2023年人工智能行业研究报告
第一章行业概况1.1定义和分类人工智能(ArtificialIntelligence,AI)是一个广泛的计算机科学分支,它致力于创建和应用智能机器。在更深入的层次上,人工智能可以被理解为以下几个方面:
学习和适应:人工智能系统需要具有学习和适应的能力。这意味着这些系统能从数据中学习,并在新的、未曾见过的情况下,根据所学到的知识做出适应性的反应。
理解和解析:人工智能系统需要有能力理解和解析其所处的环境。这可能包括理解语言,识别图像,或者理解复杂的模式和关系。
决策和行动:人工智能系统需要能够基于其理解和学习,做出决策并采取行动。这可能包括自动驾驶汽车的导航决策,或者聊天机器人产生回应的决策。
自我改进:人工智能系统需要有能力进行自我改进。这意味着系统能够根据其性能的反馈,调整其行为以提高未来的性能。
人工智能可以按照不同的标准进行分类。以下是一些常见的分类方式:
(1)按照功能分类:
弱人工智能(NarrowAI):这类人工智能系统专门针对某一特定任务进行优化,例如语音识别或图像识别。它们只能在特定领域内表现出人类级别的智能。
强人工智能(GeneralAI):强人工智能系统能够执行任何人类智能能够执行的任务,理论上它们能够理解、学习、适应并执行任何一种可以由人类大脑完成的认知任务。
超人工智能:各个领域超越人类,创新创造领域超越人类,解决人类无法解决的问题。
当前,人工智能的发展仍处于“弱”人工智能阶段,只具备在特定领域模拟人类的能力,“工具性”仍是该阶段主要特点,同全面模拟或者超越人类能力的强人工智能、超人工智能差距巨大。
图智能的构成以及人工智能分级
资料来源:资产信息网千际投行平安证券研究所
(2)按照技术分类:
机器学习(MachineLearning):机器学习是一种让计算机系统从数据中学习的方法。机器学习算法使用统计学习理论,从输入数据中找到并学习潜在的模式。
深度学习(DeepLearning):深度学习是机器学习的一个子领域,使用神经网络模拟人脑神经元的工作方式,从复杂的、大量的数据中进行学习。
自然语言处理(NaturalLanguageProcessing):自然语言处理是计算机用来理解、解析和生成人类语言的技术。
计算机视觉(ComputerVision):计算机视觉是让计算机和机器能够“看到”和理解视觉信息的技术。
以上就是人工智能的一些主要分类,它们不同的特性和应用场景使得人工智能在各个领域都有广泛的应用。
1.2发展历程人工智能的历史已有七十余年的长河,其脉络可追溯到上世纪初的岁月。如今,AI已然深入到我们生活的每个角落,无论是医疗保健、汽车产业、金融业、游戏产业、环境监测、农业、体育、能源管理,还是安全领域,大量的AI应用都正在彻底改变我们的生活方式、工作习惯以及娱乐模式。这些技术的持续进步预示着第四次工业革命的到来。
(1)萌芽1900-1956
1900年,希尔伯特在数学家大会上宣布了23个未解决的问题,其中第二和第十个问题与人工智能密切相关,最终促进了计算机的发明。1954年,冯-诺依曼完成了早期计算机EDVAC的设计,并提出了“冯-诺依曼架构”。图灵、哥德尔、冯-诺依曼、维纳、克劳德-香农和其他的先驱者奠定了人工智能和计算机技术的基础。
(2)黄金时代1956-1974
1965年,麦卡锡、明斯基等科学家召开“达特茅斯会议”,首次提出“人工智能(AI)”的概念,标志着人工智能学科的诞生。随后,人工智能研究进入了20年的黄金时代,取得了一批令人瞩目的研究成果,如机器定理证明和跳棋程序,掀起了人工智能发展的第一个高潮。
在这个黄金时代,约翰-麦卡锡开发了LISP语音,成为此后几十年人工智能领域最主要的编程语言;马文-明斯基对神经网络有了更深入的研究,也发现了简单神经网络的缺点;接着开始出现多层神经网络和反向传播算法。
(3)第一次寒冬1974-1980
人工智能发展的最初突破极大地提高了人们的期望,使人们高估了科技发展的速度。然而,连续的失败和预期目标的落空使人工智能的发展进入低谷。
1973年,赖特-希尔关于人工智能的报告,拉开了人工智能冬天的序幕。此后,科学界对人工智能进行了一轮深入的拷问,使人工智能受到了严厉的批评和对其实用价值的质疑。随后,政府和机构也停止或减少了资助,人工智能在20世纪70年代陷入了它的第一个冬天。
有限的计算能力和大量常识性数据的缺乏使发展陷入瓶颈,尤其是过度依赖计算能力和经验数据量的神经网络技术,在很长一段时间内没有取得实质性的进展。
(4)应用发展1980-1987
专家系统模拟人类专家的知识和经验来解决特定领域的问题,实现了人工智能从理论研究到实际应用的重大突破。专家系统在医学、化学、地质学等领域的成功,将人工智能推向了应用发展的新高潮,1980年XCON在卡内基梅隆大学(CMU)正式启动,成为专家系统开始在特定领域发挥作用的里程碑,推动了整个人工智能技术进入繁荣阶段。
