易产生个人隐私泄露的风险。人工智能引发的隐私与安全问题是双重的。一方面,教育机构会重复使用过去收集和储存的学生数据,但由于数据存储的时长、类型及长期使用的标准没有得到确定,许多学生家长对此存在担忧;另一方面,一些开发者会处于商业目的使用学生的个人数据。

关于如何解决人工智能及其应用带来的个人数据的隐私与安全问题,不同OECD国家和地区有各自的做法。例如,欧盟的《通用数据保护条例》(GeneralDataProtectionRegulation,GDPR)为个人数据的使用设定了相对严格的框架——仅允许特定条件使用数据,包括共享数据与存储数据。GDPR中最重要的原则之一是透明度、数据与存储限制及问责制。美国的《家庭教育权和隐私权法》(FamilyEducationalandPrivacyRightsAct)规定了在教育中使用个人数据的特定框架。

五、结语

人工智能正重塑着世界经济发展的新格局,引发人们经济、生活及工作的深刻变革。全球各国高度关注与重视人工智能的价值与潜力,相继制定了相关政策与规划,如美国的《为人工智能的未来做好准备》《国家人工智能研发战略规划》,英国的“现代工业战略”计划,日本的“人工智能产业化路线图”。我国于2017年发布了《新一代人工智能发展规划》,提出了“三步走”战略,又接着推出了《人工智能标准化白皮书(2018版)》,对人工智能的发展方向与应用展开了政策层面的规划。

教育信息化时代下,人工智能与教育的结合创新是未来教育变革的重要趋势。无论是改进课堂教学和教育系统,还是推动可持续发展目标4的实现,人工智能无疑展现了巨大潜力。随着教育技术行业持续壮大,G20国家也在进行大规模投资,人工智能在教育领域的普及将势不可挡。OECD的报告表明,人工智能在个性化学习、特殊需求学生学习、学生辍学问题的应用及技能评估工具的改进方面发挥了巨大作用。各国对人工智能的应用充分展现了其巨大的价值,有助于我们把握世界教育领域中人工智能的发展趋势,以及落实《G20人工智能原则》是否实现,促进人工智能在教育中的深入应用,推动下一步的研发与改进。由于人工智能在教育领域的应用大都处于新生阶段,尚未完全成熟,其决策准确性、解释性与透明度必然引起了社会的诸多质疑。为应对挑战,各国在人工智能应用的研究、开发、应用与推广过程中,应提高人工智能应用的透明度、可追溯性,增强可解释性,明确记录技术流程与人为决策等信息,建立数据与存储限制及问责制,构建更加可靠、更值得信赖、更安全及健全的人工智能系统。

作者简介:钟悦,上海师范大学国际与比较教育研究院硕士研究生;王洁,上海师范大学国际与比较教育研究院教授

来源:《世界教育信息》2021年第1期返回搜狐,查看更多

人工智能促进教育变革创新

通过云平台布置电子作业,利用数据分析课堂上学生学习行为,推进学校管理流程迈向数字化……前不久,2022国际人工智能与教育会议在线上举行,来自全球数十个国家的政府官员、专家学者、一线教师、企业代表等相聚“云端”,畅叙人工智能时代教育发展图景。

作为引领新一轮科技革命和产业变革的重要驱动力,人工智能催生了大批新产品、新技术、新业态和新模式,也为教育现代化带来更多可能性。习近平总书记强调,“中国高度重视人工智能对教育的深刻影响,积极推动人工智能和教育深度融合,促进教育变革创新”。国务院印发的《新一代人工智能发展规划》,明确利用智能技术加快推动人才培养模式、教学方法改革;教育部出台《高等学校人工智能创新行动计划》,并先后启动两批人工智能助推教师队伍建设试点工作;中央网信办等八部门联合认定一批国家智能社会治理实验基地,包括19个教育领域特色基地,研究智能时代各种教育场景下智能治理机制;科技部等六部门联合印发通知,将智能教育纳入首批人工智能示范应用场景,探索形成可复制、可推广经验……“人工智能+教育”不断碰撞出新的火花,为教育变革创新注入强劲动能。

“人工智能+教育”,应用就在身边。音乐课上,虚拟数字人“元老师”跨越时空限制,带领多所学校学生同唱一首歌;体育课上,学生开始跳绳项目测试,智能终端上实时显示心率变化、跳绳次数、平均速度等数据。技术改变课堂,潜力无限。比如,借助虚拟现实技术,学生能够模拟穿上太空服行走在宇宙,感受浩瀚星河的魅力;通过增强现实技术体验川剧变脸,平面的课本知识变得可感可知。现实中,越来越多的学校已经开设或准备筹备人工智能教育教学活动。

“人工智能+教育”,变革教育生态。教、练、考、评、管各环节均有人工智能辅助,让教师教得更好;虚实融合多场景教学、协同育人,让学生学得更好;海量线上数据和逐渐强大的算力,让学校管理更加精准。此外,在人工智能支撑下,优质数字教育资源跨越山海,推动教育更加公平、开放。在西藏墨脱县,得益于多媒体器材配备到雅鲁藏布大峡谷深处、“智慧课堂”全覆盖,门巴族孩子小学入学率实现100%。

我国发展“人工智能+教育”具备良好基础和独特优势。比如,语音识别、视觉识别等技术世界领先;国家智慧教育平台汇集了海量的数据资源,2.91亿在校学生和1844.37万专任教师展现出丰富的应用需求;教育领域数字化基础条件全面提档升级,全国中小学(含教学点)互联网接入率达到100%,99.5%的学校拥有多媒体教室,学校配备的师生终端数量超过2800万台。也应看到,人工智能技术在教育领域的应用仍处于起步阶段。“数字鸿沟”可能将部分学生排除在智能教育之外,数据收集、使用、分析等环节存在安全隐患,相关公共政策制定较为滞后……以人工智能赋能教育现代化,这些都是需要回答好的课题。

着眼未来,应携手打造高质量、有温度的人工智能教育生态。人机协作如何更聪明,人机对话如何更友好,是“人工智能+教育”的长期课题。一方面,技术应服务育人,在让其“授业”“解惑”的同时,必须坚持教师“传道”的主体地位。另一方面,人也要理解、善用技术,努力提升信息应用能力,让人工智能更好辅助教学。教育是动态的、发展的,理性思考人与技术的关系,把握教育规律、用好技术手段、凝聚各方力量,进一步推动人工智能与教育深度融合、创新发展,才能更好赋能教育现代化,培养顺应时代发展要求的创新人才。(吴丹)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