人工智能课程教学大纲 人工智能启发式搜索算法有哪些
人工智能课程教学大纲
人工智能课程教学大纲 【课程编码】JSZX0300 【适用专业】 计算机科学与技术 【课 时】 72(理论)+28(实验) 【学 分】 3 【课程性质、目标和要求】 人工智能是计算机科学的重要分支,是计算机科学与技术专业本科生的专业限选课之一。本课程介绍如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的"智能",使得计算机更好得为人类服务. 作为本科生一个学期的课程,重点掌握人工智能的基础知识和基本技能,以及人工智能的一般应用.完成如下教学目标: (1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域. (2) 较详细地论述知识表示的各种主要方法。重点掌握状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。 (3) 掌握盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、 等代价搜索、启发式搜索、有序搜索、A*算法等.了解博弈树搜索、遗传算法和模拟退火算法的基本方法. (4) 掌握消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念. (5) 概括性地介绍人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等. (6)简介人工智能程序设计的语言和工具. (7) 掌握Visual Prolog编程环境,会使用Prolog语言编写简单的智能程序。 要求学生已修过《数据结构》、《离散数据》和《编译原理》。 【教学时间安排】 本课程计 3 学分,理论课时72 ,实验课时28。 学时分配如下表所示:
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。