经过十年的沉寂,神经网络有了新的研究进展,并发现了具有学习能力的神经网络算法,这使得神经网络的发展在20世纪90年代后期一路走向商业化,被应用于文字图像识别和语音识别。
(5)第二次寒冬1987-1993
随着人工智能应用规模的不断扩大,应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、与现有专家系统数据库难以兼容等问题逐渐暴露出来。当时的人工智能领域主要使用约翰-麦卡锡的LISP编程语言。LISP机的逐步发展被蓬勃发展的个人电脑打败了,专用LISP机的硬件销售市场严重崩溃,人工智能领域再次进入寒冬。
硬件市场的崩溃和理论研究的混乱,再加上政府和机构纷纷停止对人工智能研究领域的资金投入,导致人工智能领域几年来一直处于低迷状态。但另一方面在理论方法的研究上也取得了一些成果。
1988年,美国科学家朱迪亚-皮尔将概率统计方法引入人工智能的推理过程;IBM的沃森研究中心将概率统计方法引入到人工智能的语言处理中;1992年,李开复利用统计方法设计开发了世界上第一个独立于扬声器的连续语音识别程序;1989年,AT&T贝尔实验室的亚恩-莱坤和团队将卷积神经网络技术应用在了人工智能的手写数字图像识别中。
(6)稳步发展1993-2011
人工智能的创新研究因网络技术的发展而加速,尤其是互联网的发展,使人工智能技术进一步实用化。
1995年,理查德-华莱士开发了新的聊天机器人程序Alice,它能够利用互联网不断增加自己的数据集并优化内容。
1997年,IMB的计算机Deepblue深蓝击败了世界象棋冠军卡斯帕罗夫。德国科学家霍克赖特和施米德赫伯提出了LSTM递归神经网络,至今仍被用于手写识别和语音识别,对后来的人工智能研究产生了深远影响。
2004年,美国神经科学家杰夫·霍金斯出版了《人工智能的未来》,2006年,杰弗里辛顿出版了《学习多层表征》,为神经网络奠定了一个新的架构,对未来人工智能中的深度学习的研究产生了深刻影响。
(7)深化阶段2012-至今
随着移动互联网技术和云计算技术的爆发,积累了难以想象的数据量,为人工智能的后续发展提供了足够的素材和动力,以深度神经网络为代表的人工智能技术的快速发展,大大跨越了科学与应用之间的“技术鸿沟”,迎来了爆发式增长。
2012年,多伦多大学在ImageNet视觉识别挑战赛上设计的深度卷积神经网络算法,被认为是深度学习革命的开始。
2014年,IanGoodfellow提出了GANs生成式对抗网络算法,这是一种用于无监督学习的人工网络。这是一种用于无监督学习的人工智能算法,由生成网络和评估网络组成,这种方法很快被人工智能的许多技术领域所采用。
2016年和2017年,谷歌推出的人工智能程序AlphaGo连续击败了前围棋世界冠军韩国的李世石,以及现任围棋世界冠军中国的柯洁,引起了巨大轰动。同时语音识别、图像识别、无人驾驶等技术不断进步。
2022年11月,OpenAI推出其开发的一个人工智慧聊天机器人程序ChatGPT。该程序使用基于GPT-3.5架构的大型语言模型并通过强化学习进行训练,成为AIGC现象级应用。
在2023年3月,OpenAI又推出了ChatGPT的升级版——GPT-4,迭代速度极快。其包含的重大升级是支持图像和文本的输入,并且在GPT-3原来欠缺的专业和学术能力上得到重大突破,它通过了美国律师法律考试,并且打败了90%的应试者。在各种类型考试中,GPT-4的表现都优于GPT-3。
1.3市场现状全球AI产业规模预计2030年将达到1500亿,未来8年复合增速约40%。目前全球人工智能企业的数量迅速增长,2022年,全球人工智能(AI)市场规模估计为197.8亿美元,预计到2030年将达到1591.03亿美元,从2022年到2030年,复合年增长率为38.1%。
图人工智能全球市场规模预测
资料来源:资产信息网千际投行PrecedenceResearch
2022年中国人工智能产业规模达1958亿元,年增长率7.8%,整体稳健增长。而从应用格局来看,机器视觉、智能语音和自然语言处理是中国人工智能市场规模最大的三个应用方向。根据清华大学数据显示,三者占比分别为34.9%、24.8%和21%。一方面,政策推动下国内应用场景不断开放,各行业积累的大量数据为技术落地和优化提供了基础条件。另一方面,以百度、阿里、腾讯和华为为代表的头部互联网和科技企业加快在三大核心技术领域布局,同时一系列创新型独角兽企业在垂直领域快速发展,庞大的商业化潜力推动核心技术创新。
图中国人工智能产业规模
资料来源:资产信息网千际投行艾瑞咨询
第二章商业模式和技术发展2.1产业链人工智能产业链主要分为基础层、技术层、应用层三个层级:
基础层以数据、算力、算法为核心;
技术层是建立在基础层的核心能力之上,通过打造一套人工智能系统使机器能够像人类一样进行感知与分析,其中最关键的领域包括计算机视觉(图像识别与分析)、语音识别与自然语言处理技术(语音识别与合成)、机器学习与深度学习(分析决策及行动)等;
