博舍

刘嘉:人工智能会超越人脑吗 阅读智能机器人会超越人类吗为什么呢

刘嘉:人工智能会超越人脑吗

人工智能加速发展,有一天会超越人脑吗?近日,清华大学基础科学讲席教授、心理学系主任刘嘉在“人文清华讲坛”上发表了演讲《脑与人工智能:站在进化的节点上》。他指出,虽然目前人工智能无法与人脑相比,但它发展迅猛,类人智能是人工智能的下一个发展目标。

目前,人工智能和人的智能仍有巨大差距,还没有达到类人智能。我坚信,通过脑科学加上人工智能,有一天一定能制造出一个数字人类大脑。——刘嘉

如何认识我们看见的世界

(作者 本报记者)我们无时无刻不在观察着这个世界,但我们看到的未必是真实的世界。到底发生了什么?这取决于我们的视觉系统。

打个比方,前面有一个绿苹果,它会以大约100亿比特/秒的信息量进入我们的视网膜,视网膜通过约100万个神经元连接到视觉皮层,经过加工之后再传到高级皮层,来决定我们看到的东西到底是什么。在这个信息传输的过程中,信息量被衰减到1/1亿,而大脑就像魔术师一样会把这些缺失的信息补上。为什么有的人看见一个绿苹果,会认为那是一个红苹果呢?因为人的眼睛看见的过程,其实是一个大脑重构的过程,而不是简单的复制。

正如康德所言:“没有感觉支撑的知识是空的,没有知识引导的感觉是瞎的。”这句话的上半句说的是,如果我们没有外部的信息输入,我们很难构建自己的心理世界;下半句说的是,如果你不知道你看到的是什么东西,那你就什么也看不见。因为我们从外部世界得到的信息往往是模棱两可的,我们必须加上一点先验知识、加上一点推理、加上一点猜测,需要大脑去重构,把自己的理解加进去,才能真正知道这个世界究竟发生了什么。

与理解相比,更重要的是创造。当我们的大脑没有被外部信息填满,留下一定的空间时,我们就能在这空间里创造出自己想要创造的东西。正如《小王子》的作者圣·埃克苏佩里所言:“一堆岩石在有人对着它思考时就不再是岩石了,它将化身为大教堂。”这就是人类了不起的创造。

在过去的300万年里,人和猴子分开进化,人发生的最大改变不是从四肢着地变成直立行走,也不是褪掉了身上的毛,而是大脑的体积增加了3倍。而且,大脑不是平均增加体积的,体积增加最大的部分在额叶。与我们200万年前的祖先相比,我们的头骨更往前突出了,以容纳更大体积的额叶。

我们为什么要有更强大的额叶?因为它使我们能够构造和想象出不存在的东西。比如,我们的祖先准备去打猎,他不用等看见了猎物才去做出反应,他只需要提前想象狩猎的情景,就可以把一切都安排好。人可以在脑海里预想一遍未来将要发生的场景,构建出一个个可能的未来,这样就能够制定出行动方案,这是人类能够战胜其他比我们更强大、更凶猛的动物,成为万物之灵的关键。这也正好印证了荀子的一句话:“然则人之所以为人者,非特以二足而无毛也,以其有辨也。”“有辨”是指我们能够辨识、能够思考,而这些都来自额叶的功能。

重构心理世界的知识从何而来

那么,我们心理世界的这些预设的知识究竟是从哪里来的?

一部分先验知识来自基因的烙印。我们来到这个世界并不是一张白纸,我们是带着32亿年进化的智慧来到这个世界的,而这些智慧就印刻在我们的基因之中。比如,我们将18位女教授和女博士后的脸进行叠加,做成一个“平均脸”,你会发现这张平均脸充满了睿智和文气。平均脸代表了什么?人脸其实就是我们的基因图谱,我们的基因都写在脸上。所以,当我们把脸叠加之后,我们得到的是18位知识女性平均的基因。平均的基因代表突变很少。基因一旦突变,大概率而言是有害的,所以基因突变越少,说明基因越好,所携带的遗传性疾病的概率就越低,这就是为什么人类会觉得平均脸更好看的原因。

我们的另一部分先验知识则来源于社会基因。人和动物的进化有本质区别,动物是按照基因、按照达尔文的进化论逐步向前发展的,而人既有生物基因的演化,这代表着我们的过去,同时更重要的是,人还有社会基因的进化,它带着我们以与动物不一样的方式前进。

社会基因和生物基因的作用方式非常类似。远古时,人类祖先中有一个人突然因为某种原因把火生起来了,这相当于知识、技能被创造出来,就像基因突变,一个优秀的基因产生了。渐渐地,生火这种技能被传播给了其他人,从一个部落传到其他部落,最终成了人类普遍拥有的技能。接着,人类又学会了制作长矛和其他工具,经过漫长的发展,逐渐构建成我们今天的人类社会。

人类的文明演进可以分成三个时期:第一是原始文明,经历了200多万年,前后变化并不大。第二是农业文明,经历了5000年左右。这期间,野兽被驯服变成了家畜,人类成了文明的种族,懂得了一些天文地理的知识。第三是工业文明,从诞生至今不过近300年的历史。然而,工业文明给人类带来了巨大的变化,以至于我们不得不将它分成四个阶段:第一个阶段是机械化时代(1760年—1840年),出现了蒸汽机等。第二个阶段是电气化时代(1840年—20世纪初),出现了电力等。第三个阶段是自动化时代(1950年—21世纪初)。第四个阶段就是我们现在所处的信息时代。

