博舍

人工智能对中国劳动力市场的影响 人工智能对劳动生产率的贡献超过gdp的

人工智能对中国劳动力市场的影响

周广肃、褚高斯、李力行、孟岭生(中国人民大学劳动人事学院、百度公司集团战略部、北京大学国家发展研究院、香港中文大学经济系)

自动化和人工智能技术在当今经济和社会发展中发挥了越来越重要的作用,尤其是随着互联网+、大数据、云计算等相关技术的发展,人工智能很有可能会引发新一轮的科技革命浪潮,并对经济社会发展的各个方面产生重要影响。为了抓住人工智能经济带来的新的发展机会,我们国家也出台了一系列刺激人工智能发展的规划纲要或政策文件,希望推动中国成为世界主要的人工智能创新中心之一。人工智能是将人的智力和思维模式融入到机器的运作过程中,将会对许多职业和工作产生重要的影响,但是影响结果到底是什么,取决于人工智能产生的替代效应、互补效应和创造效应的相对大小。一方面,人工智能是一种能够替代劳动力的技术进步,越来越多的工作可能会被人工智能取代;另一方面,人工智能的发展还会通过互补效应来带动一部分就业的增长,或者在其相关领域创造一些前所未有的职业类型。为了较为严谨地回答这一问题,本文尝试性地估计了人工智能对就业所产生的潜在替代效应的大小。首先,根据本文中计算的人工智能应用率和Frey&Osborne(2017)估计的人工智能理论替代概率,本研究估算了人工智能对中国各种职业的实际替代概率。通过在职业层级应用实际替代概率,我们还探讨了人工智能对不同特征劳动力的替代效应,发现人工智能对女性、老年人、受教育程度低和低收入的劳动力有较大替代作用。这一结论表明,人工智能对劳动力市场所带来的替代效应并不是中性的,而是对劳动力市场中的相对弱势群体产生了更大的影响,这很有可能会进一步加剧他们的弱势地位。接下来,我们还预测了每个行业中被人工智能替代的就业人数,结果显示,到2049年中国将有2.78亿劳动力(不同应用率下结果是2.01亿至3.33亿)被人工智能替代,占中国当前就业人数的35.8%。其中,中国将有1.42亿城市劳动力被人工智能替代,占城市总就业人数(4.34亿)的32.7%;同时,中国农村劳动力中将有1.35亿人被取代,占农村劳动力总数(3.42亿)的39.5%。具体而言,城市中就业替代数量最大的三个行业是制造业,交通运输、仓储和邮政业,农林牧渔业;中国农村中就业替代数量最大的三个行业是农林牧渔业,制造业和建筑业。当然,以上只是基于人工智能的应用率和对不同职业的理论替代率计算而出的,人工智能对中国劳动力市场的影响也还受制于许多其他因素。首先,它取决于人工智能技术和人类传统劳动力的相对使用成本和收益。虽然目前中国劳动力成本显著增加,但与发达国家相比仍然相对较低,若将劳动力成本因素考虑在内,人工智能的应用则可能需要更长时间。其次,中国逐步加快的人口老龄化进程也会作用于人工智能对中国劳动力市场的影响,但人工智能也会反过来弥补老龄化进程加快造成的劳动力数量的减少。第三,与其他技术类似,人工智能技术在产生巨大替代效应的同时,也具有非常显著的创造效应。受人工智能上下游产业发展的驱动,人工智能技术将创造出一系列相关领域的工作或新职业,但是目前这一数值难以估计。虽然本研究侧重于预测性分析而非因果推断,但它为研究自动化和人工智能对中国劳动力市场的影响提供了第一手实证证据。中国将发展以人工智能为代表的智能产业作为国家重要的产业政策之一,同时也须认真处理人工智能对劳动力市场的潜在影响。首先,应全面考察人工智能对劳动力市场的影响,特别是对不同特征劳动力的影响,此举十分必要。我们的研究表明,人工智能对不同职业、不同行业和不同特征的劳动力具有异质性影响。只有准确分析人工智能的不同影响,才能制定更有针对性的政策。其次,要更加重视人力资本投资的重要性,不断提升中国劳动者的人力资本。中国应该采取更多措施,来帮助劳动力市场中相对弱势的群体(如女性、低教育程度、老年人和低收入群体),特别是通过职业教育或培训来提升其劳动技能和人力资本,从而尽可能地避免人工智能的负面影响。我们还应该关注人工智能对劳动者福利的影响,尽量减少由于就业机会减少和工资增长放缓导致的福利损失。最后,政府还应该关注人工智能可能造成的社会两极分化和不平等现象。随着人工智能的发展,劳动力将至少分化为两个不同的群体——高技能群体和低技能群体,两者将面临完全不同的工作机会和收入水平,而这种社会分化将会进一步加剧不平等和社会矛盾的激化。为了解决这些问题,政府可以发挥税收和转移支付制度的作用。例如,对人工智能设备或机器人征税,补贴被替代的劳动者或者用以提高他们的工作技能;此外,此项税收也可用于解决老龄化造成的养老金短缺问题。