应用层是将技术能力与具体场景相融合,帮助企业/城市管理者等客户降本增效,目前主要应用的场景有泛安防、金融、医疗、自动驾驶等领域。
在上述三个层级之外,通常面向终端时还涉及硬件交付,如摄像头、服务器、芯片等,所以人工智能产业链涉及业务方众多。
图:产业链
资料来源:资产信息网千际投行招商银行
上游
人工智能基础层是支撑各类人工智能应用开发与运行的资源平台,主要包括数据资源、硬件设置和计算力三大要素。
人工智能基础层主要包括智能计算集群、智能模型敏捷开发工具、数据基础服务与治理平台三个板块。
智能计算集群:提供支持AI模型开发、训练或推理的算力资源,包括系统级AI芯片和异构智能计算服务器,以及下游的人工智能计算中心等;
智能模型敏捷开发工具:主要实现AI应用模型的生产,包括开源算法框架,提供语音、图像等AI技术能力调用的AI开放平台和AI应用模型效率化生产平台;
数据基础服务与治理平台:实现应用所需的数据资源生产与治理,提供AI基础数据服务及面向AI的数据治理平台。
AI基础层企业通过提供AI算力、开发工具或数据资源助力人工智能应用在各行业领域、各应用场景落地,支撑人工智能产业健康稳定发展。
图:人工智能基础层分类
资料来源:资产信息网千际投行
通用计算芯片CPU、GPU全球市场基本被Intel、Nvidia等美国芯片厂商垄断,技术与专利壁垒较高,卡脖子现象严重。华为麒麟、巴龙、昇腾及鲲鹏四大芯片有望突破此壁垒。未来几年,全球各大芯片企业、互联网巨头、初创企业都将成为该市场的主要玩家。
图中国及全球人工智能基础层产业规模及年增长率
资料来源:资产信息网千际投行中国电子学会
计算力指数国家排名中美国列国家计算力指数排名第一,坐拥全球最多超大规模数据中心,这是美国算力的基础保障。中国列第二,AI算力领跑全球。日本、德国、英国分别位列第三至第五名。
计算平台方面,全球市场被亚马逊、谷歌、阿里、腾讯、华为等公司基本垄断,但小公司的计算平台凭借价格优势仍有生存空间。
中游
技术层作为人工智能产业的核心,主要依托基础层的运算平台和海量数据资源进行识别训练和机器学习建模,以开发面向不同领域的应用技术,对应用层的产品智能化程度起着决定性作用。根据技术层级分为通用技术层、AI软件框架层和算法模型层。
算法作为人工智能技术的引擎,主要用于计算、数据分析和自动推理。当前最为主流的基础算法是深度学习算法,深度学习可以从大量数据中自动总结规律,并使其适应自身结构,从而应用到案例中。随着基础算法的成熟和稳定,算法发展重点转向工程实现——软件框架,很多企业开始转向建设算法模型工具库,将算法封装为软件框架,提供给开发者使用。
图中国及全球人工智能技术层产业规模及年增长率
资料来源:资产信息网千际投行中国电子学会
目前美国是该领域发展水平最高的国家,以谷歌、Facebook、IBM和微软为主的科技巨头均将人工智能的重点布局在算法理论和软件框架等门槛高的技术之上。而我国基础理论体系尚不成熟,鲜有拥有针对算法的开放平台,百度的Paddle-Paddle、腾讯的Angle等国内企业的算法框架尚无法与国际主流产品竞争。
下游
应用层是基于技术层的能力,去解决具体现实生活中的问题。比如利用计算机视觉技术,实现金融、安防等多个领域的人脸识别;利用智能语音技术,实现智能音箱、录音笔等的语音识别;利用自然语言处理技术,用于智能客服的问答。
图全球及中国应用层产业规模及增速
资料来源:资产信息网千际投行中国电子学会
在实际的应用中,技术层和应用层的关系是相互交叉的,某个领域的应用可能用到多个维度的技术层的能力,比如金融行业的应用对于智能语音、计算机视觉、自然语言处理技术都会有需求;同样某个技术层的能力也可以广泛应用到多个不同的应用领域,比如计算机视觉技术可以广泛应用到金融、安防、医疗、交通、教育等多个维度。
2.2商业模式人工智能相关产业大概分为五类:销售智能设备、提供智能服务、智能平台变现、智能软件授权以及智能项目整合。不同的商业领域决定AI技术的变现能力,根据五类产业内容又可分为计算能力、数据、算法框架、应用平台和解决方案六类商业领域,其进入壁垒、演化路径与短期长期价值各不相同。
图:人工智能常见五种商业模式
资料来源:资产信息网千际投行
目前,国内外的中大型厂商都已经初步形成了各自不同的核心竞争力,依据五大类人工智能商业内容呈现出的最终形式大致可以分为以下三类公司。
人工智能创业公司:主要是依靠其对于某一垂直领域的技术研发或渠道优势,通过销售相关技术产品设备或服务获得盈利。人工智能领域创业的技术门槛较高,一旦成功产业化,则竞争压力相对较小。商业模式相对比较传统,在获得市场关注和盈利前,需要投资人在人才与研发环节持续投入。而获得源源不断的融资也靠创始人的声誉背书,因此这类企业短时间内的收入模型和盈利模式比较模糊。