文明进程出现革命性的进化

信息时代诞生了新的物种——人工智能。

2002年,我的博士论文答辩题目是《面孔识别的认知神经机制》。当时,即使是最先进的机器,用来识别人脸的正确率也很低。2015年,我参加了江苏卫视《最强大脑》的节目策划。我发现,经过十几年的发展,人工智能已经强大到在人脸识别上可以胜过人类的最强大脑。

随后,我们研究建立了一个人工神经网络,训练它去识别性别,即区别对象是男性还是女性。结果,它的正确率能达到100%。而且,它在完成任务的过程中会产生与人类相类似的心理操作,也就是说,人工智能会自发产生和人类一样的心理世界。

那一刻我开始意识到,生物过去的进化都是基于碳基的方式来运行的。但是,当人类创造出人工智能后,一个新的物种产生了,这个新的物种是基于硅基的方式运行的,而这种基于硅基的物种一定会给我们带来一种革命性的变化。以前人类文明的进化都是循序渐进的,当人工智能这个阶段来临时,文明进程可能会出现一个“奇点”,出现一种革命性的进化。

为什么这么说呢?我们来看人类和人工智能的三大区别。

第一是算力。人类的大脑已经进化到极限,而人工智能随着科技的进步,它的算力将不断精进。

第二是存储能力。人类的大脑大约是1.4千克,虽然只占了我们体重的2%—3%,但是消耗了我们身体25%以上的能量,它是一个耗能大户。但人工智能的存储能力是无限的,一块硬盘不够,可以再加一块硬盘。

第三是寿命。人类的寿命是有限的,而人工智能的寿命是无限的。CPU烧了,可以换块CPU,电线断了,再换根电线就行了。

除了无限的存储能力、算力和寿命,人工智能还有着无尽的可能性。

2016年,AlphaGo击败了人类围棋顶尖高手李世石。后来,很多中国围棋高手也和AlphaGo进行了切磋。当时世界上排名第一的围棋选手柯洁说:“我们人类下了2000年围棋,连门都没入。”围棋的空间极其庞大,AlphaGo之所以比人类更加强大,并不是它比人类更加聪明,而是因为它探索了更大的空间,找到了更多下法而已。

如今,不仅在律师、医生、税务师、咨询师等专业领域,在绘画、音乐等艺术领域,都出现了人工智能的身影。“神经网络之父”、深度学习的创始人杰弗里·辛顿在接受采访时说:“将来深度学习可以做任何事情。”

类人智能是人工智能的发展目标

然而,人工智能真的无所不能吗?

心理学家发现,对于一个简单的场景,人和人工智能有完全不同的理解。比如,一个人不慎从柱子上摔落,人工智能会说一个人从柱子上掉下来了,而我们对这个场景的反应是“惊恐和疼痛”。

这个区别体现了人类有一种特别重要的能力,叫共情,即别人遭受了苦难,我能感同身受。如果一个孩子缺乏共情的能力,就会导致自闭行为。所以,人工智能的奠基人之一马文·李·明斯基说:“现在的问题不是一个智能的机器是否拥有情感,而是不拥有情感的机器是否能拥有智能。”在马文·李·明斯基看来,情感是智能的基础,得先有情感,才有智能。

目前,人工智能和人的智能仍有巨大差距,还没有达到类人智能。如何实现类人智能呢?我认为它的切入点是脑科学加上人工智能。

举个例子,线虫是一种非常简单的生物,只有302个神经元,麻省理工学院的研究者模仿了其中的19个神经元,就完成了自动驾驶的一般任务。其实这项研究模仿的并不只是这个简单的生物,而是32亿年进化形成的智慧。从这个角度来讲,人类的大脑目前仍是这个世界上最聪明的大脑,它有860亿个神经元,平均每个神经元有3000个连接,它代表着宇宙中生物智力的最高水平。那么,人工智能的发展为什么不能向人脑学习,以人脑为模板呢?

我的同事们模拟线虫的302个神经元,构建了一个数字线虫,来模仿线虫在水里的游动。这只是一个开始,下一步也许我们会模仿神经元数量达百万级的果蝇,再到更高量级的斑马鱼,甚至到小鼠、大鼠、猕猴,最后模仿人类的860亿个神经元。虽然还存在巨大的鸿沟,但是我坚信,通过脑科学加上人工智能,有一天一定能制造出一个数字人类大脑。

人工智能未来的三种可能

莎士比亚说,“所谓过往,皆为序章”。今天,我们正站在一个进化的节点上。

从32亿年前,一个单细胞逐渐发展成水生动物,然后爬上岸边变成两栖动物,再变成哺乳动物,在约300万年前哺乳动物猿猴又开始进化成人类,这些都是我们的过往。然而,此时此刻,我们的未来是未定的。