GuangsuZhou,GaosiChu,LixingLi&LingshengMeng(2019)TheeffectofartificialintelligenceonChina’slabormarket,ChinaEconomicJournal,13:1,24-41原文链接:https://www.tandfonline.com/doi/full/10.1080/17538963.2019.1681201

作者简介:周广肃,中国人民大学劳动人事学院副教授,研究重点关注劳动力市场、收入不平等、家庭经济决策等议题,曾获得刘诗白经济学奖、《经济学》(季刊)最佳论文奖、全国优秀财政理论研究成果二等奖等。

褚高斯,百度公司集团战略部高级顾问。

李力行,北京大学国家发展研究院教授、青年长江学者,研究兴趣包括发展经济学、人力资本、公共财政学等,曾获北京大学“黄廷芳/信和”青年杰出学者奖、北京大学方正奖教金、北京大学人文社会科学研究优秀成果奖、北京大学教学优秀奖等荣誉。

孟岭生,香港中文大学经济系副教授、马里兰大学经济学博士,研究领域涉及劳动经济学、中国经济等。

全国政协“人工智能发展对劳动就业的影响”专题调研综述

全国政协“人工智能发展对劳动就业的影响”专题调研综述拥抱人工智能

得益于算法、算力、数据、存储技术的突破和互联网的普及,人工智能的开发与应用取得了长足的进展,成为新一轮工业革命的重要引擎。于此相伴,人工智能是否会对劳动就业造成不利影响成为社会关注的焦点。

乐观观点认为,人工智能将在众多领域赋能人类,创造更高的生产效率,使人们有更多精力从事具有创造性和挑战性的工作或者享受闲暇。悲观观点认为,人工智能将造成大面积失业并导致社会动荡,同时还将加剧社会不平等,拉大掌握技术和资本的人与其他之间的财富差距。更加中立的观点则认为,AI将替代一部分工种,但并不会造成大面积失业,而且在替代的同时还会创造新的工作。

已然“成势”的弱人工智能的大规模应用究竟对劳动力总量、就业结构、收入分配和社会保障体系产生了或将产生怎样的影响?2019年10月14至20日,全国政协副主席何维率队,人口资源环境委员会和农工党中央组成联合调研组,就“人工智能发展对劳动就业的影响”开展专题调研。调研组在京听取了工业和信息化部、教育部、人力资源和社会保障部相关部门负责人情况介绍,并与有关专家学者、企业负责人座谈,而后赴江苏、广东两省开展实地调研,深入昆山、南京、广州、佛山、东莞、深圳等地的人工智能研发制造和应用企业、科研院所和职业学校了解实际情况,听取有关方面意见建议,力图揭开人工智能的神秘“面纱”并寻找应对之策。

人工智能技术发展是大势所趋

在人工智能产业发展方面,江苏省和广东省都有不俗的“战绩”。

江苏省在全国人工智能专利、企业融资和企业影响力方面分列第三、第四和第五位。2018年全省人工智能产业相关业务收入约470亿元,同比增长104%。赛迪顾问发布的“2018中国人工智能城市15强”中,苏州、南京分别位列第八和第十,相关单项领域位居第一方阵。