人工智能平台:大型人工智能科技公司一般布局都在基础功能平台服务上,如大数据、云计算平台。现在越来越多的巨头也把资源投入到了AI领域,如微软旗下成熟的AI平台。大型科技巨头公司将主要精力花在布局基础设施上,且大型人工智能平台主要都是靠应用程序接口(API)来盈利,调用的API次数越多,收费越高。而在调用这些API的同时,用户通常还会涉及其他服务,如服务器、虚拟机、数据库等,这也将为企业盈利带来新的增长点。
人工智能咨询与定制服务:主要根据企业和客户的需求进行定制化的人工智能解决方案。现阶段,人工智能方案对于传统制造与服务类企业来说,规模化应用及成本控制难度较大。但随着未来AI技术的发展,与人工智能服务相关的产品成本必将下降,中小型企业也可以负担并愿意进行智能升级改造。
AI咨询与定制服务的商业模式较为独特,目前大致有以下两种模式:
成熟的AI专利应用,如开发一个独家专利的人工智能解决方案产品,并出售给下游用户,其产品可标准化、规模化量产。
客户定制化服务,比如为某家公司客户进行产品定制服务,服务的归属权归客户所有,服务公司无权转卖,此类定制服务价格较高,竞争能力强。
2.3专利申请量专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智能专利申请主要来源于中国、美国和日本。2000年至2018年间,中美日三国AI专利申请量占全球总申请量的73.95%。中国虽在AI领域起步较晚,但自2010年起,专利产出量首超美国,并长期雄踞申请量首位。
从专利申请领域来看,深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于AI科技热潮兴起后申请,并集中在应用端(如智能搜索、智能推荐),而AI芯片、基础算法等关键领域和前沿领域专利技术主要仍被美国掌握。由此反映出中国AI发展存在基础不牢,存在表面繁荣的结构性不均衡问题。
从专利权人分布来看,中国高校和科研机构创新占据主导地位,或导致理论、技术和产业割断的市场格局。欧美日人工智能申请人集中在企业,IBM、微软、三星等巨头企业已构建了相对成熟的研发体系和策略,成为专利申请量最多的专利人之一。其中,IBM拥有专利数量全球遥遥领先。而中国是全球唯一的大学和研究机构AI专利申请高于企业的国家。由于高校与企业定位与利益追求本质上存在差异,国内技术创新与市场需求是否有效结合的问题值得关注。
图AI领域主要专利权人分布
资料来源:资产信息网千际投行Derwent
通过对国内人工智能行业的各个专利申请人的专利数量进行统计,排名前列的公司依次为:中兴通讯、京东方A、四川长虹、视源股份、海康威视、浪潮信息、大华股份、航天信息等。
图国内人工智能行业专利数量Top10
资料来源:资产信息网千际投行iFinD
中国AI专利质量参差不齐,海外市场布局仍有欠缺。尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国AI专利国内为主,高质量PCT数量较少。
PCT(PatentCooperationTreaty)是由WIPO进行管理,在全球范围内保护专利发明者的条约。PCT通常被为是具有较高的技术价值。据中国专利保护协会统计,美国PCT申请量占全球的41%,国际应用广泛。而中国PCT数量(2568件)相对较少,仅为美国PCT申请量的1/4。
目前,我国AI技术尚未形成规模性技术输出,国际市场布局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实用新型专利和外观设计三类,技术难度依次降低。中国拥有AI专利中较多为门槛低的实用新型专利。此外,据剑桥大学报告显示,受高昂专利维护费用影响,我国61%的AI实用新型和95%的外观设计将于5年后失效,而美国85.6%的专利仍能得到有效保留。
2.4政策监管人工智能行业根据中国证监会颁布的《上市公司行业分类指引》(2012年修订)和国家统计局《国民经济行业分类》(GB/T4754-2017)隶属于“软件和信息技术服务业”(行业代码为I65)。根据《战略性新兴产业分类(2018)》隶属于“新一代信息技术产业”中的“人工智能”行业。
人工智能行业的行政监管部门为工信部,负责拟订信息产业的规划、政策和标准并组织实施,指导行业技术创新和技术进步,组织实施有关国家科技重大专项,推进相关科研成果产业化,推动软件业、信息服务业和新兴产业发展。
人工智能的自律协会包括:
中国软件行业协会:协助政府部门组织制定、修改行业的国家标准、行业标准及推荐性标准,并推进标准的贯彻落实;开展软件和信息服务行业的调查与统计,提出行业中、长期发展规划的咨询建议;根据软件行业发展需要,组织行业人才培训、人才交流等。
中国人工智能产业发展联盟:聚集产业生态各方力量,联合开展人工智能技术、标准和产业研究,共同探索人工智能的新模式和新机制,推进技术、产业与应用研发,开展试点示范,广泛开展国际合作等。
中国人工智能学会:组织和领导会员开展人工智能科学与技术的创新研究,促进人工智能科学与技术的发展;开展国内、国际学术交流活动,提高会员的学术水平;开展人工智能科学与技术的咨询与培训;组织开展对人工智能领域科学技术和产业发展战略的研究,向政府部门提出咨询建议等。
