人工智能的若干伦理问题思考
国内方面相关研究起步较晚,研究不如国外系统与全面。但是近些年来,相关学者也将重点放在人工智能的伦理方面。相关文献有《机器人技术的伦理边界》[7]、《人权:机器人能够获得吗?》[8]、《我们要给机器人以“人权”吗?》[9]、《给机器人做规矩了,要赶紧了?》[10]、《人工智能与法律问题初探》[11]等等。值得一提的是,从以上文献可以看出,我国学者已经从单纯的技术伦理问题转向人机交互关系中的伦理研究,这无疑是很大的进步。
不过,遗憾的是,无论是在国内还是国外,现在仍然很少有成型的法律法规来对人工智能技术与产品进行约束,随着人们将注意力转向该方向,相信在不远的将来,有关政府部门会出台一套通用的人工智能伦理规范条例,来为整个行业作出表范。
三、人工智能是否会取代人类
有关人工智能与人的关系,很多人进行过质疑与讨论。1967年,《机器的神话》[12]作者就对机器工作提出了强烈的反对意见,认为机器的诞生使得人类丧失个性,从而使社会变得机械化。而近些年来,奇点理论的提出与宣传[13],更加使得人们担忧机器是否将会全面替代人类,该理论的核心思想即认为机器的智能很快就将超过人类。
笔者认为,人工智能不断进步,这是个不争的事实。机器的感觉,运动、计算机能都将会远远超过人类。这是机器的强项。但是不会从根本上冲击人类的岗位与职业。这是出于以下几方面的考虑:首先机器有自己的优势,人类也有自己的优势,且这个优势是机器在短期无法比拟与模仿的。人类具有思维能力,能够从小数据中迅速提炼归纳出规律,并且可以在资源有限的情况下进行非理性决策。人类拥有直觉能够将无关的事物相关化。人类还具有与机器不尽相同的内部处理方式,一些在人类看来轻而易举的事情,可能对于机器而言就要耗费巨大的资源。2012年,google训练机器从一千万张的图片自发的识别出猫。2016年,谷歌大脑团队训练机器,根据物体的材质不同,来自动调整抓握的力量。这对于一个小孩子来说,是很简单的任务,但在人工智能领域,确正好相反。也许正如莫桑维克悖论所阐述的,高级推理所需要的计算量不大,反倒是低级的感觉运动技能需要庞大的计算资源。
其次,目前人类和机器还没有达到同步对称的交互,仍然存在着交互的时间差。目前为止,仍然是人类占据主动,而且对机器产生不可逆的优势。皮埃罗·斯加鲁菲在《智能的本质》[14]一书中曾经提出:人们在杂乱无章中的大自然中建立规则和秩序,因为这样的环境中人类更容易生存和繁衍不息。而环境的结构化程度越高,制造在其中的机器就越容易,相反,环境的结构化程度越低,机器取代的可能性越小。由此可见,机器的产生与发展是建立在人们对其环境的了解与改造上的。反过来,机器的发展进一步促进了人们的改造与认知活动。这就如天平的两端,单纯的去掉任何一方都会导致天平的失衡。如果没有人类的指引与改造作用,机器只能停留在低端的机械重复工作层次。而机器在一个较低端层次工作的同时也会使得人们不断追求更高层次的结构化,从而使得机器向更高层次迈进。这就像一个迭代上升的过程,人-机器-人-机器,以此循环,人类在这段过程中总是处于领先的地位。所以机器可以取代人类的工作,而不是人类。
再次,人工智能的高速发展同时带来了机遇。诚然,技术的发展会带来一些负面影响,但是如果从全局来看,是利大于弊的。新技术的发展带来的机遇就是全方位的。乘法效应就是说明的这个道理:在高科技领域每增加一份工作,相应的在其它行业增加至少4份工作,相应的,传统制造业为1:1.4[14].我们应该看到,如今伴随着人工智能业的飞速发展,相关企业如雨后春笋般诞生,整体拉动了相关产业(服务业、金融业)的发展,带来了更多的就业机会。
而且,任何一项技术的发展都不是一蹴而的,而是循序渐进的过程。无论是最早期的类人猿的工具制造、还是后来的电力发展、再到现在的互联网时代,技术的发展与运用是需要时间来保证的。现在社会上有些人担心人工智能的发展会立即冲击自己的工作,实则是有些“杞人忧天”的意味。以史可以明鉴,历史上大的技术突破并没有对人类的工作产生毁灭性的打击。蒸汽机的诞生替代了传统的骡马、印刷机的诞生取代了传统的抄写员、农业自动化设施的产生替代了很多农民的工作,但这都没有致使大量的工人流离失所,相反,人们找到了原本属于人类的工作。新兴技术创造的工作机会要高于所替代的工作机会。所以,我们不必过分担心机器取代人类工作的问题。
四、谁来为事故负责
2016年7月,特斯拉无人驾驶汽车发生重大事故,造成了一名司机当场死亡。这件事故很快成为了新闻媒体的焦点。人们不仅仅关注这件事情本身所带来的影响,更加担心机器作为行为执行主体,发生事故后责任的承担机制。究竟是应该惩罚那些做出实际行为的机器(并不知道自己在做什么),还是那些设计或下达命令的人,或者两者兼而有之。如果机器应当受罚,那究竟如何处置呢?是应当像西部世界中将所有记忆全部清空,还是直接销毁呢?目前还没有相关法律对其进行规范与制约。
随着智能产品的逐渐普及,我们对它们的依赖也越来越深。在人机环境交互中,我们对其容忍度也逐渐增加。于是,当系统出现一些小错误时,我们往往将其归因于外界因素,无视这些微小错误的积累,我们总是希望其能自动修复,并恢复到正常的工作状态。遗憾的是,机器黑箱状态并没有呈现出其自身的工作状态,从而造成了人机交互中人的认知空白期。当机器不能自行修复时,往往会将主动权转交给人类,人类就被迫参与到循环中,而这时人们并不知道发生了什么,也不知道该怎样处理。据相关调查与研究,如果人们在时间与任务压力下,往往会产生认知负荷过大的情况,从而导致本可以避免的错误。如果恰巧这时关键部分出了差错,就会产生很大的危险。事后,人们往往会责怪有关人员的不作为,往往忽视机器一方的责任,这样做是有失偏颇的。也许正如佩罗所说:百分之60到80的错误可以归因于操作员的失误。但当我们回顾一次次错误之时,会发现操作员面临的往往是系统故障中未知甚至诡异的行为方式。我们过去的经验帮不上忙,我们只是事后诸葛亮[15]。