广东更是智能大省,人工智能产业规模居全国前列。2017年,全省人工智能核心产业规模约260亿元;人工智能企业300多家,居全国第二。2018年1季度工业机器人产量7196套。民用无人机产值占全国70%的市场份额,智能手机产量约占全球比重的1/3。

调研组一路走来,人工智能技术应用企业都对智能化改造带来的生产率的提高和成本的降低感触颇深。“原来是几十个人完成一条生产线,现在是一个人盯几条生产线,产品的质量也更有保证,残次品率大大降低。”企业负责人纷纷表示。

“商业主导的人工智能是人们为了降低经济运行成本、提高生产效率而研发的新技术。用技术进步取代或部分取代人的劳动,来完成某些传统上需要人来完成的工作,是不可避免的趋势,是人类社会发展的一个方面,也是技术进步本身的追求之一,而这样一种追求已然成为经济社会发展的新动力。”全国政协委员、北京能源集团有限责任公司总工程师关天罡表示。

其实,人工智能在生产领域的不断替代也多少带有些“不得已而为之”的色彩。以东莞瑞立达玻璃盖板科技公司为代表的制造企业负责人告诉调研组,越来越严重的劳动力短缺现象也是人工智能迅速发展的重要推手。“招不到人来上班,只能改用机器人了。”该负责人笑言。

全国政协委员、华东师范大学人口研究所所长丁金宏早就开始从人口背景研究人工智能的就业替代,在他看来,人工智能就业替代因应了我国的劳动力收缩,从这个意义上来讲,以机器红利替代劳动力红利的时代已经到来。“未来一段时期,随着人口转变和人口老龄化形势向纵深发展,我国新增劳动力规模更是将逐年减少。积极促进国民经济智能化,能够有效缓解老龄化背景下的劳动力供给压力。”丁金宏说。

近几年,人工智能思潮在社会上的广泛传播,一方面使该概念得到了极其成功的传播,同时,也好似是放出了一个失控的巨兽,其含义不断被泛化和神话,以至于在人工智能技术发展前沿的代表人物需要不断讲述人工智能的“本来面目”以消除公众对人工智能的误解。

对此,全国政协人口资源环境委员会副主任,中国计划生育协会党组书记、常务副会长,原国家卫生和计划生育委员会副主任王培安表示:“以往的技术进步,主要触及的是体力劳动,以人工智能为标志的技术进步,还将广泛触及与认知和交往相关的工作,因而确实会对人类社会产生更加深刻的影响。但其实,在这个意义下的通用人工智能技术的成熟还需要一个相当长的时期,大可不必谈人工智能就色变或拒绝接受人工智能,人工智能技术发展是大势所趋。”

过程局部且渐进结果温和而积极

“目前对我省就业总量影响较小,估计近期也不会有太大影响。”当被问及人工智能发展对广东就业的影响,广东省人力资源和社会保障厅负责人言简意赅。

2018年,广东省人力资源和社会保障厅专门开展了相关调研,选取10个城市对企业和员工进行问卷调查,将近74%的被调查企业的员工人数没有产生影响或变化在5%以内。

“这是因为,机器人应用的数量和范围还非常有限,对就业的挤出和替代在就业总量中占比很小,而且,制造业总体呈现缺工现象,替代的岗位具有对部分空置岗位的补偿效应,同时智能化也在创造新岗位。已经开展智能化升级的企业中,仍有80%以上企业表示存在一般管理人员、生产管理人员、普通操作工人的短缺问题。”上述负责人表示。

江苏省的就业情况也同样稳定。省人力资源和社会保障厅负责人用总体平稳、稳重有进、进中趋好12个字来概括江苏省的就业现状——城乡劳动者实现了比较充分的就业,城镇新增就业连续7年超过130万人,约占全国年城镇新增就业的1/10。

其实,从全国来看,人工智能发展对就业的影响也十分有限。人力资源和社会保障部用“增量效应更为明显、减量效应有所冲抵”来形容目前的就业形势。一方面,产业发展处于高增长期,创造了大量就业岗位,另一方面,人工智能运用与产能扩张相协同,对就业也呈现正向的促进作用,再加上存量置换逐步推进,也为劳动力转移留出了空间。

