博舍

人工智能的历史、现状和未来 人工智能应用效果研究

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

重庆大学计算机学院人工智能领域研究动态

 

人工智能(ArtificialIntelligence,简称AI)是一门研究模拟人类智能,实现机器智能的科学。自诞生以来始终是计算机科学的前沿学科,并在计算机领域内得到了愈加广泛的重视,其理论和技术日益成熟,应用领域包括医学、工业、运输、服务等在内的社会各大行业。

重庆大学计算机学院紧紧把握人工智能研究方向,一大批教授及其研究团队致力于人工智能领域的研究,分别在医学影像、智能交通、航天及公共安全、硬件平台及基础算法研究和其他智能应用等领域取得了显著的研究成果。

一、医学影像领域

医学影像是疾病诊断和手术规划的重要判断依据。传统的人工方法完全依靠医生经验进行判断,而且需要耗费较多的时间。我院一批教授运用人工智能的方法,对医学影像实现智能化地自动处理和判别,其研究成果已成功应用于全国多家三甲医院。

房斌教授团队利用深度学习、水平集等人工智能前沿算法,快速、准确地对肝脏及肿瘤等组织器官进行分割,建立三维器官模型。算法分割效果接近临床医生的水平,部分结果超过临床医生;利用FasterR-CNN模型技术,快速准确地检测并识别红细胞、白细胞、结晶体、上皮组织、管型细胞、霉菌等各种类型的细胞。

何中市教授团队研制了增强病变智能检测和辅助诊断软件系统,基于CT图像、核磁共振图像对肺结节、肺栓塞病变进行检测,对核磁共振图像进行超分辨率重建,提高计算机辅助医学诊断的水平。刘然博士团队采用FasterR-CNN实现了IVOCT易损斑块的自动检测,检测质量达到了85.36%,接近医学专家的水平。

在胶囊内镜及内窥镜辅助诊断手段研究方面,汪成亮教授团队采用医疗图像大数据处理技术、结合深度学习中多种模型,研发出基于医疗图像的智能诊断手段,其准确率已超过人类医学专家。周尚波教授团队基于消化道胶囊内镜影像进行智能分析,能够对消化道出血和肿瘤进行自动检测。

 

 

肝脏自动分割及三维重建

 

三维-核磁共振图像的跨层面方向自相似性

 

基于医疗图像的智能诊断

 

 消化道出血检测(上)及肿瘤检测(下)

二、智能交通领域

面对当今世界全球化、信息化发展趋势,传统的交通技术和手段已不适应经济社会发展的要求,而智能交通已成为当今世界交通运输发展的热点和前沿,更是未来交通系统的发展方向。我院众多教授、团队致力于智能交通系统研究,众多研究成果已广泛应用于社会各行业领域。

房斌教授团队采用显著纹理信息提取、不变透视模式提取等图像处理与人工智能算法,对道路的车道线、消失点等关键信息进行精确检测,对交通标志进行准确地检测、识别及测距,可以帮助智能车辆模拟人类视觉系统,准确获取道路信息,提供控制决策及预警信息。算法结果达到国内先进水平,部分算法应用于“中国智能车未来挑战赛”的比赛车辆中,并取得优异成绩。

郭平教授团队研究的交通信号灯配时算法,通过移位左转又称为连续流交叉口(CFIContinuousFlowIntersection)交通信号控制方法,将左转车道转移设置,重组道路断面,减少信号相位,从而提升整个路口通行效率。

冯永教授团队利用车辆监控图片,开展车辆检测与计数系统研究。文静副教授团队采用基于深度学习的自然场景文字检测和识别的前沿算法,完成对火车车牌号的图像检测、识别和定位。该算法识别准确率可达90%以上,目前已经成功应用到成都铁路公司等多个车站的定点机车号的检测上。

刘凯博士团队基于车联网关键技术,在多智能体系统的移动互联研究方向开展包括基于神经网络及深度神经网络的智能体设计、基于强化学习及迁移学习的智能体交互与协作、以及面向复杂环境的智能处理算法研究等。

机车车牌识别结果展示

 

道路视觉环境感知

 

车辆检测与计数系统

   三、服务航天及公共安全领域

当前,国家及各地方政府高度重视公共安全问题,对新科技、新技术广泛应用于健全公共安全体系、提升公共安全保障能力给予大力支持。我院多位教授及其团队的研究成果已服务于国家航天及公共安全维护中。