人类发明出了人工智能,今天,随着算力的推进,随着技术的进步,人工智能有了超越人类的可能。

未来会怎样?大约有三种可能。第一种,人工智能像科幻电影《星球大战》里的R2-D2一样,是人类忠实的伙伴,成为人类非常好的朋友,帮助人类变得更加强大。第二种,我们构建出了一个数字大脑,它的能力比人类的大脑更强,这时候人机可以合二为一,把人的意识、记忆、情感上传到数字大脑中,人就能获得“永生”。未来学家库兹韦尔在《奇点来临》这本书中写道,大约在2045年,这一刻就会到来。第三种,就像电影《终结者》里所展示的,人类文明彻底消失,进入机器文明时代。

未来到底会怎么样,最终取决于今天我们站在这个时间节点上做了些什么。

物理学和心理学对于什么是值得做的事情有不同的定义。物理学更在意空间,在物理学看来,如果放在一个远远超出地球大小的空间尺度下来看,那些有意义的事情,才是值得做的事情。而心理学更关注的是时间,我们思考的问题是:人间的一切问题,如果放在一个远远超出人的寿命的时间尺度下来看,它们还有没有意义?

1905年,孙中山和严复在伦敦有过一次会面,他们当时讨论的议题是半殖民地半封建的中国究竟如何改变。严复提出要慢慢教化民众,要稳步向前。孙中山对于严复的方法不太认同,他说:“俟河之清,人寿几何?君为思想家,鄙人乃执行家也。”后来,孙中山回到国内,开启了轰轰烈烈的辛亥革命。

对于现在的我们来说,解决未来的问题,就要从现在做起,行胜于言,以有限的生命行超越生命之事,这就是我们这一代人的使命。

编辑:李华山

2022年11月28日07:03:32

读《人工智能狂潮——机器人会超越人类吗》笔记

松尾丰,作者简介:东京大学院工学系研究科副教授,1997年毕业于东京大学工学部电子信息工学科。2002年完成了该大学的博士课程,成为工程博士。同年任产业技术综合研究所研究员。2005年起任斯坦福大学客座研究员。2007起至今任工学系研究科副教授,兼任新加坡国立大学客座副教授。专业领域为人工智能、网络信息挖掘、大数据分析。日本人工智能专家之一,曾获人工智能学会颁发“论文奖”(2002年)、“创立20周年纪念事业奖”(2006年)、“现场创新奖”(2011年)、“功劳奖”(2013年)等奖项。先后在人工智能学会任多职;2012年起任编辑委员长、理事;2014年任伦理委员长。编著有《大智能时代套装》(机器人的未来、机器人新时代、机器人革命、数字法则、大智能时代)。

书中对人工智能的三次人工智能的浪潮进行阐述,对三次人工智能浪潮的主要技术进行了介绍,还有各大科技公司面对人工智能浪潮采取的应对措施。当第三次人工智能浪潮来临时,我们的生活会变成什么样,如果都想人工智能专家想像中的那样,90%的事情都可以交给带有人工智能机器去完成,那我们人类剩余出来的时间又该做什么?以及针对人工智能是否会有情感,带有情感的人工智能是否意味着人类的灭亡,作者都进行了详细的分析。

首先我们要摆平我们的心态:人工智能并未实现,但是没理由不实现!探索人类智能的原理,并通过工程学的方法对其进行实现和利用,这样的人工智能还没有实现。人类对于物理世界的研究从微观的原子到浩瀚的宇宙都有的较为本质上的认识,大型的强子碰撞机,宇宙飞船都是对物理世界认识的产物。然而,人类的大脑能力深奥无比、遥不可及,科学家对其探索的脚步从未停止,然而利用计算机对其进行的模型也未能实现。

人工智能是什么?一下是专家给出的定义;

1.人工智能是“采用人工方法制作的、具有智能的实体,或者是以创造智能为目的的、对智能本身进项研究的领域”。

2.把类似我们很自然地接触宠物或者其他人的那种充满感情和幽默的相互作用,在与物理定律无关或者相逆的条件下,用人工方法制造出来的系统,定义为“人工智能”,这种系统采用的不是分析性的理解方法,而是通过对话等交流方式进行的交谈性理解。这就是人工智能。

3.以模仿、支持、超越人类的智能行为为目的的建构性(通过制作来进行理解)系统。与建构性对应的词是分析性,举个例子,从事体育运动的是运动员从事的是建构性理解,而体育评论家则是分析性理解。

4.采用人工方法制造的类人智能,以及其制造技术,类人指的是具有“发现和察觉功能”的计算机,即能够从数据中生成特征量。

对于我们非人工智能研究着而言,人工智能分为四个级别:

1.把单纯的控制程序称作“人工智能”,比如:空调,全自动洗衣机等;

2.传统人工智能(引入了推理及搜索,或者知识库),比如可以下棋的程序,智力问题求解等;

3.引入机器学习的人工智能,机器学习以样本数据为基础、对规则和知识的自学习;

·4.引入深度学习的人工智能,能够对机器学习时的数据表示所用变量(特征量)本身进行学习的人工智能。

强人工智能:具备正确的输入与输出、被施与合理程序化的计算机,与拥有心智的人是没有任何区别的,即它也是有心智的。

弱人工智能:计算机没有必要拥有心智,只要能够通过其有限的智能解决一些智力问题即可。

第一次人工智能浪潮:

时间:20世纪50年代------20世纪60年代

概括:第一次人工智能浪潮是推理和搜索的时代

代表事件:

1.用搜索树搜索迷宫

方法:搜索树

宽度优先搜索,能够找到距离目标最短的路径,但是需要的存储量大;

深度优先搜索,需要的存储量小,但是搜索时间不定,可能会很小,也可能会很大;

2.梵塔问题

方法:搜索树

3.机器人行动过程规划

方法:搜索树

4.博弈(棋类游戏)

棋类游戏的组合是非常大的,对目前的计算机来说,如果采用直接搜索的方法无疑是很难满足需求的。那现在的计算机可以战胜人类的秘诀又是在哪里呢?