“目前,岗位总量略有减少,东部地区减员较多,对制造业影响更突出,岗位结构发生了变化。”人力资源和社会保障部就业促进司副司长刘刚介绍道。

“尽管随着人工智能的发展与应用,当前的劳动与就业形势正在发生变化,但还是局部且温和的。”在全国政协常委、人口资源环境委员会主任、国务院发展研究中心原主任李伟看来,当前的人工智能仍属于弱人工智能阶段,只能在特定的任务上表现出一些超出人类的智能水平,新技术也在创造大量的就业机会。而且,虽然很多情况下计算机替代人类劳动在技术上是可行的,但这并不意味着它会发生,包括经济、法律和政治等在内的多种因素将大大延缓这一进程。

“所以,相较于忧心忡忡,我们现在更应该做的是不断研究和认识人工智能在不同地区、不同行业等方面对劳动就业的差异化影响与其深远、多元的系统性影响,从而优化相应的政策设计。”全国政协常委、民革中央常委、中油财务有限责任公司董事长兰云升表示。

奇点”引巨变未雨先绸缪

虽然目前人工智能的发展对就业的影响有限,但我们仍需站在现在看未来。

“这不仅因为人工智能技术的就业补偿效应一般要通过较长时期才能显现,更是因为人工智能技术突变‘奇点’何时到来难以预测,一旦实现突破性发展,对就业将带来巨大挑战。”刘刚表示。

全国政协委员、中国集团公司促进会副秘书长严慧英认为应持续关注替代总量的压力。“从区域看,劳动力输出地更需要关注。制造业集中的用工大省,自动化程度高,伴随人工智能技术更多使用,传统岗位减少,劳动力回流是必然,就业压力也将同步回传,劳动力输出地将会承压。从行业看,近中期制造业的就业将是焦点,但长远看服务业变化更需关注。从企业规模看,大中型企业人工智能的应用普及速度更快,规模更大,劳动力替代将率先发生。”

农工党中央参政议政部部长王素芳关注的是人工智能发展引发的结构性就业矛盾。“人工智能对劳动就业的影响,除了替代和冲击,更重要的将是改变与重塑。”在她看来,人工智能将引发技能要求的质变,未来大量工作需要人机协作,对劳动者专业性、协作性要求更高,技术技能型人才需求更加迫切。而有关调查数据显示,我国人工智能人才缺口超过500万,技术工人占全部就业人员的比重约为20%,高技能人才只占6%,随着中低端岗位逐步减少,大龄低技能劳动者转岗再就业难度将不断加大。

全国政协委员、中国人口与发展研究中心主任贺丹提出关注收入分配差距或将拉大问题。“人工智能的快速发展,使一些在知识和技能起点上占据优势的群体在劳动力市场上的竞争力得到强化,而一部分群体可能会被长期甚至永久性地排除在劳动力市场之外。财富向资本和技术拥有者、向知识技能人才聚集的趋势将有所加剧,劳资之间、不同劳动者之间收入将有所分化,差距会拉大。”同时,劳动力市场分化也将加剧,供求变化导致的薪酬待遇差距也会加大:紧缺人才的薪酬水平将不断上升,而被技术替代、又无法进入新领域的困难人员,将被迫寻求更低端的工作岗位,收入将会减少。

“就业形态的变化对社会保障体系也提出了更高的要求。”中国人口与发展研究中心研究员王钦池表示,人工智能的普遍应用,在解放生产力的同时,也将改变对就业和岗位的传统定义。不固定时间、地点和雇主的灵活就业将在社会总就业中占据更大的比重。这对于社保资金的筹集以及社会保障待遇标准的制定带来很大的挑战。

做好应对消极影响的政策储备

显然,劳动者个人在新旧职业和岗位间的转换通常不大可能实现无缝对接,劳动要素的大范围重新配置也不可能在短时间内无摩擦实现。如果没有合理的政策、制度保障,技术革命就容易演变出工人砸机器的“卢德运动”。