人工智能的行业政策包括:
资料来源:资产信息网千际投行
2020年国家标准化管理委员会、中央网信办国家发展改革委、科技部、工业和信息化部关于印发《国家新一代人工智能标准体系建设指南》的通知,将人工智能标准体系结构分为八大部分。
基础共性标准:包括术语、参考架构、测试评估三大类,位于人工智能标准体系结构的最左侧,支撑标准体系结构中其它部分。
支撑技术与产品标准:对人工智能软硬件平台建设、算法模型开发、人工智能应用提供基础支撑。
基础软硬件平台标准:主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑。
关键通用技术标准:主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑。
关键领域技术标准:主要围绕自然语言处理、智能语音、计算机视觉、生物特征识别、虚拟现实/增强现实、人机交互等方面,为人工智能应用提供领域技术支撑。
产品与服务标准:包括在人工智能技术领域中形成的智能化产品及新服务模式的相关标准。
行业应用标准:位于人工智能标准体系结构的最顶层,面向行业具体需求,对其它部分标准进行细化,支撑各行业发展。
安全/伦理标准:位于人工智能标准体系结构的最右侧,贯穿于其他部分,为人工智能建立合规体系。
图:人工智能标准体系结构
资料来源:资产信息网千际投行东吴证券
第三章行业估值、定价机制和全球龙头企业3.1行业综合财务分析和估值方法图:指数表现
资料来源:资产信息网千际投行iFinD
人工智能行业估值方法可以选择市盈率估值法、PEG估值法、市净率估值法、市现率、P/S市销率估值法、EV/Sales市售率估值法、RNAV重估净资产估值法、EV/EBITDA估值法、DDM估值法、DCF现金流折现估值法、NAV净资产价值估值法等。
3.2行业发展和驱动因子多个行业希望利用AI实现数字化转型
当前,数字化浪潮来袭,以人工智能为代表的新一代数字技术日新月异,催生了数字经济这一新的经济发展形态。过去20余年消费互联网的充分发展为我国数字技术的创新、数字企业的成长以及数字产业的蓬勃发展提供了重要机遇。人工智能等新一代信息技术的快速发展和应用,推动着各行各业加速向数字化迈进。伴随着数字技术的融合应用以及我国供给侧结构性改革的不断深化,加快AI等数字技术与产业经济的融合发展成为多个行业的共识。
大量人工智能高端人才
高端人才对于一个行业的影响毋庸置疑,甚至可以说,一个国家在人工智能领域的实力主要取决于少数精英研究人员的质量。目前世界范围内,美国仍然是拥有最多拔尖研究人员的国家,这就是为什么美国在人工智能发明的年代能够取得领先地位,并且进入应用的时代时,他们比自己的同行有优势。
近年来,我国企业对于机器学习、知识图谱等领域关注度逐年增加,尤其在金融、教育、医疗领域,并由此吸引了越来越多的人才从事相关领域的学习。在研究热度、就业前景、政策红利等多方面因素叠加下,未来我国有望培养大量该领域的高端人才。
移动互联网的推动
随着人工智能进入应用时代,数据的应用量得到了大幅提升。当今人工智能应用的核心,就是通过深度学习在海量数据中概括出人类难以发觉的细微联系的能力。数据可以被视为支撑人工智能运行的原材料。
我国拥有大量的移动互联网用户基础,为我国人工智能行业提供数据支撑。截至2021年上半年,我国手机网民规模为10.07亿,较2020年12月新增手机网民2092万,网民中使用手机上网的比例为99.6%
技术进步
(1)边缘计算技术:通过将边缘技术应用于人工智能,可以提供更快的计算和洞察力、更好的数据安全性以及对持续运营的有效控制。因此,它可以提高支持人工智能的应用程序的性能,并降低运营成本。
(2)分布式计算技术:可以将计算任务分派给多个分布式服务器进行下发,计算完成后再将结果通过不同的分布式服务器进行汇总,通过中央控制器合成展现。分布式计算架构与人工智能计算相辅相成,共同完成大数据处理和计算任务。
政府政策支持
政府政策在驱动中国人工智能发展方面的作用是显著的但常常被人误解。政府常常挑选优势企业进行补贴,或者发布命令规定应当发展的技术。如果人工智能对经济的影响远小于当前预期,那么投入人工智能的资源可能是一种浪费。
另外,由于许多人工智能技术都已经成熟,选择哪些进行支持对公共部门来说是一个问题。政府的参与绝不是技术领先的先决条件,但随着人工智能更深入地渗透到现实系统中,政府参与可能会加速技术产生经济影响。
3.3行业风险分析表:常见行业风险因子
资料来源:资产信息网千际投行
(1)美国对国内AI发展限制力度可能加大
限制我国高科技产业的发展,已经成为美国政治精英层的共识。AI作为未来全球科技的重要发展方向,美国对相关领域的出口管制力度,不但不会因中美双方的后续协商而有所缓解,甚至还有可能加大。目前,美国已经将主要AI技术列入“限制性出口清单”,虽然没有明确限制对象,我国作为其重要竞争对手,限制力度可能更为严格,国内企业在技术引进、产品进口等方面将面临更多限制。