其实,笔者认为人工智能存在三种交互模式,即人在环内、人在环外与以上两者相结合。人在环内即控制,这个时候人的主动权较大,从而人们对整个系统产生了操纵感。人在环外即自动,这时候,人的主动权就完全归于机器。第三种情况就是人可以主动/被动进入系统中。目前大多数所谓的无人产品都会有主动模式/自动模式切换。其中被动模式并不可取,这就像之前讨论的那样,无论是时间还是空间上,被动模式对于系统都是不稳定的,很容易造成不必要的事故。
还有一种特殊情况,那就是事故是由设计者/操纵者蓄意操纵的,最典型的就是军事无人机这种武器,军方为了减少己方伤亡,试图以无人机代替有人机进行军事活动。无人机的产生将操作员与责任之间的距离越拉越远,而且随着无人机任务的愈加复杂,幕后操纵者也越来越多,每个人只是完成“事故”的一小部分。所以人们的责任被逐渐淡化,人们对这种“杀戮”变得心安理得。而且很多人也相信,无人机足够智能,与军人相比,能够尽可能减少对无辜平民的伤害。可具有讽刺意义的是,美国的无人机已经夺去了2500至4000人的性命。其中约1000位平民,且有200名儿童[14]。2012年,人权观察在一份报告中强调,完全自主性武器会增加对平民的伤害,不符合人道主义精神[16]。不过,目前对于军事智能武器伦理的研究仍然停留在理论层面,要想在实际军事战争中实践,还需要更加做出更多的努力。
综上可以看出,在一些复杂的人机环境系统中,事故的责任是很难界定的。每个人(机器)都是系统的一部分,完成了系统的一部分功能,但是整体却产生了不可挽回的错误。至于人工智能中人与机器究竟应该以何种方式共处,笔者将在下面一节中给出自己的一些观点。
五、笔者的一些思考
通过以上的讨论与分析,笔者认为,人工智能还远没有伦理的概念(至少是现在),有的只是相应的人对于伦理的概念,是人类将伦理的概念强加在机器身上。在潜意识中,人们总是将机器视之合作的人类,所以赋予机器很多原本不属于它的词汇,如机器智能、机器伦理、机器情感等。在笔者看来,这些词汇本身无可厚非,因为这反映出人们对机器很高的期望,期望其能够像人一样理解他人的想法,并能够与人类进行自然的交互。但是,现在的当务之急,是弄清楚人的伦理中可以进行结构化处理的部分,因为这样下一步才可以让机器学习,形成自己的伦理体系。而且伦理,正如第一部分讨论的,是由伦和理组成的,每一部分都有自己的含义,而“伦”,即人伦,更是人类在长期进化发展中所逐渐形成的,具有很大的文化依赖性。更重要的是,伦理是具有情景性的,在一个情景下的伦理是可以接受的,而换到另一种情景,就变得难以理解,所以,如何解决伦理的跨情景问题,也是需要考虑的问题。
而且值得一提的是,就人机环境交互而言,机指而不仅仅是机器,更不是单纯的计算机,而且还包括机制与机理。而环境不仅仅单指自然环境、社会环境,更要涉及到人的心理环境。单纯的关注某一个方面,总会做到以偏概全。人工智能技术的发展,不仅仅是技术的发展与进步,更加关键的是机制与机理的与时俱进。因为两者的发展是相辅相成的,技术发展过快,而机制并不完善,就会制约技术的发展。现在的人工智能伦理研究就有点这个意味。现在的人类智能的机理尚不清楚,更不要提机器的智能机理了。而且,目前机器大多数关注人的外在环境,即自然环境与社会环境,机器从传感器得到的环境数据来综合分析人所处的外在环境,但是却很难有相应的算法来分析人的内部心理环境,人的心理活动具有意向性,具有动机性,这也是目前机器所不具备的,也是不能理解的。所以对于人工智能的发展而言,机器的发展不仅仅是技术的发展,更是机制上的不断完善。研究出试图理解人的内隐行为的机器,则是进一步的目标。只有达到这个目标,人机环境交互才能达到更高的层次。
六、发展与展望
人工智能伦理研究是人工智能技术发展到一定程度的产物,它既包括人工智能的技术研究,也包括机器与人、机器与环境及人、机、环境之间关系的探索。与很多新兴学科一致,它的历史不长,但发展速度很快。尤其是近些年,依托着深度学习的兴起,以及一些大事件(AlphaGo战胜李世石)的产生,人们对人工智能本身,以及人工智能伦理研究的兴趣陡然上升,对其相关研究与著作也相对增多。但是,可以预期到的是,人工智能技术本身离我们设想的智能程度还相去甚远,且自发的将人的伦理迁移到机器中的想法本身实现难度就极大。而且如果回顾过去的话,人工智能总是在起伏中前进,怎样保证无论是在高峰还是低谷的周期中,政府的资助力度与人们的热情保持在同一水平线,这也是一个很难回避的问题。这些都需要目前的人工智能伦理专家做进一步的研究。
总之,人工智能伦理研究不仅仅要考虑机器技术的高速发展,更要考虑交互主体-人类的思维与认知方式,让机器与人类各司其职,互相促进,这才是人工智能伦理研究的前景与趋势。
参考文献:
[1][法]斯特凡·东希厄,徐寒易译.会做梦的机器人[J].环球科学.2017(4):48-49.
[2]毕彦华.何谓伦理学[M].中央编译出版社,2010.