“这就需要我们加强系统研究和政策储备,深入研究人工智能带来的就业结构、就业方式转变以及新型职业和工作岗位的技能需求,及时分析产业变化趋势,加强教育、就业、产业、社会保障政策顶层设计,推动就业结构优化与经济转型升级、产业结构调整、教育体系改革相协调。”王培安表示。

委员们认为,应首先推进就业政策升级,建立就业影响评估机制。在实施产业转型升级、智能制造等重大工程时,同步评估对就业影响,准确识别潜在受影响的群体,同步制定涉及劳动者的分流安置方案。同时,引导发展就业友好型技术。加快对危险、繁重、环境恶劣等工作任务替代技术的研究和应用,为劳动者营造安全、舒适的就业环境。积极发展有利于降低社会就业门槛的智能应用技术,特别是人机协同技术,为弱势人群进入劳动力市场创造条件。

“还应拓宽技术补贴资金的使用范围。”中国发展研究基金会副秘书长俞建拖认为,各地技术改造补贴和机器换人补贴政策,可以更多用于帮助被替代职工的技能培训和转岗安置。他还提出建立和完善人工智能治理体系,鼓励和支持普通劳动者参与人工智能治理和大力发展服务业,为受人工智能直接影响行业所置换出的劳动力提供就业机会等建议。

推进服务保障升级也是委员们重点关注的领域。全国政协常委、中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士谭铁牛建议密切关注技术发展趋势,强化岗位推荐、职业指导与职业咨询等服务,落实各项就业创业扶持政策,帮助劳动者尽快实现转岗再就业。兰云升提出完善收入分配机制,加强高收入者个人所得税征管,完善再分配政策,增加低收入劳动者收入,扩大中等收入者比重,缩小收入分配差距。

“还应做好兜底保障工作,研究完善适应新就业形态的劳动用工和社会保障政策,健全就业援助制度,适时向受影响群体发放基本生活费,确保暂时失业不对家庭和劳动者生活造成大的冲击。同时,完善社会保险机制,建立兼顾公平与效率的适应灵活就业形态的社会保险金征缴和发放制度。”贺丹表示。

“此外,推进监测预警升级工作也要同步推进。建立适应智能时代经济社会特点的就业评估、统计、监测制度,综合运用大数据等技术手段,及时分析研判人工智能发展对就业影响情况;对大规模应用智能机器的重点地区、行业企业,加强岗位变化监测,健全失业预警机制,做好风险预案和政策储备。”李伟说。

优质劳动力供给有赖“智能”教育体系

调研组出发前,教育部提供的一组数据让委员们对人工智能背景下的人力资源升级十分担忧。

“2017年全球新兴人工智能项目中,中国占51%,数量已经超越美国,但全球人工智能人才储备方面,中国却只有5%左右。”

江苏、广东两省在人工智能迅速发展的过程中也深感优质劳动力供给的不足。广东省技工人才供不应求状况长期存在,人力资源市场的技工求人倍率长期处于1.4以上的高位,随着“机器换人”步伐的加快,预计市场对技工的需求还将进一步增加,技工供求缺口将进一步增大。

“面向人工智能时代,要在新一轮科技革命和产业变革中赢得主动,关键是有充分的人才支撑,教育必须主动变革。”贺丹表示。

她建议缩短基础教育年限,扩大义务教育范围,将小学教育年限由6年缩短到5年,将高中阶段纳入义务教育范围。提高职业教育地位,发展适合每个人的教育体系。进一步改革高考方式,逐步扩大高等职业院校自主招生范围,改善生源质量。

“同时,充分发挥企业办学培训积极性,发展开放灵活的教育。加快构建以产业需求为导向、产学研用结合的人工智能人才培养体系,构建更加开放灵活的教育体系。”贺丹说。

全国人大常委会委员、农工党中央专职副主席杨震呼吁构建适应未来的教育体系。“强化数学、物理等基础学科培养,逐步将人工智能、计算机编程等知识纳入小学教学课程,在初高中普及信息处理课程。高等教育体系完善研究型人才和技能型人才、复合型人才和专门型人才培养的分工,紧密对接市场发展方向和企业实际需求,调整优化学科专业。”