周尚波教授团队通过移动载体视频跟踪的导引头设计进行无人机动态目标跟踪,并取得交通车辆检测与识别专利。此外,在航天遥感图像大数据的物体分割、识别与检测领域,采用人工智能理论、利用Tensorflow、ArcGISAPI、Python等工具及ENVIServicesEngine引擎,构建遥感影像目标识别和地理信息智能平台,包括影像处理模块、资源管理模块、拆迁管理模块和违建管理等功能。

郭平教授团队以定性空间推理为主,研究空间关系表示和空间关系推理,提出了空间组合推理模式与推理算法。该算法将空间对象间的拓扑关系与方位关系有效地连接起来,推导出更合理更准确的空间对象间的关系,并与GIS相结合提供以空间对象几何特征为基础的高效GIS查询服务。

房斌团队在无人机输电线路智能检测领域,利用深度学习,建立输电线路多目标检测框架,快速、有效地在大规模图像集的复杂场景中实现多目标检测,有效减轻人工劳动强度,实现智能化输电线路巡检。

 

河流分割及用地分割

  

输电线路目标检测

 

空间推理及其应用

 

群体智能与群体协议的自律分散

四、硬件平台和基础算法领域

计算系统硬件平台和算法学习是人工智能的基石,它们为人工智能的各类应用提供了硬件和软件支撑。

刘铎博士团队研究基于CPU/GPU的异构计算系统,开展面向深度学习的系统优化研究,包括面向嵌入式系统的卷积神经网络的压缩与优化和面向异构系统对深度学习算法和应用进行改造和优化,从而进一步提高其运行效能。

郭平教授在知识获取、表示与集成方面取得较好成果,主要研究从神经网络中获取知识并以显示的形式表示,以及知识库中知识的一致性、规范性检测方法。

李佳教授在群体智能方向研究基于强化机器学习的智能集群算法,并关注被称作群体协议的自律分散系统,研究领导选择算法、群分割算法以及系统的通用计算能力该算法,这些理论成果对研究机器人集群控制,大规模灾害状况下的人群避难诱导等有重要理论支撑。

汪成亮教授团队在深度学习基础理论及技术方面,其深度学习模型中强大的神经元级别安全设计的主要内容于2018年被英国知名科技媒体“TheRegister”报道。该研究首次提出了如何在深度学习的神经网络模型中插入强大的神经网络木马来对目前日益被广泛应用的深度学习系统形成重大威胁,从而为越来越智能化的系统敲响了安全防御的警钟。

 

高性能人工智能计算环境

五、其他智能应用领域

在教育、文化、媒体娱乐等其他人工智能应用领域,我院多位教授也取得了新的研究成果。

何中市教授团队在“计算机辅助文学艺术创作研究-诗词曲联”上,通过构建诗词对联结构韵律分析、风格评价、计算机辅助作品生成软件系统,开设了中国古典诗词计算机辅助写作课程,用计算机帮助青年学生写作古典诗词,让诗词大踏步进入校园;在文化古迹数字化保护研究上,其团队建立了一套结合深度学习与数字图像修复技术的“大足石刻虚拟修复模型与技术”,为世界文化遗产保护提供了一种人工智能新途径。

 

 

大足石刻虚拟修复模型与技术

房斌教授团队利用卷积神经网络(CNN)算法,有效的提取出人脸中的颜色、纹理、边缘特征,进而检测、精准定位出复杂背景中大小不一的人脸位置。该算法已广泛应用于驾驶员驾驶行为监督系统、身份认证、媒体娱乐等方面。

 

基于深度学习的人脸检测

 

 

AIGC最新应用与场景研究

AI014:中国AI+零售行业发展研究报告

AI015:AI产业全景图

AI016:2020中国AI中台应用趋势报告

AI017:2021AI智能制造研究报告

AI018:2021中国AI商业落地市场研究报告

AI019:2021认知智能发展研究报告

AI020:上海人工智能创新发展探索与实践案例集

AI021:2021AI中台白皮书

AI022:2021全球人工智能教育落地应用研究报告

AI023:2021可信人工智能白皮书

AI024:中国AI+安防行业发展研究报告

AI025:2021云上智能白皮书

AI026:2021年中国人工智能+医疗与生命科学行业研究报告

AI027:中国云原生AI开发平台白皮书

AI028:2021中国智慧城市AIoT应用研究

AI029:中国AI中台赋能城市空间管理白皮书

AI030:人工智能的认知神经基础白皮书

AI031:企业智能化的路径、方法与领先实践

AI032:AI框架发展白皮书(2022年)