1.能够发现更好的特征量

2.“蒙特卡洛法”改变评估机制

 

第二次人工智能浪潮:

时间:20世纪80年代------1995年左右

概括:第一次人工智能浪潮是知识(“专家系统”)的时代

“专家系统”本身是一种程序,通过引入某个专业领域的知识,在经过推理,计算机便能够像该领域的专家一样出色地开展工作。

 什么是“知识表示”?

对于我们每个人都熟知的知识,怎样表达才能让计算机易于处理?在这方面的基础性研究,被称为“知识表示”研究。

本体研究?

“本体“相当于撰写知识时的规格说明书。本体研究分为“重量级本体”和“轻量级本体”两个派别,重量级本体的支持者认为研究者需要认真考虑该怎么描述知识,并研究为此应该怎么做;轻量级本体的支持者认为,把数据输进计算机里面,并让计算机自己寻找概念之间的相关性。轻量级本体的一个极致例子就是由IBM开发的“沃森”。

作者在此提到了“机器翻译”、“框架问题”和“符号接地问题”三个问题。利用导入知识的人工智能进行机器翻译,但是导入知识的机器翻译尽管可以较好地理解语言的语法,但是,精确地从语法分析往往会产生语义上的歧义,而语义的理解正是机器翻译的难点所在。“框架问题”,就是在执行某项任务时“仅仅提取出与它相关的知识并对其加以运用”,这对人类来讲很简单,但是对机器来说非常困难。“符号问题”,是否能将符号(词句、语言)与它表示的意义连接起来的问题,计算机以为不懂得符号的意义,所以不能把符号与其所表示的意义结合起来。

 

第三次人工智能浪潮:

时间:2000年以后至今

概括:第一次人工智能浪潮是机器学习与特征表示学习的时代

什么是机器学习?机器学习指人工智能程序自身进行自身学习的机理。那怎样才算是学到东西呢?学习的主要工作是进行“区分”,对某一事物进行判断和识别,就可以理解它,还能根据对该事物的判断而采取相应的行动。机器学习分为“有监督学习”和“无监督学习”,有监督学习,指的是事先需要准备好输入与正确输出想配套的训练数据,让计算机进行学习,以便当它被输入某个数据时能够得到正确的输出;无监督学习,指仅提供输入用数据、需要计算机自己找出数据内在结构的场合,目的是让计算机从数据中抽取出其中所包含的模式及规则。

常用的五种“分类”方法:

1.最近邻分类算法

2.朴素贝叶斯算法

3.决策树

4.支持向量机

5.人工神经网络

 机器学习的难点(弱点)是特征工程,即特征量的设计。计算机并不能做出选取特征量的判断。提高机器学习的精确度的关键在于“输入何种特征量”,然而这只有靠人用大脑思维来解决。到目前为止人工智能之所以尚未实现,就是因为人工智能在“从这个世界里面应该关注何种特征并提取信息”这点上,还必须借助人的力量。如果计算机能够从被导入的数据里面找出应该关注的特征,并得到表示这种特征程度的特征量,那么机器学习的“特征量设计”问题也将被解决。深度学习,恰好可以解决这个问题。

深度学习

深度学习以数据为基础,由计算机自动生成特征量,它不需要由人来设计特征量,而是由计算机自动获取高层特征量。

自动编码器:输入与输出相同

深度学习与之前的机器学习相比有两个较大的不同点:一是需要一层一层地逐层学习;二是深度学习使用一种被称为“自动编码器”的“信息压缩器”。自动编码器所执行的处理与众不同,它将“输出”和“输入”做成相同的数据,与“主成分分析”具有同样的工作原理,但是自动编码可以进行“深层”即多层次操作,可以提取出主成分分析无法提取出的高层特征量。下图为深度学习结构,

从数据里面找出并生成概念,本身是不需要“教师数据”的无监督学习,深度学习在进行无监督学习的时候采用的是有监督学习的方法。自动编码器,在本来应该有教师提供正解的地方输入原来的数据,以此对输入数据本身进行预测,再生成各种各样的特征量,这就是通过有监督学习的方式进行无监督学习。Google的“猫脸识别”研究,处理1000万张图像,使用的神经元之间的链接超过100亿个的巨型神经网络,用1000台计算机(16000个处理器)连续运行3天,就是通过“采用有监督的学习方法实现无监督学习”生成特征量,即提取出“猫脸”的概念,此时,再赋予“猫脸”的名称,即完成了符号(名称和概念的结合)接地的问题,在最后区分的时候采用有监督的学习的分类方法。

深度学习的关键------“鲁棒性”