[3][美]维纳,陈步译.人有人的用处:控制论与社会[M].北京大学出版社,2010.
[4][美]哈里亨德森,侯然译.人工智能-大脑的镜子[M].上海科学技术文献出版社,2011.
[5]M.Anderson,S.Anderson,C.Armen,TowardsMachineEthics:ImplementingTwoAction-BasedEthicalTheories[C].InM.Anderson,S.Anderson,C.Armen(Eds.),MachineEthics:AAAIFallSymposium,TechnicalReportFS-05-06.MenloPark,CA:AAAIPress,2005:1-7.
[6]王绍源,崔文芊.国外机器人伦理学的兴起及其问题域分析[J].未来与发展,2013,(06):48-52.
[7]迟萌.机器人技术的伦理边界机器人技术与应用[J].2009,(03).
[8]江晓原.人权:机器人能够获得吗?--从《机械公敌》想到的问题[N].中华读书报,2004-12-l.
[9]黄建民.我们要给机器人以"人权"吗?读书与评论[J].2009(06):55-58.
[10]姜潘.给机器人做规矩,要赶紧了[N].文汇报,2011-6-7.
[11]唐昊沫,舒心.人工智能与法律问题初探[J].哈尔滨学院学报,2007(01)
[12][美]刘易斯.芒福德,宋俊岭等译.机器的神话[M].北京:中国建筑工业出版社,2009.
[13][美]库兹韦尔,李庆诚,董振华,田源译.奇点降临.北京:机械工业出版社.2011.
[14][美]皮埃罗斯加鲁菲,任莉张建宇译.智能的本质[M].北京:人民邮电出版社,2017.
[15]JamesReason.Humanerror[M].:CambridgeUniversityPress.1990.
[16]杜严勇.关于机器人应用的伦理问题[J].2015,vol5(2):25-34.
摘自《科学与社会》2018.1返回搜狐,查看更多
中国社会科学杂志社
当前,人工智能被深度应用于社会的各个领域,推动了社会生产效率的整体提升。然而,作为一种具有开放性、颠覆性但又远未成熟的技术,人工智能在带来高效生产与便利生活的同时,不可避免地对现有伦理关系与社会结构造成冲击,且已引发不少伦理冲突与法律问题。在技术快速更新的时代,如何准确把握时代变迁的特质,深刻反思人工智能引发的伦理风险,提出具有针对性、前瞻性的应对策略,是摆在我们面前的重大时代课题。
技术伦理风险
技术是一把双刃剑,其在推动社会进步的同时,也在很大程度上带来了技术风险。人工智能技术也是如此。现阶段,人工智能的技术伦理风险主要体现在以下三个方面。
人工智能的设计风险。设计是人工智能的逻辑起点,设计者的主体价值通过设计被嵌入人工智能的底层逻辑之中。倘若人工智能设计者在设计之初,秉持错误的价值观或将相互冲突的道德准则嵌入人工智能之中,那么在实际运行的过程中便很有可能对使用者生命、财产安全等带来威胁。
人工智能的算法风险。算法是人工智能的核心要素,具备深度学习特性的人工智能算法能够在运行过程中自主调整操作参数和规则,形成“算法黑箱”,使决策过程不透明或难以解释,从而影响公民的知情权及监督权,造成传统监管的失效。人工智能算法可能在不易察觉或证明的情况下,利用算法歧视或算法合谋侵害消费者的正当权益,进而扰乱市场经济秩序和造成不公平竞争。近年来被广泛曝光的“大数据杀熟”,正是这一风险的具体体现。
人工智能的数据安全风险。隐私权是人的一项基本权利,隐私的保护是现代文明的重要体现。但在众多的人工智能应用中,海量的个人数据被采集、挖掘、利用,尤其是涉及个人生物体征、健康、家庭、出行等的敏感信息。公民的隐私保护面临巨大挑战,人工智能所引发的隐私泄露风险已被推到风口浪尖。而不少隐私泄露事件的发生,也在一定程度上加深了公众对人工智能广泛应用的担忧。隐私保护与人工智能的协调发展,已成为当前亟待解决的问题。
社会伦理挑战
人工智能不仅有着潜在的、不可忽视的技术伦理风险,伴随数字化的飞速发展,人工智能对现有社会结构及价值观念的冲击亦愈发明显。人类社会的基本价值,如尊严、公平、正义等,也正因此面临挑战。
人工智能的发展对人类道德主体性的挑战。2017年智能机器人索菲亚被授予沙特阿拉伯王国公民身份,这引发了许多人对人工智能挑战人类主体性的担忧。通常人被认为是唯一的道德主体,人的道德主体性的依据在于人的某些精神特点(如意识、思维)。当前,人工智能虽仍处于弱人工智能阶段,还无法形成自我意识,但是,智能机器人不仅在储存、传输、计算等多方面的能力超越了人脑,而且借助材料学等现代技术,智能机器人可能在外形上“比人更像人”,甚至拥有更丰富的情感(比如索菲亚能够模拟62种面部表情)。这样的智能机器人究竟是否是“人”?是否应确立为道德主体?如果赋予人工智能主体资格,那么其究竟是一种与人类对等的主体,还是一种被限制的主体?这些问题表明:人工智能对人类道德主体性的挑战,不只是电影小说中的浪漫想象,而是已日益成为一种现实风险。