AI033:人工智能白皮书(2022年)

AI034:2022深度合成十大趋势报告

AI035:中国AI数字商业产业展望2021-2025

AI036:可解释AI发展报告2022

AI037:2022百度人工智能专利白皮书

AI038:AI+数字孪生发展现状,应用场景及典型企业

AI039:2022年全球人工智能产业研究报告

AI040:中国神经科学数字化创新(2022)

AI041:全球中小学人工智能教育支撑环境白皮书

AI042:2022年中国知识图谱行业研究报告

AI043:人工智能知识点全景图

AI044:人工智能生成内容(AIGC)白皮书

AI045:2022中国AI商业落地研究报告

AI046:中国AI技术应用场景市场研究及选型评估

AI047:2022金融AI发展研究报告

AI048:可信人工智能产业生态发展报告(2022年)

AI049:2022年中国对话式AI行业发展白皮书

AI050:人工智能技术应用实践白皮书

AI051:人工智能标准化白皮书(2021版)

AI052:商汤人工智能伦理治理年度报告(2022年)

AI053:人工智能深度学习课程高效调研报告

AI054:2022人工智能发展白皮书

AI055:2022医疗AI行业研究白皮书

AI056:人工智能治理与可持续发展实践白皮书

AI057:中国人工智能软件基础设施高质量发展报告

AI058:2022年中国AI+金融行业发展研究报告

AI059:人工智能时代的算法治理报告(2022年)

AI060:2022-2023中国人工智能计算力发展评估报告

AI061:2023年AI创意营销趋势白皮书

AI062:2023AIGC发展趋势报告

AI063:中国人工智能框架市场调研报告

AI064:人工智能产业分析报告(2023)

AI065:2023年中国人工智能产业趋势报告

AI066:2023人工智能基础数据服务白皮书

AI067:2023百度AIGC创新营销解决方案V2.0

AI068:AI助力能源央国企数字化转型白皮书

AI069:中国AIGC产业全景图报告

AI070:中国人工智能产业生态图谱

AI071:2023AIGC应用与实践展望报告

AI072:AIGC+电商行业专题报告

AI073:2023中国AIGC应用研究报告

AI074:中国人工智能框架市场调研报告

AI075:百度AIGC创新内容营销解决方案

AI076:人工智能伦理治理标准化指南(2023版)

AI077:AIGC时代的多模态知识工程思考与展望

AI078:AIGC产业发展及应用白皮书

AI079:营销领域AIGC前沿进展与挑战

AI080:AIGC技术赋能教育数字化转型的机遇与挑战

AI081:华为AI盘古大模型研究框架

AI082:AIGC行业综述篇——开启AI新篇章

AI083:阿里达摩院通义大模型概述

AI084:AIGC专题三:国内大模型概览

AI085:AI+行业应用深度研究

AI086:生成式人工智能产业全梳理

AI087:互联网行业专题报告:AI大模型

AI088:2023年AI大模型市场研究报告

AI089:AI大模型需要什么样的数据

AI090:AIGC发展研究(1.0版)

AI091:从阿里、商汤、华为大模型看应用趋势

AI092:中国AIGC商用场景趋势捕捉指北

AI093:AIGC行业应用畅想

AI094:2023大语言模型综合评测报告

AI095:人工智能大模型体验报告

AI096:企业AIGC商业落地应用研究报告

AI097:AIGC专题四:国内外大模型和AI应用梳理

AI098:2022中国大模型发展白皮书

AI099:2023生成式大模型安全与隐私白皮书

AI100:2023AIGC产业应用实践

AI101:AI大模型企业是如何炼成的

AI102:2023生成式AI认知及使用调研报告

AI103:2023年全球生成式AI产业研究报告

AI104:AIGC最新应用与场景研究

以下是报告部分内容

声明

来源:华金证券,互联互通社区推荐阅读,版权归作者所有。文章内容仅代表作者独立观点,不代表互联互通社区立场,转载目的在于传递更多信息。如涉及作品版权问题,请联系我们删除或做相关处理!返回搜狐,查看更多

人工智能趋势——2023 年综述

摘要

随着DALL·E2于2022年4月的宣布,关于2022年初第三个AI冬天——或AI撞墙——的预言过时得很快而且效果不佳,随后出现了更多主要由扩散模型驱动的文本到图像应用程序,这是一个非常多产的领域用于计算机视觉研究及其他领域。AI的2022年定义为强劲的上升趋势。

此外,大型语言模型被证明是一个更加肥沃的领域,有几篇论文显着扩展了它们的能力:检索增强、思维链提示、数学推理、推理自举。语言模型研究远未结束。它仍然在发展!