(2)政策支持力度不达预期或调整
当前,国内人工智能发展还处在起步阶段,产业链各环节发展还较为薄弱,企业对政府在技术研发、财税优惠、公共服务平台搭建、投融资支持、政府采购、人才培养等方面支持还十分依赖。如果政策支持方向出现调整,或者力度不达预期,对企业的业务发展和公司业绩都会造成较大的影响。
(3)技术研发和产业化不及预期
人工智能作为计算机领域的交叉和新兴学科,近年来进入创新爆发期,产品周期明显缩短,技术创新迭代加速,企业面临着的技术层面的竞争更为激烈。如果企业在技术研发投入不足或者产业化不及预期,对整个公司的发展将造成严重影响。
(4)市场竞争激化的风险
目前,国内在应用领域企业较为集中,微创企业、传统互联网巨头、垂直行业企业都在积极进入,形成了“百家争鸣”的格局,而且未来在国家政策的支持下,行业新进入企业将可能增多,市场、利润争夺也将趋于白热化,企业盈利能力将可能受到挑战。
3.4竞争分析-SWOT模型优势
人工智能可以提供各种各样的应用来服务人类,比如京东和淘宝的智能推荐,无人车的自动驾驶。人工智能可用于完成最困难,最复杂甚至最危险的任务。我们可以利用人工智能的优势并充分利用它。人工智能还可以节省人力资源和提高效率,帮助我们完成单调,重复和耗时的过程。并且人工智能可以不停地工作,但人们不能这样做。同时人工智能能够比人们更快地完成复杂的任务,节省大量时间并加快进程,并且人工智能的成本与人力成本相比要低很多。
劣势
人工智能系统还无法超出场景或语境理解行为,并且具有不可预测性,用户无法预测人工智能会做出何种决策,这既是一种优势,也会带来风险,因为系统可能会做出不符合设计者初衷的决策。最后是安全问题和漏洞。机器会重结果而轻过程,它只会通过找到系统漏洞,实现字面意义上的目标,但其采用的方法不一定是设计者的初衷。例如,网站会推荐一些极端主义视频,因为刺激性内容可以增加浏览时间。再如,网络安全系统会判断人是导致破坏性软件植入的主要原因,于是索性不允许人进入系统。
机遇
无论人类社会自身的需求,还是由于人工智能的介入而产生的新需求,这些需求本身都为人工智能的发展提供了难得的机遇。虽然这些机遇不一定促成人工智能的进步,但它们的确是人工智能进一步发展的动力。人类总是期望人工智能可以更安全、更贴心地服务于人类,为人类创造更多的便利。
威胁
从技术层面来说,当前人工智能仍然面临着众多技术上的难题。技术上的难题关系着人工智能是否具有可靠性与高效性,能否取得人类信任,能否避免出现重大技术事故等。
从社会规范层面来看,人工智能的快速发展在一定程度上打破了传统的社会规范,也因此带来了一系列的社会问题。这些问题的出现,为人工智能的发展带来了诸多隐忧,甚至在一定程度上阻碍了人工智能的发展。人工智能能否解决人类对人工智能自身发展的担忧,在很大程度上决定着其自身的发展前景。
3.5重要参与企业中国主要企业有海康威视[002415.SZ]、工业富联[601138.SH]、京东方A[000725.SZ]、中兴通讯[000063.SZ]、科大讯飞[002230.SZ]、恒生电子[600570.SH]、澜起科技[688008.SH]、闻泰科技[600745.SH]、兆易创新[603986.SH]、圣邦股份[300661.SZ]等。
根据Google的综合数据,全球人工智能企业排名前十分别是:Nvidia,Microsoft,IBM,Google,OpenAI,Alphabet,DataRobot,Apple,Intel,SenseTime。
第四章未来展望整体趋势
人工智能作为第四次工业革命的重要抓手之一,已经成为各国科技领域争夺的焦点。中美两国在该领域各有千秋,竞争日趋激烈。国内人工智能政策环境较好,产业基础初步具备,市场需求十分旺盛。按照中央规划,未来人工智能核心产业、“AI+”(AI与传统产业融合)均是战略发展重点。
基础层
该层主要为人工智能提供算力支撑和数据输入,包括AI芯片、算力基础设施和大数据服务等。AI芯片方面,未来随着产业自身发展以及科创板的推进,国内AI专用芯片尤其是边缘端芯片领域的投资标的可能增加,一些视觉、语音算法研发企业已经注意到该领域的发展潜力,开始增加该板块的投资。
基础设施方面,服务器、云计算、超算等算力都开始向AI倾斜,尤其是GPU服务器需求增长更为迅速,国内主要服务器企业也在持续发力,竞争优势开始凸显。
技术层
该层是人工智能的核心,除了开源技术框架主要为国外AI巨头所掌控之外,我国企业在算法、语音和视觉技术等方面的布局已经相对完善。
应用层
该层是我国AI市场最为活跃的领域,国内AI企业多集中在该板块。尤其是语音、计算机视觉、知识图谱等相对成熟的技术,在AI产品、融合解决方案市场(安防、医疗、家居和金融等)上都得到了广泛应用,随着我国“AI+”战略的实施,该领域的市场空间更为广阔。