人工智能的发展对社会整体公平正义的挑战。首先,人工智能的发展可能加剧社会的贫富差距。由于年龄、所在地区、从事行业、教育水平等的差异,人们接触人工智能的机会并不均等,实际使用人工智能的能力并不相同,这就造成了“数字鸿沟”现象。“数字鸿沟”与既有的城乡差别、工农差别、脑体差别等叠加在一起,进一步扩大了贫富差距,影响了社会发展的公平性。其次,人工智能的发展可能引发结构性失业大潮。由于智能机器相较于人类工人有着稳定、高效等优势,越来越多的人类工人正在被智能机器所取代,成为赫拉利(YuvalNoahHarari)在《未来简史》中所谓的“无用阶级”。麦肯锡全球研究所的研究数据显示,到2030年,全球将有8亿人因工作流程的智能化、自动化而失去工作。虽然人工智能的发展也会带来新的工作岗位,但是由于“数字鸿沟”的存在,不少人并不能找到新的工作,结构性失业大潮可能汹涌而至。这将成为激化社会矛盾、破坏社会稳定、挑战社会公平正义的又一重大潜在风险。
应对防范策略
技术伦理风险与社会伦理挑战的图景展示表明,人工智能“安全、可靠、可控”的良性发展依然任重道远。对于人工智能风险、挑战的应对防范,事关未来社会的发展方向与人类整体的前途命运,需要我们运用哲学的反思、批判,作出审慎恰当的抉择。
确立人工智能发展的基本价值原则。面对风险、挑战,我们应当避免马尔库塞(HerbertMarcuse)所说的“技术拜物教”倾向,要将伦理、道德等价值要素纳入到人工智能发展的内在考量之中,尽快构建起具有广泛共识的人工智能伦理体系。应确立如下基本价值原则,作为建构人工智能伦理体系的“阿基米德支点”。一是人本原则。人工智能始终是“属人”的造物,是为增进人类的福祉和利益而被创造出来的。无论人工智能有多么接近“图灵奇点”,也不应改变其属人性。人本原则是人工智能研发、应用的最高价值原则。二是公正原则。人工智能的发展要以绝大多数人的根本利益为归趋,不能片面地遵循“资本的逻辑”与“技术的逻辑”,坐视“数字鸿沟”的扩大,而应当让每一个人都拥有平等接触、使用人工智能的机会,从而使绝大多数人都能从人工智能的发展与应用中受益。三是责任原则。明晰道德责任,对于防范和治理人工智能伦理风险具有重要意义。要加强人工智能设计、研发、应用和维护等各个环节的责任伦理建设,尤其要注意设计者、开发者的道义责任感培养,明确各方主体的权利、义务和责任,建立健全完备、有效的人工智能事故追究问责机制。
建立人工智能发展的具体伦理规范。在确立人工智能伦理基本原则的同时,还需要制定人工智能产品设计者、开发者及使用者的具体伦理规范与行为守则,从源头到下游进行规范与引导。针对人工智能的重点领域,要研究具体细化的伦理准则,形成具有可操作性的规范和建议。应当加强教育宣传,推动人工智能伦理规范共识的形成。进一步,可以将取得广泛共识的伦理规范嵌入于算法之中,避免人工智能运行过程中的“算法歧视”与“算法欺诈”问题。此外,要充分发挥伦理审查委员会及其相关组织的作用,持续修订完善《新一代人工智能伦理规范》,定期针对新业态、新应用评估伦理风险,促进人工智能伦理规范的与时俱进。
健全人工智能发展的制度保障体系。在社会层面,应加大对“数字弱势群体”的政策帮扶,如税收减免、财政补贴等,确保人工智能发展的共同富裕方向。面对可能到来的结构性失业问题,可以为劳动者提供持续的终身教育和职业培训。在法律层面,应积极推动《个人信息保护法》《数据安全法》的有效实施,建立对人工智能技术滥用与欺诈的处罚细则,逐步加快《人工智能法》的立法进程。在行业层面,应加强人工智能行业自律体系建设。建立并充分发挥伦理委员会的审议、监督作用,加强国际合作,推动人工智能行业发展朝着“安全、可靠、可控”的方向健康发展。
(作者单位:南京大学哲学系)
人工智能的伦理挑战与科学应对
【光明青年论坛】
编者按
2023年2月21日,中国外交部正式发布《全球安全倡议概念文件》,呼吁“加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险”。在中国式现代化进程中,人工智能的技术革新是助推我国科技创新的重要力量之一。作为最具代表性的颠覆性技术,人工智能在给人类社会带来潜在巨大发展红利的同时,其不确定性也会带来诸多全球性挑战,引发重大的伦理关切。习近平总书记高度关注人工智能等新兴科技的发展,强调要加快提升“人工智能安全等领域的治理能力”,“塑造科技向善的文化理念,让科技更好增进人类福祉”。为此,本版特组织几位青年学者围绕人工智能的伦理挑战与科学应对展开讨论,并邀请专家予以点评,以期引发学界的更多关注,为推动人工智能健康发展贡献智慧。
与谈人
彭家锋 中国人民大学哲学院博士生
虞昊 华东师范大学政治与国际关系学院博士生
邓玉龙 南京师范大学哲学系博士生
主持人
刘永谋 中国人民大学哲学院教授、国家发展与战略研究院研究员
1.机遇与挑战并存的人工智能
主持人:新技术革命方兴未艾,以人工智能等为代表的新兴科技快速发展,大大拓展了时间、空间和人们的认知范围,人类正在进入一个“人机物”相融合的万物智能互联时代。请具体谈谈人工智能给人类社会发展带来什么样的机遇?