今年年的重磅炸弹无疑是OpenAI的ChatGPT,它再次重新定义了对LLM的期望,并巩固了OpenAI作为LLM即服务的全球领导者的地位。正如我们将看到的,到2023年,这可能会对整个技术领域产生连锁反应,因为与OpenAI建立了牢固合作伙伴关系的微软可能会利用它来改进他们的主流产品,包括Bing和Office。

现在让我们来看看AI的几个关键领域:它们目前所处的位置以及我们预计它们在2023年的发展方向。

社区

长期以来,Twitter一直是AI研究人员公开分享和讨论其工作的最大在线空间。但埃隆·马斯克臭名昭著的收购该公司已将其置于摇摇欲坠的境地。日益增长的不稳定因素、不可预测的政策变化以及马斯克的分裂政治立场导致人们强烈要求转移到Mastodon等其他地方。目前,大部分行动仍在bluebird网站上进行,出于政治原因一夜之间全面撤离的可能性仍然不大,但我们不能完全排除明年公司出现某种形式崩溃的可能性。

深度学习社区的另一个战场是框架。PyTorch的采用率已经超过TensorFlow几年了,它是Autograd和神经网络最受喜爱和使用的框架。2023年,PyTorchv2.0将发布,其主要功能是编译器和加速。甚至谷歌也没有押注TensorFlow的卷土重来,而JAX/FLAX生态系统——已经是谷歌大脑和许多其他研究人员的最爱——仍然不够成熟,无法成为主流。

最后,行业和学术界的鸿沟继续扩大,因为(1)大型科技公司拥有更多可用的计算资源,以及(2)当前的许多轰动一时的研究都依赖于数十名世界级工程师的密切合作,而这些工程师是无法获得的普通博士生。这意味着学术研究正在转向更好地检查、理解和扩展现有模型,以及设计新的基准和理论进步。

语言模型

如果一年前LLM已经是AI领域的主角,那么现在的情况更接近于独白。萨顿的惨痛教训像美酒一样陈年。有了ChatGPT,LLM成为了主流——甚至我的非AI非技术朋友都在问这个问题——我们预计2023年将是这项技术真正普及的一年。微软——已经在考虑将其在OpenAI中的股份扩大到49%——而谷歌不想错过,所以这将是一场巨头的冲突。

规模。在过去的几年里,模型在参数方面几乎没有增长——这与许多公开的AI讨论相反!现有最好的可用密集LLM仍处于200B参数范围内,因为它们未得到优化,并且在该范围内仍有许多有待发现和改进的地方。然而,我们预计今年情况会有所改变,(1)谷歌公开使用他们的FLAN模型系列,以及(2)如果克服所有优化挑战,OpenAI和竞争者将通过备受期待的GPT-4进入万亿级参数计数.由于成本原因,这些可能不会为大部分LLM即服务提供支持,但将成为下一个成为头条新闻的旗舰技术。优化。静态文本数据训练的时代已经结束。当前的LLM不仅仅是大型语言模型,它们的优化包括策划的、交互式的和连续的数据/文本以及代码等形式语言。我们期望在LLM优化方面取得进展,利用更复杂的RL环境(例如LLM作为代理),LLM在正式环境循环中训练以学习更好的符号操作(例如Minervav2),LLM生成更多和越来越好的数据来训练他们自己,以及在适度硬件上廉价运行的模型上提炼更多性能的方法,导致每个FLOP在LLM即服务的经济学中都很重要。语言模型的进步将继续渗透到其他人工智能领域,如计算机视觉、信息检索和强化学习(正如2022年已经发生的那样)。代码+大型语言模型。GitHubCopilot已经推出一年多了,它正在慢慢改变人们编写代码的方式。谷歌在2022年初分享了其3%的代码已经由LLM编写,我们预计代码完成LLM会变得更好,慢慢改变人们编写代码的方式。