实际上,提取特征量或者概念需要相当长时间的“打造和提炼”过程,只有这样,才能使所获取的特征量或者概念具有鲁棒性(“健壮性”)。如何做到深度神经网络的“鲁棒性”呢?其实是需要在输入型号里面加入“噪声”,通过反复加入噪声后获取的概念,就不会因为一点风吹草动就摇摆不定。(听起来有些矛盾,但又何尝不是这样呢)。鲁邦性的提高与计算机的处理性能有较大的关系。

增加鲁棒性的方法

1.加入噪声制作“略微不同的过去”的做法;

2.dropout方法,让神经网络的一部分神经元停止工作,即让隐层50%的神经元出现任意性缺损。对特征项目进行最优化处理,以便让某个特征量能够覆盖其他特征量,这样,特征表示就不会出现过度依赖某一个特征量的情况。过度依赖仅有的某一特征量是非常危险的,让一部分特征量不能使用,对于发现恰当的特征表示是很有帮助的。

 除此之外,还有很多专家在研究各种各样的针对神经网络鲁棒性的方法,因为如果不使劲“折磨”它,就无法获取存在于数据背后的“本质特征量”。

 

深度学习之后的技术发展

1.能够对图像特征进行抽象化处理的人工智能,能够实现多模态抽象化的人工智能,图像处理相当于人类的视觉,还有听觉、触觉等信息待处理;

2.能够对行动与结果进行抽象化的人工智能,目前人工智能还是停留在对外界事物进行观察的地步,如何与外界进行交互也是未来的研究方向;

3.能够通过行动获取特征量的人工智能,通过与外界的交互作用获取新的特征量,类似于,人们根据多次的实验突然间意识到的某个特征量或者窍门,下次遇到同样的事情就会想到这个窍门;

4.能够进行语言理解和自动翻译的人工智能,解决符号落地问题;

5.能够获取知识的人工智能,使人工智能具有想像力;

 

讨论了人工智能的技术问题以及未来的发展,就得说说人工智能的社会性问题了。

人工智能是否具有本能?

人工智能是否具有创造力?

人工智能的社会性意义?人类具有群居性的动物,那人工之能呢?

奇点会发生吗?奇点,指的是人工智能能够自动地制造出超越自身能力的人工智能的那个时点。

如果人工智能妄想征服分类,有哪些方式?

对于这些问题作者也进行了论述,总结一句话,人工智能必须造福于人类。

 

人工智能在对人类生产生活的影响:

1.广告、图像诊断、网络企业;

2.个人机器人、安全防范、大数据运用企业;

3.汽车制造、交通、物流、农业;

4.家政、医疗护理、接待及呼叫中心;

5.翻译及全球化;

6.教学、秘书、白领工作辅助;

 

AI会超越人类吗——生而为“人”,才是AI最终的宿命

01突破边界:人性是AI最好的答案

前两年5G基站开始铺设的时候,5G也成了邻居们的话题。倒不是说大爷大妈们对科技多有兴趣,而是他们关心5G基站这东西会不会有辐射,对人有没有影响。

彼时我曾想,科技社会发展进步这么快,对于尚未适应的人们来说,也许前期科普教育与技术落地的进度也同样重要。

如果把这个问题放到AI领域,那么事情就变得更加严肃:毕竟AI一旦成熟,对人们的影响远比5G要大得多。AI作为一项可能会颠覆人类历史的技术,社会化的认知可能比技术发展本身更为重要。

那么问题来了:

当下的人们该如何去认知人工智能?人工智能的发展还要解决哪些问题?未来人工智能究竟会走向何方?会不会颠覆人类自己?我们人类究竟该怎样去发展人工智能?对于大众而言,这些问题似乎很难有答案。

尝试去为这些问题做出系统性的解答,是《边界》这本书的一个主线。

首先是对AI的定义。

1950年,达特茅斯会议上正式提出了人工智能的概念,但长久以来并没有统一的共识。在广泛的对人工智能的定义上,人工智能并不一定是“人形”,而是“能够像人一样分析决策,甚至具有感情”的“图灵机”。

到了现代,人工智能的内涵仍然在不断发展。

对于人工智能,《边界》这本书中提到这样一个观点:人工智能是定量和变量的混合体。

人工是定量,而智能是变量。这个变量带来两条发展的路线,一个是“类人智能”,另一个是非类人智能。也就是说,不管是不是人型,其实都是AI,只不过,一种是真实存在的AI,能与你聊天、互动,能帮做家务,另一种则是“工具人”AI,默默的为你解决问题,为你打工。

两种路线背后,透出的是人们对AI演化发展的两种思考。

一方面,人们希望AI在思维、决策以及意识等方面与人类相似,拥有与人相同的情感观、世界观,并能够为人类提供各种帮助。

目前来看,AI语音识别、知识图谱已经展现出这样的能力,但离人们理想中的应用还有很长距离。

另一方面,AI早已在体能、技能层面大大超过人类的非类人智能(算法),已经在部分领域展现出人类遥不可及的能力,人们显然希望能够更好地用这种能力提高社会生产力。

大众开始认识到算法这种“超人”的能力,其实很早就有,比如大学设立的“自动化”学科。自动化能够帮助人类“简单”地使用很多超级工具,无限放大人类自身的力量和技巧,比如飞机的自动驾驶系统、高精数控机床设备等等,它们将人类社会带入到了全新的高度。

2016年,谷歌AlphaGo大比分战胜李世石、柯洁。

人类下围棋下了有千百年,AI才学习了几年?人类吃过的盐比AI用过的电都要多!但这恰恰说明无论是类人AI还是非类人AI,它们的潜能是十分惊人的,甚至是颠覆性的。

这就延伸出来另一个重要的问题:相比AI的定义,对人类来说,AI的立场究竟是什么?