彭家锋:人工智能、大数据、物联网、云计算等智能技术蓬勃兴起,对人类社会的方方面面产生深刻影响,推动整个社会逐步迈入智能社会。在此过程中,存在许多重大历史机遇需要我们把握。就技术治理而言,人工智能作为一种治理技术,正在助推社会治理的治理理念、治理方式、治理效能等方面的变革,将传统技术治理提升至智能化新阶段,呈现出“智能治理的综合”趋势。智能治理将全面提升社会公共治理的智能化水平,主要呈现出四个方面的特征:一是治理融合化,即促进各种智能技术与其他治理技术相互融合,大幅度提升智能社会的治理水平;二是治理数据化,即以日益增长的海量数据为基础,通过对数据映射出来的“数字世界”进行社会计算,实现治理目标;三是治理精准化,即发挥智能技术强大的感知能力、传输能力和计算能力,将传统的粗放治理转变为精准治理;四是治理算法化,即不断完善智能决策系统,尝试将程序化的算法决策扩展到更多的决策活动中,从而提高决策质量。
虞昊:人工智能有助于反思人类社会得以建立与发展的基础。随着分析式AI向着生成式AI不断演变,尤其是生成式AI初步展现出判别问题、分析情感、展开对话、创作内容等越来越具有人类特征的功能,原本属于人类的领域正被人工智能以另一套由“0”与“1”构成的计算机语言逐步侵蚀。这既是对人类社会的冲击,也势必会在更加平等的开放性框架中增强人类的主体性,促进人类社会进一步发展。
邓玉龙:总体来说,以人工智能为代表的新科技发展,显著提升了社会生产力。例如,生成式AI不但能完成传统AI的分析、判断工作,还能进一步学习并完成分析式AI无法从事的创造性工作。从人机交互的角度来看,人工智能也促进了生产关系的高效发展。具体表现在:一是刺激劳动形态的转化。人工智能高效承担大量的基础机械性劳动,人类劳动则向高阶的创造性劳动转化,由此引发社会层面的劳动结构转型、升级,并且以人工智能为中介,社会范围内的劳动整合、协调能力也实现升级。二是促进劳动场域的重构。随着劳动形态的转化和劳动的社会化扩展,人工智能将劳动从固定场域中解放出来,人类劳动的灵活性增加。相比于创造性劳动,机械性劳动更加受到空间和时间的制约,而在人工智能从技术层面替代更低边际成本的基础性劳动之后,人类劳动空间和时间的自由性实现跃迁。三是对主体的发展提出了更高要求,尤其是对主体适应社会发展提出了更高要求。人工智能技术的发展对人类传统的知识结构提出挑战,要求人类更新原有的知识结构以适应社会发展需要,也对教育提出更高要求,教育模式和教育内容需要更契合科技发展的水平,培养更加全面发展的人才。
主持人:人工智能的一系列产物在给人们带来生活便利的同时,也一定程度上引起大家对其可能引发的伦理挑战的警惕。一些人关注人工智能的风险问题,对人工智能的推进有些焦虑。如何看待这种警惕和焦虑?
虞昊:人工智能的风险以及由此带来的焦虑,是完全可以理解的。但我们无法返回一个没有人工智能的世界,人工智能已然深度介入人类社会,试图遏制人工智能的推进只能是螳臂当车。同时我们对人工智能的发展也不能放任不管,无视甚至于压制人工智能的推进只能是掩耳盗铃。因此,我们应该正视这种焦虑,在发展人工智能的过程中探求解决方案,在人工智能带来的风险中寻求危中之机。
邓玉龙:我们应正确看待这种焦虑。要看到,焦虑有其积极的意义,它体现人类的忧患意识,催生对人工智能风险的预见性思考,提醒我们注意焦虑背后人工智能技术发展存在的问题。正确对待焦虑有助于积极采取措施防范风险,辩证分析焦虑中先见性的思考,通过社会治理模式的升级化解风险问题。同时,仅有焦虑和恐惧是不够的,更重要的是积极解决人工智能发展带来的社会问题。从劳动的角度看,人工智能确实会取代部分人类劳动,推动劳动结构转型升级,让劳动向着碎片化、个体化方向发展,劳动者处于弱势地位,面临着“机器换人”的挑战。但是我们也应该理性认识到,人工智能不是对人类劳动能力的完全替代,而是对劳动者提出了更高的要求,要求劳动者掌握科学知识,将技术的发展内化为自身能力,在更具创造性的劳动中实现自身价值。
彭家锋:任何技术的发明使用,不可避免地伴随着这样或那样的风险。人工智能技术自然也不例外,在其应用过程中,同样引发了诸如隐私泄露、算法歧视、法律责任等风险问题。因此,关注人工智能的风险问题,并由此对人工智能的推进产生焦虑,具有一定理论依据和现实基础。但更应当清醒地认识到,人工智能的某些相关风险可以提前得到规避,并不必然会发生;即便真的发生,也仍可不断寻求化解风险的有效手段。以个人隐私滥用风险为例,在治理过程中,虽然不可避免地会涉及个人数据收集和分析处理,但可以通过建立完整的规范和监管体系来保护个人隐私,降低滥用风险。
2.人工智能科技竞争的“伦理赛道”
主持人:习近平总书记在以视频方式出席二十国集团领导人第十五次峰会时指出,“中方支持围绕人工智能加强对话,倡议适时召开专题会议,推动落实二十国集团人工智能原则,引领全球人工智能健康发展”。请谈谈“人工智能原则”应包含哪些内容?科技向善的文化理念对推动全球人工智能健康发展具有怎样的现实价值?
彭家锋:为应对人工智能等新科技快速发展带来的伦理挑战,2022年,中共中央办公厅、国务院办公厅印发了《关于加强科技伦理治理的意见》,其中明确了“增进人类福祉”“尊重生命权利”“坚持公平公正”“合理控制风险”“保持公开透明”等五项科技伦理原则。我认为,这五项原则基本涵盖了人工智能原则的伦理要求,彰显了科技向善的文化理念。科技向善的文化理念,根本目标是让科技发展更好地服务社会和人民,带来良好社会或社会公益的善。科技向善对推动全球人工智能健康发展至少具有以下三个方面现实价值:一是塑造公众信任。公众对人工智能的信任很大程度上并不完全由相关风险程度决定,而是取决于公众的利益与价值是否得到足够重视。后者正是科技向善的内在要求。二是引领技术创新。科技向善的文化理念将在技术创新发展过程中发挥价值引领作用。三是促进全球合作。科技向善的文化理念试图在全球范围内建立人工智能伦理规范的“最大公约数”,各国在达成伦理共识的基础之上,能够建立互信,实现更加充分深入的国际合作。
虞昊:个人认为,人工智能原则也应包含非对抗与非失控的理念。非对抗意味着不应将人工智能视作人类社会的对抗性存在,人工智能已经成为人类社会的构成性要素,我们必须持更为开放的态度去面对人工智能。非失控意味着不应放弃对人工智能的伦理规范,应以智能的方式去规范加速发展的人工智能。如果以上述理念为前提,也就是说,在支持人工智能发展的情况下,科技向善的文化理念在推动全球人工智能健康发展中就变得极为重要。此处的“善”在国家治理层面即指向“善治”,而当人工智能的发展从国家范围扩展到全球范围,“善治”就在构建人类命运共同体的意义上拥有了更贴近现实的内涵。各国应摒弃冷战思维与零和博弈,基于善意与友谊共同思考人类作为整体如何在人工智能的冲击下通往全球性的“善治”。
邓玉龙:2019年欧盟发布《可信赖的人工智能伦理准则》,2021年中国国家新一代人工智能治理专业委员会发布《新一代人工智能伦理规范》(以下简称《规范》)。与欧盟发布的伦理准则相比,《规范》体现了中国特色社会主义的制度优势,旨在将伦理规范融入人工智能全生命周期。人工智能发展的根本目的是促进人的全面发展,因此,我以为,人工智能原则还应体现共享和有序发展的要求。共享,旨在防止人工智能的技术垄断。科技发展应该兼顾全体人民的利益,而不是服务于少数群体,由全体人民共享科技发展成果,推动全球科技水平的共同增长。有序发展,旨在防止人工智能技术的无序扩张。人工智能技术的发展最终是为了提升人的幸福感,推动科技有序发展能够促进人机和谐融合,有效预防潜在无序扩张的风险。
主持人:从规范层面来说,伦理反思对规范人工智能发展的作用主要体现在哪些方面?