“未来的教育还应重视培养更多机器做不到的能力,比如创造力、审美、价值判断和同理心等,强化人的比较优势。建立适应智能时代的终身学习和就业培训体系,重视对传统产业工人技能升级培训,使其具备人机协作能力和生产性服务业业务能力,引导就业结构向新兴业态和第三产业转移。”严慧英说。

丁金宏建议创新和完善职业资格认证机制,在推进放管服的同时,鼓励更多企业和社会组织提供职业认证服务,及时响应市场需求。王培安则提出加强面向大众的科普教育,培养鼓励支持创新的社会基础,消除对人工智能的误解和恐惧,使人工智能走向理性发展。

人工智能的隐私、伦理与法制之殇

在南京硅基智能科技有限公司,创始人司马华鹏给调研组演示了一段银行理财咨询的人机对话。根据消费者的提问,“对面”的人工智能经理对答如流,通畅的语言表达及快速的反应能力让人很难意识到是机器人在对话。

“随着人工智能的发展,人机对话、语音合成的应用越发深入。我们现在的技术可以做到只要录下一个人说过的50句话,就可以把他的声音合成智能语音,可以和人智能对话。这个技术除了可以应用到电话客服领域,还可以用来追思已经过世的人。”

司马华鹏说的是技术方面的优势,李伟却听出了隐私和法律方面的风险。

“那如果我和你们的智能机器人对话被多次录音,是不是就能复制出我的声音?这样的话我就有了被‘冒名顶替’的风险,而这项技术对你们技术人员从业素质和道德也提出了很高的要求。”李伟说。

同样的质疑出现在了广东的一家企业。这家企业的核心技术是用摄像头采集人像,他们的顶级产品可同时抓取300张人脸,在张学友的演唱会上“揪”出多名嫌犯就是它在大显神威。“在我并不知情的情况下,你采集了我的影像,但我并没有同意你这样做,这算不算侵犯隐私?”严慧英问道。

“基于人工智能无所不在的特点,传统的尊严和隐私很可能被侵犯,亟须高度重视人工智能技术的道德规范。”王培安表示,人工智能科技公司应当成为道德主体,科技企业应当坚守良知和向善的底线,政府及相关方面也要加快制定人工智能道德伦理准则,积极推动人工智能领域立法,发展负责任的人工智能。

这一观点与杨震不谋而合。

“应对人工智能发展对就业的影响,除了及时调整就业结构,提前防范技术性失业,积极调整教育供给之外,更重要的是进一步抢抓机遇,完善人工智能科技发展的法律法规。我国特斯拉轿车因启动无人驾驶模式而引发车祸、‘大数据杀熟’等事件,无不反映出人工智能在法律法规方面的不健全。”

杨震建议用完善人工智能法律法规和社会治理体系强化对人工智能发展的规范。一是完善数据所有权和使用权法律,出台法律法规明确数据所有权和使用权的法律边界。二是加强隐私保护,出台专门的隐私权保护法律法规,明确隐私权概念及范畴。三是尽快出台法律法规,约束人工智能生产者、设计者的行为,解决人工智能产品侵权行为发生后的责任归属这一关键问题。

高盛:人工智能对经济增长的潜在影响

摘要

△  最近出现的生成式人工智能(AI)让我们思考是否即将迎来任务自动化的快速加速,从而推动劳动成本节约并提高生产力。尽管生成式AI的潜力存在重大不确定性,但其能够生成与人类创作输出无法区分的内容,打破人与机器之间沟通障碍,这反映了一项重大进步,具有潜在的巨大宏观经济影响。

△  如果生成式AI实现其承诺的能力,劳动力市场可能会被颠覆。本文使用美国和欧洲的职业任务数据发现,目前约有三分之二的工作岗位存在一定程度上的AI自动化风险,而生成式AI最多可能替代当前工作的四分之一。根据本文估计,生成式AI可能使得全球3亿人的工作岗位面临自动化风险。