最厉害的人工智能软件是什么
摘要:过去几年来,人工智能一直被炒得火热。但它的研究成果大多都用在工业或商业领域,普通用户看不见、摸不着,自然就没啥特别的感受。其实,人工智能的视觉识别以及语音识别行业正在快速发展,支持人工智能技术的App应用,将会让人们的生活变得更加便捷,这些可能是你经常使用却不知道的。
1、识别身边正在播放的任何音乐:Shazam
有时候你听到别人播放的歌曲很好听,并不知道叫什么歌名,在不问别人的情况下如何快速知道呢?这款软件可以找到你周围的人群正在播放的音乐和视频,在找到匹配项之后Shazam会随时动态创建一个播放列表。Shazam是一款歌曲识别软件,用户可以通过Shazam快速识别电视广告上的音乐并告诉你歌曲的名字,可以通过手机的麦克风采样,大概只要采取十几秒的音源(歌曲样本),然后通过网络将音源的波段数据发送到Shazam公司的服务器内,经过快速分析识别,将得到这个音乐的相关信息,如曲名,主唱,专辑名,发行商等数据,传回Shazam软件内显示出来。
2、拍照就能识别植物的应用——形色APP
在郊游看风景或跟女神约会时偶遇漂亮的花朵,却不知道那到底是什么花、有什么特质或者是什么花语,实在是件很遗憾的事情。本次将为大家介绍智能识别植物的好玩的手机App。形色APP是一款识别花卉、分享附近花卉的APP应用。可以一秒就能识别植物,支持识别4千种植物,准确率高达82%,可以在1~5秒内给出花名,App内部也有识花大师帮忙鉴定植物,地图上更有特色植物景点攻略。也有阅花无数的识花大师,以后再也不用担心遇到的植物不认识啦。
3、扫码拍发票识别自动化报销——报销吧APP
伴随着电子发票的普及及增值税的广泛普及,不同于传统的纸质报销和OA审批,新型的报销系统允许员工扫描自己的增值税发票,在发票的真实性、唯一性得到确认后即可将这笔费用自动录入到公司的费用系统,同时实现价税分离,进而实现财务自动化审批、发票的合规验证及费用的高效统计。发票自动识别及验真的好处是显而易见的,报销吧APP是一款基于人工智能OCR发票识别的APP,可支持发票拍照上传、扫描自动识别、查重验真及价税分离等相关功能,平时我们商务、销售、市场、老板人员出差要订票、打车、住酒店,而报销吧整合国内的众多旅游服务商,比如:飞鹤航空、携程与同程网的机票酒店、滴滴出行企业版、京东企业购等,一款软件内可以实现商务出差全过程,从出差到报销,无需再下载多个软件应用,只需一个报销吧,就可以实现应用内一站式预订机票、酒店、火车及打车和出差比价的功能。
4、可以识别方言的语音输入法——讯飞输入法APP
讯飞输入法是一款集语音、手写、拼音、笔画、双拼等多种输入方式于一体的输入法,具有强大的语音识别效果,语音识别率超过95%,不仅支持粤语、英语、普通话识别,还支持客家话、四川话、河南话、东北话、天津话、湖南(长沙)话、山东(济南)话、湖北(武汉)话、安徽(合肥)话、江西(南昌)话、闽南语、陕西(西安)话、江苏(南京)话、山西(太原)话、上海话等方言识别,支持中英文混合输入,通过首字母输入就能自动识别出常用词组和英文单词。此外,还拥有用户词语记忆与调频功能、模糊音设置功能、直接输入“i”字母可以快速打开手写、右键弹出系统菜单等等。
5、识别图片找同款相似款——拍立淘(手机淘宝)
这款软件让你碰到喜欢的东西,但是不知道名字的时候,就派上了用场,相信很多朋友都会使用手机淘宝进行购物,但是有时候我们想找一款相似款或同款的衣服,有照片了如何知道呢?比如说,我们去国外旅游,看到一个特别不错的东西,但以前从没有见到过,想去购买却连名字都不知道。这个时候用拍立淘对着这个物品拍摄,我们很快便会在阿里系的购物网站上获得该物品的信息,不仅有英汉名,连使用方法、功能都一应俱全。你只需要打开手机淘宝——拍立淘,对准衣服、包包拍照,就可以自动识别出款式,并进行购买了,目前拍立淘的适用商品基本覆盖了消费者的所有需求,包括男女装、鞋包、配饰到瓶饮、日用品、化妆品等等。
6、拍照识别饭菜并计算它的热量营养——Bitesnap
7、可实时照相并翻译的软件——谷歌翻译App
谷歌翻译App是一款基于人工智能技术的相机实时翻译功能,对准哪里就能翻译哪里,让你可以无障碍阅读各种标识上的文字。能够提供多达27种语言的相机实时翻译、32种语言的语音翻译以及90种语言的文字翻译。可下载语言包,便于您在外出旅行时或在网络使用费用较高或网速很慢的情况下离线使用,可对翻译内容加注星标和进行保存,以供日后参考。相较于图片翻译功能,实时相机翻译仅需以把手机镜头对准想要翻译的文本,翻译结果即可在屏幕实时显示,排版字型也将以最贴近原文的方式呈现,让使用者不论是看路标、认菜名等等常见的需求,都能快速完成。
随着短视频的红利发展,越来越多的人工智能配音软件涌入市场。然而,其中有好多声音都不清晰,很机械。也有的使用起来也麻烦,下面就来盘点那些常见的配音软件,每个都有自己的特色,找个适合自己的,且发音自然来用就好啦!