彭家锋:近年来,世界各主要国家在人工智能领域竞争日趋激烈,纷纷将人工智能发展置于国家发展的战略层面。比如,美国陆续出台《国家人工智能研究和发展战略计划》(2016)和《关于维持美国在人工智能领域领导地位的行政命令》(2019);欧盟先后发布《欧洲人工智能战略》(2018)和《人工智能白皮书》(2020);中国也较早发布了《“互联网+”人工智能三年行动实施方案》(2016)和《新一代人工智能发展规划》(2017)。人工智能科技竞争的客观局面已然形成。在此背景下,如果忽视人工智能技术发展所带来的全球性风险与挑战,极有可能陷入技术赶超的竞争逻辑。因此,亟须规范人工智能的科技竞争,而倡导伦理反思或许就是一条可行之路。伦理反思的意义至少在于:一是设定伦理底线。人工智能技术的开发和应用需要遵循一些基本的价值理念和行为规范。只有守住伦理底线,才有可能避免颠覆性风险的发生。二是实现敏捷治理。伦理反思是一个动态、持续的过程,贯穿于人工智能科技活动的全生命周期。为了确保其始终服务于增进人类福祉和科技向善的初衷,需要保持应有的道德敏感性,以灵活、及时、有效的手段化解人工智能带来的各种伦理挑战,确保其在科技向善的道路上行稳致远,实现良性发展。
邓玉龙:人工智能科技竞争是为了促进科学技术发展,而科学技术发展的最终目的是推动人类社会的进步。人工智能科技竞争不应该仅包括技术竞争的单一维度,更不应该通过技术优势遏制他国的科技发展,而应该是在人工智能科技条件下的综合性竞争,通过良性竞争促进全球人工智能和全人类的共同发展。其中就应该包括社会治理竞争,通过社会治理保障社会公平,因而对社会中人与人关系的伦理反思构成人工智能科技竞争的有机组成部分。首先,伦理反思对人工智能科技竞争提出了更高的要求。人工智能的公平性、可信任性、可解释与透明度、安全性不仅是伦理要求,也代表了人工智能技术的发展方向,是人工智能科技竞争需要抢占的技术制高点。科技的发展是为了人的全面发展,因而人的发展内嵌于科技发展要求,伦理反思有助于防止工具主义的泛滥。其次,伦理反思为人工智能科技竞争提供价值引导。伦理反思注重保障人的权利,科技发展并不是社会发展中的唯一衡量因素,我们还应该关注其中多样性的因素,尤其注重保护特殊群体的利益,例如防止数据鸿沟等不良影响。伦理反思有助于实现人工智能的综合性健康发展。
3.人工智能安全与人的全面发展
主持人:科学探究一直以来都是人们认识世界和了解自身的重要认知方式,人工智能等信息产业的革命如何影响着人们的认知方式?
彭家锋:人工智能等信息产业的革命,促进了科学研究新范式——数据科学的诞生,进而对人们的认知方式产生深刻影响。数据科学被认为是继实验、理论和模拟之后的新的科研范式。相较于传统科学,数据科学融合了统计和计算思维,通过人工智能等技术提供的海量数据、强大算法和算力,能够直接从数据中寻找相关关系、提取相关性或者预测性知识,进而产生一种基于相关性的科学思维模式。但这种相关性并不一定能够转化为因果关系,因为可解释性对于从数据科学技术确定的相关性中提取因果解释至关重要,而相关技术一般都缺乏必要的透明度和可解释性。数据科学更可能成为一种预测科学,但是预测并不是科学追求的唯一目标。通过揭示世界的潜在因果结构来解释和干预现象,也是科学的两个重要目标。因此,尽管数据科学能够通过分析大量数据生成相关性知识,却不能直接产生因果解释。对此,传统科学的可检验性假设方法和因果规律探求仍有其重要价值。数据科学并非取代传统科学,相反,两者将相互补充,共同成为人类探索世界的有效工具。
虞昊:显而易见的是,随着人工智能向着通用人工智能迈进,其能够为人们提供的教育资源、生活娱乐、工作讯息也越来越丰富,人们势必越来越依赖于通过与人工智能进行交互来获取外界信息。因此,当人工智能深度地构成人们认知世界的滤镜时,若不对人工智能本身具有重复性、同质性倾向的认知框架保持警醒,人工智能可能扭曲人们的认知方式直至影响人的主体创造性。
邓玉龙:以人工智能为代表的全新技术发展被称为第四次工业革命,其中最显著的特征就是机器与人类的深度融合,机器不再作为一种外在性的工具被人类使用,而是在与人类的深度关联中影响人类的认知方式。一方面,信息产业革命丰富了人类认知的联结方式。人工智能和大数据技术的发展促进人类的分析逻辑从因果关系扩展为相关关系,对相关关系的重视使人工智能可以从大数据而非小数据维度获取信息,为人类认知提供新的视角。按照传统人类认知方式的理解,因果关系要求关于世界的认知是确定性的,而这在数字时代的复杂性社会中很难实现。人工智能对相关关系的认知填补了这一缺失,允许我们在无法掌握确定信息但在掌握大量数据的条件下对未来趋势作出预测。另一方面,如果我们对人工智能等科技的输出结果和生成内容盲目信赖,将结果和内容与经验事实之间进行绝对等同的连接,误认为是事实的全部,那么我们就会丧失人文主义抽象反思的能力,对此我们应当保持警惕,始终坚持反思和批判的人文精神。
主持人:如何调适人的主体创造性与信息高度集成共享之间的关系?