书中另一个非常有意思的观点或许可以从侧面解答:AI不仅是创新,也同样是传承。

技术的创新的另一面,往往也是文化内核中的人性的传承。

书中提到一个很有意思的案例,中国古代“符合”的概念,皇帝调兵遣将,要先验虎符,虎符这个物件儿,承载着古代可信验证的理念内核。

在现代,可信验证的内核没有变,只不过,古时的虎符变成了如今的AI人脸识别。

再比如,中国古典文化中非常注重归纳总结,比如中医,《黄帝内经》《本草纲目》都是归纳总结法下,古代人民智慧的结晶。这与人工智能的发展相契合,基于深度学习的人工智能,也是从数据中发现规律,并实现应用……

也就说,解决问题的工具变了,但目的没变,都是为了满足人的需求,这也是技术中最底层的人性底色。

从虎符到AI,时代虽然变了,但其中的文化内核依然以电子的形式在传承。

这样的传承也似乎印证书中提出的“AI发展的存在路径依赖”的看法。

为什么中美两国AI行业发展那么快?答案其实很简单,美国有先进的半导体、芯片产业,这是AI发展的物质基础,中国有更多的应用场景,这同样是AI演化的必要条件。

我认为,AI对人类,也同样存在“路径依赖”。

赋予技术真实的人性,一直是人类谱写AI“狂想曲”最真挚、朴实的精神内核。

从《列子·汤问》中“偃师造人”的奇思妙想,到1921年《罗素姆万能机器人》智能人造人概念的诞生,再到电影《机械姬》《人工智能》中的细腻情感,充满人性光辉的AI始终是AI科幻的主题之一。

也就是说,我们或许不必过度担心机器人三原则带来的疑问,也不必过度担心AI最终会超越人类,因为人性就是AI最好的答案,生而为“人”,才是AI最终的宿命。

02拓展边界:AI的目的在于驱动“第四次工业革命”

如果说谈AI与人性还是有些遥远,那么,我们再来唠唠离我们比较近的AI,这也是一些对AI有些兴趣,但了解不深的朋友们所关心的问题。

比如,当下的AI技术究竟有什么用?

你能接触到的,人脸识别、AI抠图,AI摄影等等,但这都不算是真正的答案。

在真正回答这个问题之前,先普及一个概念:技术的本质其实是工具,它的最大价值,就是降低了生产力的成本。

比如说,电灯发明以前,人们晚上获得照明的成本是很高的,可能得去买煤油、掏马粪、买蜡烛。电力的普及以及电灯的发明,本质上降低了人们获取照明的成本。反过来讲,如果把“照明”看作一种商品,那么电灯的发明其实提高了“照明”的生产。

从刀耕火种,再到青铜时代再到工业时代,人类文明进步的一个主线是单位生产力的成本更低了。

这种成本的降低,得益于GPT(通用目的技术)的进步和驱动,比如蒸汽机、电力、半导体、计算机。

书中认为,在计算机之后,AI是一种新的GPT。

理由有两个:

第一,像电力、半导体、计算机那样,AI技术下能够诞生新的产业。

电力行业出现以后,不仅带动了制造业的电气化,也同样促进了消费经济的发展,出现了夜经济。因此,一个国家的用电量也往往与经济增长呈正相关关系。

半导体出现以后,诞生了计算机、互联网,后来又诞生了智能手机,最终有了如今繁荣的电商产业、物流产业以及互联网产业。

AI技术出现后诞生了什么——智能经济。

AI是智能经济的基础设施,AI技术也能推动产业形成新的商业模式。

比如,在出行领域,智慧交通产业开始飞速发展,自动驾驶开始实际应用到汽车上;在金融领域,AI人脸识别加速了身份验证的流程,提高了验证效率;在工业领域,AI开始参与到生产管理上,AI质检、无人机作业,都降低了工业生产的风险,提高了效率;在医疗领域,AI开始应用到临床影像诊断……

第二,在诞生新产业的过程中,要有新的创新方法论。

比如,AI对产业链的重构,正在重塑产业端的流通生产的方式。

我们以汽车产业为例,传统汽车整车走完整个开发流程需要3年,而智能汽车的迭代时间会更短,比如在底盘系统开发中,AI知识图谱与算法结合,引入到零件设计中则能提高设计工作效率,进而缩短开发周期,提高产品迭代节奏。