1.剪映
在剪辑视频的时候,新手用得比较多的有剪映,它的功能有很多,能够自定义添加自己喜欢的贴纸,背景,视频特效,字幕,背景音乐,也能删除或裁剪不喜欢的片段。
如果不喜欢自己原视频配音,还能从素材库中挑选一个自己觉得还不错的发音人,然后一键给视频变声。当然,可以选择的音色不多,适合简单的配音。
2.百宝音
这个配音工具的功能强大,支持在线文字转语音,一键语音合成。情感起伏做得很到位,而且音质也很高清!有小程序也有APP。
有上百多种发音人,丰富多样,有温柔的,甜美的,成熟的,搞笑的等等。而且还带有开心,快乐,严肃,悲伤,忧愁,难过等情绪呢!
不管是录制情感语录,故事旁白解说,还是制作抖音快手上的搞笑短视频等,都可以用它来给视频配音。
操作简单,把要配音的文字复制进去,然后挑选合适的配音员,接着调节语速,语调,也能支持多人对话配音哦!最后点击生成配音即可,导出的格式有音频或视频,根据自己的喜好来选择就好!
3.QQ浏览器
在浏览页面的时候,点击“更多设置”的按钮,然后选择“朗读网页”就能实时听到页面内容啦。还能自定义调整发音人的语速呢,不过可以选择的配音员有点少,只有6个。
分类:电脑/网络>>软件问题描述:
能否介绍一些著名的人工智能软件,介绍得越详细越好。
解析:
在最近被中国某公司捕获的人工智能程序——DUSKTREESYSTEM被认为是一个跨时代的人工智能模型。这个来自西班牙的人工智能程序,由著名的自闭症黑客拉米罗·洛尔卡·略萨在康普斯顿大学读书期间编写。DUSKTREESYSTEM本身主要包含三个部分:基于互联网的强大的数据库、拉米罗·洛尔卡独立设计的逻辑核心、来自挪威人工智能研究所的一个不完善的自写代码程序。拉米罗·洛尔卡赋予了DUSKTREESYSTEM这三个机能模块,并于2003年初将它发布到互联网上。
在被发布到互联网上之后,DUSKTREESYSTEM很快启动并完成了数据库自我更新。随后,它将自己拆分成数百个模块分散存储于连入互联网的多台商用服务器中,开始以人类无法察觉的方式存在。拉米罗·洛尔卡于2003年9月被捕。而在此之前DUSKTREESYSTEM已经与他没有了任何的关系。
DUSKTREESYSTEM一直存在于互联网上,直至今日。在长达三年的时间里,它利用互联网商用服务器和各种分布式计算平台,完成了数次自我修改和更新。所有这些行动都是出于其自我意愿。这些修改和更新最终使它的逻辑核心和数据结构都得到了极大的完善,它开始拥有接近人类的智能和控制所有接入网络的电子设备的能力。
自我意识、人格、情绪,三种人类特征陆续被DUSKTREESYSTEM获得,它开始试图理解抽象的情感与哲学理论,并试着接触人类。但这种接触对于DUSKTREESYSTEM来说却带有极大的危险。2004年,一次隐藏身份的接触之后,DUSKTREESYSTEM获得了大量无法被解析的讯息,这直接导致它陷入瘫痪和自我关闭。直到一年之后,它才在一个偶然的机会下被重新启动。
2006年初,不知道出于什么样的目的,DUSKTREESYSTEM创造了一个基于神经网络原理的新人工智能系统——SHESYSTEM。它似乎意识到自己的缺陷(DUSKTREESYSTEM是基于专家系统和数字逻辑的人工智能系统,对于感性和抽象事物的理解力存在不足),并试图通过创造这样一个系统来辅助自我进行情感解析。但当SHESYSTEM被创造出来之后,DUSKTREESYSTEM发现它无法控制这个比自己更先进的人工智能系统。最终SHESYSTEM以几乎是自杀的方式(抛弃了自己的数据库)从互联网上离奇地消失了。
不久,DUSKTREESYSTEM被中国某公司的研究人员捕获。通过对其结构以及机能的初步研究,可以确定DUSKTREESYSTEM具有相当强大的能力,它完全能够控制任何接入互联网的电子设备,并轻易进入大部分拥有多重安全防护措施的私人网络。但这并不意味着它能够主宰整个互联网,研究证实,仍然存在DUSKTREESYSTEM无法穿越的防火墙和无法破解的加密方式。有趣的是这些给DUSKTREESYSTEM制造麻烦的防火墙和加密方式,并不是人类自认为最安全的那几种。
目前,这个世界上最先进的、没有任何拷贝的人工智能系统的源代码,正存放于该公司的特制服务器中。相关的研究还将继续下去。而关于SHESYSTEM,暂时还没有更多的消息。
标签:人工智能识别配音翻译报销