彭家锋:当人们逐渐将更多创造性工作交由人工智能完成,不免让人担忧人工智能是否将会威胁到人的主体创造性。从人机关系的角度来看,这种担忧是基于一种人机敌对论的视角,认为人工智能挤压了人的主体创造性空间,是替代逻辑的延续。但从人机协作的视角出发,将人工智能看作人的得力帮手,通过创造性地使用人工智能可以赋予人类更大的创造性空间。比如,在进行文字写作、多媒体脚本、程序代码、文稿翻译等工作时,可先由人工智能高水平地完成草稿工作,然后再由人类进行一些创造性的调整和发挥。此时人工智能生成的内容将成为进一步创作的原材料,人类将以更高的效率投入创造性活动之中。当然,要实现以上效果并非易事,不仅需要思想观念的转变,还应在制度安排、教育方式等方面作出相应调整。
虞昊:面对信息高度集成共享的人工智能,人有可能转变为算法的动物。试想下述场景:当依据人工智能展开行动变得足够便捷有效时,行动者便会倾向于采信人工智能,此时,看似是人类行动者基于自然语言在进行互动,实则是算法逻辑基于计算机语言在进行数字化运转。于是,人的主体创造性被侵蚀,人可能沦为算法动物。对此类情形,我们应该保持足够的清醒与警惕。
邓玉龙:人工智能技术生成的内容(AIGC)具有高度集成共享的特性,能够高效地对人类知识进行数据挖掘、信息生成。调适人的主体创造性与信息高度集成共享之间的关系,我们需做到如下几个方面:首先,需要通过人的创造性扩大AIGC数据库,当下AIGC主要是依赖于大语言模型,以大量的网络文本作为训练数据库生成的,通过人的创造性生成可以不局限于网络文本,而是进一步扩展数据库的训练文本,从而提高其丰富度。其次,需要通过人的创造性为AIGC提供价值训练,通过人的创造性生成的价值立场、伦理法则等与AIGC的训练数据库相融合,从而建构可信赖、可持续的信息高度集成共享机制。最后,需要将人创造性生成的内容与AIGC共同作为人类知识的来源,人类知识的获得不能仅仅局限于AIGC,而是需要人发挥其主体创造性对人工智能技术生成的内容进行反思和拓展,将人类无法被数据化的、经验性的知识与AIGC数据化的知识融合成为人类知识的来源。
(本版编辑张颖天整理)
人工智能的伦理挑战
原标题:人工智能的伦理挑战控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。
一
维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?
实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。
首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。
然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。
二
所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。
不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。
三
这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。
(作者:蓝江,系南京大学哲学系教授)
《新一代人工智能伦理规范》发布
9月25日,国家新一代人工智能治理专业委员会发布了《新一代人工智能伦理规范》(以下简称《伦理规范》),旨在将伦理道德融入人工智能全生命周期,为从事人工智能相关活动的自然人、法人和其他相关机构等提供伦理指引。
《伦理规范》经过专题调研、集中起草、意见征询等环节,充分考虑当前社会各界有关隐私、偏见、歧视、公平等伦理关切,包括总则、特定活动伦理规范和组织实施等内容。《伦理规范》提出了增进人类福祉、促进公平公正、保护隐私安全、确保可控可信、强化责任担当、提升伦理素养等6项基本伦理要求。同时,提出人工智能管理、研发、供应、使用等特定活动的18项具体伦理要求。《伦理规范》全文如下:
新一代人工智能伦理规范为深入贯彻《新一代人工智能发展规划》,细化落实《新一代人工智能治理原则》,增强全社会的人工智能伦理意识与行为自觉,积极引导负责任的人工智能研发与应用活动,促进人工智能健康发展,制定本规范。
第一章 总则
第一条 本规范旨在将伦理道德融入人工智能全生命周期,促进公平、公正、和谐、安全,避免偏见、歧视、隐私和信息泄露等问题。
第二条 本规范适用于从事人工智能管理、研发、供应、使用等相关活动的自然人、法人和其他相关机构等。(一)管理活动主要指人工智能相关的战略规划、政策法规和技术标准制定实施,资源配置以及监督审查等。(二)研发活动主要指人工智能相关的科学研究、技术开发、产品研制等。(三)供应活动主要指人工智能产品与服务相关的生产、运营、销售等。(四)使用活动主要指人工智能产品与服务相关的采购、消费、操作等。