再比如,流通端,AI与物流的融合后诞生了智能仓储系统,汽车零部件物流、整车物流配送效率都进一步提高了。

这些AI引发的行业变化,都需要新的生态架构做基础,也需要新规则制度推动,也就是说,AI诞生的新产业不仅是产生了新技术,也产生了新的创新方法。

而这些新的技术、新的体系、新的创新方法,都有可能成为“第四次工业革命”的关键要素。

因此,可以断言的是,AI作为一种GPT技术,它的目的在驱动“第四次工业革命”。

不过,从落地端来看,它距离真正的“工业革命”,也确实还有很长的路要走。

理性看待AI产业的发展,也是《边界》这本书透露出的一个重要观点。必须要认识到,AI真正的大规模落地,渗透到千行百业,还需解决一系列的问题。

1:基础设施的问题。

AI是程序,需要运行的物理承载,因此基础设施的高度,决定着AI实用价值的最终高度。这也是商汤的产业实践,希望通过构建大装置去解决的问题。

2:算法的通用化、以及泛化问题。

AI赋能千行百业,首先要解决的问题就是适应性问题。越通用的算法,适应性就越强,落地行业越多,算法的效果也就更好,更容易实现技术落地到商业化场景拓展,再到算法优化的正循环。

3:AI技术的量产应用问题。

不得不承认,AI技术的开发成本其实是很高的,这与人才的规模,市场需求程度,以及实际的商业化空间等因素相关。

解决AI技术量产的关键,就在于解决长尾算法生产问题,最理想的方法是“用AI生产AI”,如果能实现这一点,那么就能通过规模化的AI算法模型生产,进一步降低AI的成本。

纵使AI行业需要解决的问题很多,也很难,但AI仍然是目前最有希望改变人类社会的技术之一。

人类历史的经验是,当一项底层技术的成本有效降低,生产力的革命往往就会发生。

第二次工业革命的本质,其实就是内热燃气的高效率使得单位生产力成本降低了,再比如,电力的广发应用,促使信息化、电气化降低了单位生产力的成本。这引发第三次工业革命。

脑洞一下,如果有一天算法生产的成本能够被有效降低,AI技术应用变得更廉价,那么我们为什么没理由相信,下一次工业革命是由AI带来的呢?

03重塑边界:人类认知、知识、思维扩容

当然,变革不会一夜发生。

这需要人类认知、知识以及思维的不断扩容,然后由量变引发质变。事实上,人工智能技术发展的过程,也是一个人类认知体系不断扩容的过程。

人工智能技术的发展,需要跨行业跨学科的耦合创新,一方面是要加速技术、人才的双向流通,另一方面,要充分发挥“产学研”体系的创造性。

AI知识的容量绝对值越大,AI技术转化生产力效率也就越高。

科技发展的一条规律是,重大问题的突破以及创新,往往都是在多个领域交叉发展创新的过程中诞生的。而AI领域,也是仿生、数学、编程、逻辑等多学科交叉领域。

这意味着一件事,一个成熟的AI必然是一个超大的知识容量的合集。为了完成这个合集,也需要人类认知、知识不断扩容。在这个过程中,科技的边界被打破,伦理、逻辑甚至哲学都将融入其中。因此,AI技术发展的过程,也是一个不断重塑边界的过程。

中国工程院院士陈杰认为,在这个过程中,AI需要面临四大挑战。

陈院士用一个生动的例子,来说明当下人工智能与生物智能的差距:

当乌鸦想吃核桃时会把核桃放在马路上,让车轮碾碎后吃到核桃,但马路有汽车太危险,于是它就通过学习把核桃放到斑马线上,汽车遇到红灯,乌鸦就安全地吃到了果实。

目前,机器难以实现这样的智能,如何借助生物行为研究复杂环境下的机器智能,仍然是一个巨大的挑战。

中国科学院院士毛军发认为,挑战的确存在,但人工智能的赋能空间依旧很广。

比如,在有数据、有规则,边界比较清晰明确的场景中,人类有一天会被打败,围棋大战就是一个很好的例子。

再比如,2018年佳士得拍卖行以432500美元卖出一幅人物肖像画《爱德蒙·贝拉米肖像》,而这幅肖像画由AI所作。

如果说,AI在逻辑领域打败人类,尚可接受,那么,在更为感性以及评价更为主观的艺术领域,AI与人类并驾齐驱则冲击了人们的固有观念:艺术的本质究竟是感性创作还是基于数据的理性创造?

再进一步来看,AI的边界不仅包括技术边界,也同样包括一个认知边界的问题。

比如,大众何时能真正接受?技术的发展远比大多数人想的快得多,如何被接受?比如自动驾驶带来的交通安全问题,再比如AI伴侣能否合法意义上成为真正的伴侣?

这些问题可能需要整个社会来回答。

这说明一点,当AI技术知识扩容,边界拓展之后,AI技术也同样会进一步影响人的思维方式。一些传统的固有观念和思维可能会被颠覆。

由此来看,认知、知识扩容之后,人类真正接受AI,可能还需要一个思维扩容的过程,而这个过程,可能比AI成熟所需要的时间更加漫长。

04未来边界:AI时代未来已来

未来AI如何发展,不仅取决于技术,也同样取决于社会大众的认知。毕竟,“科学无边界”不仅是科学家的问题,是整个人类社会需要思考和回答的问题。

“很多技术在发展过程中的一个重要任务就是让社会认识这项技术的特点以及风险,这样人们就能做出更好,更理性的选择”。

《边界》一书最后对话中实录中,清华大学苏世民书院院长薛澜教说道。

1950年的图灵之问,把AI技术与人类的从哲学层面联系起来,数十年之后,真正意义上能够通过图灵测试的AI仍未诞生。

面对这个经典的AI之问,商汤科技CEO徐立在书中提出了另一个思路,如果把“机器会思考吗”转变为“机器会猜想吗”?