强化学习和机器人

可以说,RL在去年从基本面来看并没有取得实质性进展。相反,进步是由越来越复杂的代理的应用构成的,这些代理结合了计算机视觉、文本、语言模型、数据管理……例如CICERO、视频预训练(VPT)、MineDojo或GATO。很大程度上受成功扩大模仿学习或离线RL的推动,只需少量使用古老的在线RL代理-环境-奖励循环。我们期望开发更多的多模态复杂代理,这些代理可以在不完整的信息下采取行动,利用基于大型神经网络和大型预训练数据的模块化组件。

到2023年,我们预计LLM和RL之间的共生关系将进一步发展:在RL环境中训练LLM,并将LLM用作RL代理的一部分(例如,作为政策的规划者,强先验)。

最后,Zero-fewshot和极高的效率将是机器人在现实世界中互动的关键,我们期待ML模块化(只需插入预训练模块的能力)、few-shot能力和因果表示的趋势学习在2023年在这方面提供帮助。但是,如果在传统RL在计算机上解决极端样本效率之前在该领域取得重大突破,我们会感到惊讶。

计算机视觉

扩散模型和文本到图像是2022CV的明星。我们对通过生成图像可以实现什么的看法与我们一年前的想法大不相同。然而,图像理解远未解决。让我们更接近的关键是什么?

因果表征学习(通常与以对象为中心的表示学习相关)是一个不断增长的兴趣领域,它研究元素之间因果关系的学习,超出了它们的统计相关性。阻碍进步的一个关键因素是缺乏强大的标准化基准测试,我们预计2023年将带来CV基准文化的转变,将重点转移到域外泛化、稳健性和效率上,而不是域内图像分类、跟踪、分割……更多的多模式模型将文本、音频和动作与视觉相结合,就像我们在VideoPretrainingTransformerMineDojo中看到的那样。扩散模型接管了生成文本到图像的人工智能,并被用于其他应用,如分子对接和药物设计。生成视频和3D场景是并将成为这些应用程序的下一个自然步骤,但我们预计连贯的长视频生成需要更长的时间。对高频数据(标记/图像)建模比收集大规模低频数据(例如新颖的叙事结构)更难。没有足够的静态数据来通过蛮力解决这个问题,因此需要更好的大型模型优化技术。##信息检索

最后,是我们心中的话题。在过去几年中,神经IR的最大问题是将学术基准的成功——BM25经常被打败——转化为现实世界的设置和广泛采用。发生这种情况的关键:

不需要人工相关注释。这已经是IR在2022年取得最大进展的方面之一,提出了InPars(使用LM生成注释)、LaPraDor(无监督对比学习)等建议。方便。当前的模型可能在基准测试中表现良好,但它们不仅仅有效。我们期望在神经IR模型的整个开发生命周期中提高便利性,从而提高采用率。对话式人工智能。检索增强语言模型和ChatGPT等强大的模型最近重新引起了人们对该领域的兴趣,因为许多人现在看到了真正的可行性。虽然标准化评估仍然具有挑战性,但我们预计人们对该领域的兴趣会增加。除了研究之外,2023年可能是消费者网络搜索领域发生颠覆的一年,并且只是人们对搜索引擎的期望发生了范式转变。微软与OpenAI的合作以及最近ChatGPT的巨大成功让许多人猜测Bing有可能发生180°转变,采用由有效语言模型提供支持的真正复杂的网络规模问答。谷歌现在看到其主要业务受到挑战,今年可能是谷歌需要加强其游戏的混乱之年。

总结

最后,强调一些与研究相关性较低但仍然是人工智能在未来内如何发展的关键的问题:

在硬件方面,Nvidia在AI芯片上的垄断地位仍未动摇,只有奇迹才能在短期内改变这一局面。关于HuggingFace被谷歌收购并与他们的GCP和TPU紧密集成以进行托管的传言可能会增加TPU硬件的使用,但这听起来仍然不太可能。

欧洲人工智能法案——迄今为止最雄心勃勃、最全面的监管工作——继续取得进展,目前的估计表明它最早可能在2023年底生效。我们希望其他大型经济体能够注意到并效仿它发生在GDPR中,以确保在AI使用方面保护个人权利。

当前的大型技术放缓将如何影响人工智能研究——尤其是在短期行业融资方面。虽然我们希望我们在过去12个月中看到的强劲进展将转化为该领域的整体乐观情绪,但不能排除放缓的可能性。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