第三条 人工智能各类活动应遵循以下基本伦理规范。(一)增进人类福祉。坚持以人为本,遵循人类共同价值观,尊重人权和人类根本利益诉求,遵守国家或地区伦理道德。坚持公共利益优先,促进人机和谐友好,改善民生,增强获得感幸福感,推动经济、社会及生态可持续发展,共建人类命运共同体。(二)促进公平公正。坚持普惠性和包容性,切实保护各相关主体合法权益,推动全社会公平共享人工智能带来的益处,促进社会公平正义和机会均等。在提供人工智能产品和服务时,应充分尊重和帮助弱势群体、特殊群体,并根据需要提供相应替代方案。(三)保护隐私安全。充分尊重个人信息知情、同意等权利,依照合法、正当、必要和诚信原则处理个人信息,保障个人隐私与数据安全,不得损害个人合法数据权益,不得以窃取、篡改、泄露等方式非法收集利用个人信息,不得侵害个人隐私权。(四)确保可控可信。保障人类拥有充分自主决策权,有权选择是否接受人工智能提供的服务,有权随时退出与人工智能的交互,有权随时中止人工智能系统的运行,确保人工智能始终处于人类控制之下。(五)强化责任担当。坚持人类是最终责任主体,明确利益相关者的责任,全面增强责任意识,在人工智能全生命周期各环节自省自律,建立人工智能问责机制,不回避责任审查,不逃避应负责任。(六)提升伦理素养。积极学习和普及人工智能伦理知识,客观认识伦理问题,不低估不夸大伦理风险。主动开展或参与人工智能伦理问题讨论,深入推动人工智能伦理治理实践,提升应对能力。
第四条 人工智能特定活动应遵守的伦理规范包括管理规范、研发规范、供应规范和使用规范。
第二章 管理规范
第五条 推动敏捷治理。尊重人工智能发展规律,充分认识人工智能的潜力与局限,持续优化治理机制和方式,在战略决策、制度建设、资源配置过程中,不脱离实际、不急功近利,有序推动人工智能健康和可持续发展。
第六条 积极实践示范。遵守人工智能相关法规、政策和标准,主动将人工智能伦理道德融入管理全过程,率先成为人工智能伦理治理的实践者和推动者,及时总结推广人工智能治理经验,积极回应社会对人工智能的伦理关切。
第七条 正确行权用权。明确人工智能相关管理活动的职责和权力边界,规范权力运行条件和程序。充分尊重并保障相关主体的隐私、自由、尊严、安全等权利及其他合法权益,禁止权力不当行使对自然人、法人和其他组织合法权益造成侵害。
第八条 加强风险防范。增强底线思维和风险意识,加强人工智能发展的潜在风险研判,及时开展系统的风险监测和评估,建立有效的风险预警机制,提升人工智能伦理风险管控和处置能力。
第九条 促进包容开放。充分重视人工智能各利益相关主体的权益与诉求,鼓励应用多样化的人工智能技术解决经济社会发展实际问题,鼓励跨学科、跨领域、跨地区、跨国界的交流与合作,推动形成具有广泛共识的人工智能治理框架和标准规范。
第三章 研发规范
第十条 强化自律意识。加强人工智能研发相关活动的自我约束,主动将人工智能伦理道德融入技术研发各环节,自觉开展自我审查,加强自我管理,不从事违背伦理道德的人工智能研发。
第十一条 提升数据质量。在数据收集、存储、使用、加工、传输、提供、公开等环节,严格遵守数据相关法律、标准与规范,提升数据的完整性、及时性、一致性、规范性和准确性等。
第十二条 增强安全透明。在算法设计、实现、应用等环节,提升透明性、可解释性、可理解性、可靠性、可控性,增强人工智能系统的韧性、自适应性和抗干扰能力,逐步实现可验证、可审核、可监督、可追溯、可预测、可信赖。
第十三条 避免偏见歧视。在数据采集和算法开发中,加强伦理审查,充分考虑差异化诉求,避免可能存在的数据与算法偏见,努力实现人工智能系统的普惠性、公平性和非歧视性。
第四章 供应规范
第十四条 尊重市场规则。严格遵守市场准入、竞争、交易等活动的各种规章制度,积极维护市场秩序,营造有利于人工智能发展的市场环境,不得以数据垄断、平台垄断等破坏市场有序竞争,禁止以任何手段侵犯其他主体的知识产权。
第十五条 加强质量管控。强化人工智能产品与服务的质量监测和使用评估,避免因设计和产品缺陷等问题导致的人身安全、财产安全、用户隐私等侵害,不得经营、销售或提供不符合质量标准的产品与服务。
第十六条 保障用户权益。在产品与服务中使用人工智能技术应明确告知用户,应标识人工智能产品与服务的功能与局限,保障用户知情、同意等权利。为用户选择使用或退出人工智能模式提供简便易懂的解决方案,不得为用户平等使用人工智能设置障碍。
第十七条 强化应急保障。研究制定应急机制和损失补偿方案或措施,及时监测人工智能系统,及时响应和处理用户的反馈信息,及时防范系统性故障,随时准备协助相关主体依法依规对人工智能系统进行干预,减少损失,规避风险。
第五章 使用规范
第十八条 提倡善意使用。加强人工智能产品与服务使用前的论证和评估,充分了解人工智能产品与服务带来的益处,充分考虑各利益相关主体的合法权益,更好促进经济繁荣、社会进步和可持续发展。
第十九条 避免误用滥用。充分了解人工智能产品与服务的适用范围和负面影响,切实尊重相关主体不使用人工智能产品或服务的权利,避免不当使用和滥用人工智能产品与服务,避免非故意造成对他人合法权益的损害。
第二十条 禁止违规恶用。禁止使用不符合法律法规、伦理道德和标准规范的人工智能产品与服务,禁止使用人工智能产品与服务从事不法活动,严禁危害国家安全、公共安全和生产安全,严禁损害社会公共利益等。
第二十一条 及时主动反馈。积极参与人工智能伦理治理实践,对使用人工智能产品与服务过程中发现的技术安全漏洞、政策法规真空、监管滞后等问题,应及时向相关主体反馈,并协助解决。
第二十二条 提高使用能力。积极学习人工智能相关知识,主动掌握人工智能产品与服务的运营、维护、应急处置等各使用环节所需技能,确保人工智能产品与服务安全使用和高效利用。
第六章 组织实施
第二十三条 本规范由国家新一代人工智能治理专业委员会发布,并负责解释和指导实施。
第二十四条 各级管理部门、企业、高校、科研院所、协会学会和其他相关机构可依据本规范,结合实际需求,制订更为具体的伦理规范和相关措施。
第二十五条 本规范自公布之日起施行,并根据经济社会发展需求和人工智能发展情况适时修订。
国家新一代人工智能治理专业委员会
2021年9月25日