这些年人工智能的发展显然已经给出了肯定的答案。

但我相信,机器会猜想只是一个起点,是AI迈向未来的一大步也同样是一小步,AI时代的新生与变化,一定比人们预测的更加精彩。

时代的大幕已经拉开,接下来,AI,能够怎样改造这个我们所熟知的世界,我们不得而知。

不过,影响世界的前提是认识世界,对于这个渴求科技创新的世界来说,改变总是一件好事。

专栏作家

刘志刚,微信公众号:互联网江湖(ID:VIPIT1)。人人都是产品经理专栏作家。资深媒体人,TMT领域深度报道。

题图来自pexels,基于CC0协议。返回搜狐,查看更多

智能机器会超越人类吗阅读附答案

智能机器会超越人类吗?

①智能机器真的有可能超越人类吗?2016年3月15曰,围棋“人机大战”第五场,“阿尔法围棋”以四比一的比分击败世界顶尖围棋高手九段李世石,这更激发了人们对人工智能的关注。

②的确,如果按照固定的程序进行预算,人脑的确赶不上人工智能。无论是国际象棋还是围棋,都是可以完全程序化的一种运动。如果我们问“阿尔法”一个简单的问题:“你贏了比寨开心吗?”它就不能像人一样笑着回答,因为它并不具备人类的情感,也不具备人脑的灵活性,不能解答任何程序设计范围之外的问题。

③现有机器和人最大的区别是什么?是人有智能,而现有机器并不具备真正的智能。严格的讲,智能机器只能执行特定的指令,而人则是处理所有感受到的信息。显然,执行指令与处理信息有着本质的不同。

④随着人工智能的不断发展,研究智能机器的专家也要懂得神经科学,以便模拟人脑的神经网络构造来達造仿生智能机器。当然,要達造这样一台仿生机器人的困难程度是难以想象的,因为人脑是世界上已知的最复杂,最神奇的“自动化机器”。人脑拥有1000亿个神经细胞,而每一个神经细胞都有数千个突触和其他神经细胞相连,神经细胞通过这些突触相互交流,一个三四岁的孩子大约有1000万亿个突触,到了成年大概稳定在100万亿个。

⑤也就是说,仿生机器人需要拥有1000万亿个可以独立运算的处理器,并具有100万亿个信息中转器。无论是制造原件还是整合这些元件,都是一个似乎难以完成的任务。更为可怕的是这些处理器及信息中转机_要制成不同的类型。要完成仿生机器人的制造,需要最先进的纳米技术,才能把每个处理器做的像神经细胞那么小,它还需要最先进的超级计算机,才能完成对仿生机器人各个器件排列顺序的编程。

⑥因为世界上并不缺人,缺的是比人类某些性能更先进的机器。因此,科学家认为,未来的仿生机器人并非是要完全模仿人类的所有功能,而是模仿某项功能,这样仅仅需要模仿某个脑区就可以了,这就大大降低了制造难度,并可以强化某些功能,制造一些具有“特异功能”的电脑。

(选文有改动)

16.阅读全文,说说智能机器人与人有哪些区别。(3分)

17.文章第四段加点词能否删去?为什么?

18.文章第五段画线句子运用了什么说明方法?有什么作用?

19.在关注了“人机大战”李世石输给“阿尔法围棋”的新闻后,同学们很是担忧:人类智慧会被人工智能彻底打败吗?请你结合文章相关内容,劝勉同学们要对智能机器的发展保持乐观的态度。

答案:

16.①智能机器并不具备人类的情感,也不具备人脑的灵活性。

②智能机器并不具备真正的智能,它只能执行特定的指令。(或答:智能机器人只能执行特定的指令,而人则是处理所有感受到的信息。)

③智能机器只是模仿人类的某项功能。

17.不能删去,因为“最”表示程度,起限制作用,突出强调了人脑复杂、神奇的程度之深,进而说明建造这样一台仿生机器人的困难之大。删去后,就不能表达出这层意思,两个“最”体现了说明文语言的准确性、严密性。

18.列数字。通过列举制造一个仿生机器人所需的处理器、信息中转器的具体数字,准

确、具体地说明了制造仿生机器人的难度之大。

19.示例:同学们,人工智能是人赋予的,所以不必恐慌和害怕。同时科学家也会意识到安全性的问题,给它装上类似“阀门”的东西,控制它去造福于人类,而不是危害人类。所以我们应该为人工智能的进步高兴,它并不是洪水猛兽。

【智能机器会超越人类吗?阅读附答案】相关文章:

★《中国的桃花文化》阅读附答案

★《飞蛾变身半机械飞行器》阅读附答案

★《为什么洗澡时你会灵感乍现》阅读附答案

★《黑蒜“传说”》阅读附答案

★《词典里竟有虚构的词?》阅读附答案

★《死亡之湖——罗布泊》阅读附答案

★《洁净之莲》阅读附答案

★“分水木刻”阅读及答案

★《莺》阅读附答案

★佛山武术威名震四方中考阅读答案

《智能机器会超越人类吗?阅读附答案》将Word文档下载到电脑上,方便打印和查看本文推荐度:点击下载文档

文档为doc格式

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