△  好消息是,自动化导致的工人失业在历史上通常都被新工作的创造所抵消,而技术创新带来的新职业的出现占据了长期就业增长的绝大多数。显著的劳动力成本节约、新岗位的产生以及对未失业工人生产力的提高相结合,提高了生产率繁荣的可能性,从而大幅提高经济增长,尽管这样的繁荣其持续时间难以预测。

△  本文估计,在AI得到广泛应用后的10年内,其可以将美国每年的劳动生产率增长提高不到1.5个百分点,劳动生产率增长的提升大小将取决于AI能够执行的任务难度以及最终自动化的工作数量,这一增长可能低于预期也可能超预期。

△  全球劳动生产率的提升也可能在经济上具有重大意义,本文估计AI最终可以使全球年GDP增长7%。尽管AI的影响最终取决于其能力和实际应用时间,但这一估计凸显了如果生成式AI能够实现其承诺,其能够带来巨大经济潜力。

这篇全球经济分析文章概述了人工智能对宏观经济的潜在影响,并认为如果人工智能兑现其承诺的能力,它有可能在未来几十年内显著扰乱劳动力市场并刺激全球生产力增长。

一、生成式人工智能概述

本文首先讨论人工智能发展的现状及其关键能力。图1是生成式人工智能的概述,将与其前身机器学习方法(有时称为狭义或分析性人工智能)进行比较。本文的评估着重关注生成人工智能技术,如ChatGPT、DALL-E和LaMDA,它们具有三个主要特征:

(1)具备通用性而非特定场景应用,

(2)能够生成新颖的、类似于人类的输出,而不仅仅是描述或解释现有信息,

(3)它们可以理解多种形式的信息,可以理解自然语言、图像、音频和视频并做出响应。

前两个进展是扩大人工智能可执行任务集的关键,而第三个进展则关键在于确定其采用时间表。就像从命令行编程(例如MS-DOS)到图形用户界面(例如Windows)的迁移促进了程序(例如Office)的开发,从而将个人电脑的功能带给了大众一样,当前一代人工智能技术的直观界面可以显著提高其应用速度。例如,ChatGPT在短短5天内就超过100万用户,是所有公司里达到这一里程碑速度最快的。

来源:高盛全球投资研究

图1:生成式AI概述

除了这些变化,指数级增长的计算能力使得人工智能可以迅速实现更准确地执行更复杂的任务。例如,OpenAI的GPT模型的最新版本——GPT-4于2023年3月发布。大约在作为ChatGPT基础的GPT-3.5模型完成训练一年后,GPT-4在SAT考试上的得分比其前身高出150分,对于同样的问题回答准确度提高了40%,并且现在GPT-4在GPT-3.5的基础上,不仅可以接受文本输入,还可以接受视觉输入。正如图2所示,生成式人工智能背后的算法在图像分类和阅读理解等任务上已经开始超越人类基准,这一超越甚至在之前就已实现。

来源:高盛全球投资研究

图2:人工智能逐渐超过人类的基准测试

随着人工智能变得越来越先进和易于使用,越来越多的人对其产生了兴趣并进行投资。上市公司的管理团队在电话会议中提到人工智能的次数也在迅速增加,这些迹象预示着公司对AI的投资将大幅增加(参见图表3)。截至2021年,美国和全球对AI的私募股权投资总额分别为530亿美元和940亿美元。按实际价值计算,美国和全球的AI投资比五年前增长了五倍多。如果投资继续以上世纪90年代软件投资那样温和的速度增长,到2030年,美国仅在人工智能方面的投资就可能接近美国GDP的1%。

来源:高盛全球投资研究

图3:管理团队越来越关注AI在公司财务报告电话会议上

带来的机会,更多提及AI预示着更高的资本支出

尽管围绕生成式人工智能的能力和采用时间线仍存在很多不确定性,但这些发展表明,人工智能已做好充分准备,在未来几年内将迅速发展并扩大规模。

二、未来的工作

生成式AI能够生成与人类创造的产出以及打破人机之间的沟通障碍,这是一项重大进步,反映其具有产生巨大宏观经济影响的潜力。

为了评估影响的大小,考虑了生成式人工智能对劳动力市场可能产生的影响,前提是生成式人工智能能够兑现其承诺的能力。本文使用来自O*NET数据库的数据,涉及美国900多种职业(后来扩展到欧洲ESCO数据库的2,000多种职业),以估计各个职业和行业面临的受节省劳动力自动化影响的总体劳动力份额。

基于对生成式人工智能可能使用情况的现有文献综述,将ONET数据库中的39项工作活动中的13项归类为暴露于人工智能自动化的影响之下,并在基准情况下假设人工智能能够完成ONET“级别”评分为7级中的4级难度的任务。本文对每个职业的重要工作任务进行权重平均,以估计人工智能有潜力替换的每个职业总工作量的份额。本文进一步假设,那些工作中工人大部分时间在户外或从事体力劳动的职业是不能被人工智能自动化取代的。

图4展示了AI可能自动化的任务份额在职业级别上的分布。本文发现,约三分之二的美国职业面临一定程度的AI自动化风险,而且大多数暴露于AI自动化风险之下的职业中有25%—50%的工作量可能被AI替代。

来源:高盛全球投资研究

图4:目前三分之二的职业可以通过人工智能实现部分自动化

通过按照每个职业在美国职业就业和工资调查(OEWS)中的就业份额进行加权估计,并汇总到行业层面,本文估计美国约有四分之一的现有工作任务可以由人工智能自动化替代(图5上),特别是行政(46%)和法律(44%)职业,这两者存在着很高的自动化替代风险,而体力劳动职业,如建筑(6%)和维修(4%)职业,其被人工智能自动化替代的风险较小。将职业级别估计与欧洲ISCO职业分类系统匹配,并使用欧盟统计局劳动力调查数据库(LFS)进行类似的分析,无论是总体还是行业层面可得出类似的结果(图5下)。

来源:高盛全球投资研究

图5:在美国和欧洲,四分之一的当前工作任务可以通过AI实现自动化

接下来,将美国和欧洲估计扩展到全球范围,并调整各国产业结构的差异。本文进一步假设,由于新兴市场经济体和发达市场经济体之间农业部门的产业构成和生产方法存在显着差异,人工智能不会影响新兴市场经济体的农业部门[2]。估计显示,在就业加权的基础上,全球约有18%的工作可能被AI自动化所取代(图6)。新兴市场相对发达市场,能够被自动化替代的工作岗位相对较少。

来源:高盛全球投资研究

图6:全球范围内,18%的工作可能被人工智能自动化,而发达市场经济体的影响比新兴市场经济体更大

总体来说,大量的工作岗位面临着被人工智能自动化取代的风险,这可能会显著节约劳动力。为了评估估计的稳健性,将作为基准的美国估计结果与更广泛的情景进行比较,包括假设的人工智能可以执行比基准更难或更容易的任务,并且放宽了人工智能不能协助主要在户外或从事体力劳动的工作的假设(即认为有一种情况是人工智能与机器人和现有机械设备相辅相成)。情景分析表明,面临被自动化替代风险的岗位可能占到所有岗位的15—35%(图7左),这一范围与现有文献中的估计一致,但相对保守(图7右)。相对保守的基准主要反映了对生成式人工智能影响的关注范围集中在行业本身,与其他研究有所不同,这些研究会考虑更广泛的相关技术(包括机器人技术等),从而增加了自动化的范围。

来源:高盛全球投资研究

图7:估计证实了相当大的一部分就业和工作至少部分暴露于AI自动化的风险,但其他研究通常提到的更大影响,包括自动化看似在近期内不太可能实现的物理任务

尽管AI对劳动力市场的影响可能很大,但大多数工作和行业只是部分任务被自动化替代,因此AI更有可能起到补充效果,而不是直接替代工作岗位。在图8中,假设自动化能够替代的任务占工作中重要和复杂任务超过50%的定义为很可能被AI替代,自动化能够替代10—49%的任务的,AI更有可能起到补充效果,而对于只有0—9%的工作会被人工智能自动化替代的岗位,则不太可能受到影响。在基准估计中,这些假设意味着当前美国7%的就业岗位可能被AI替代,63%得到补充,30%不受影响,但最终的影响将取决于职业需求和工作量如何演变以响应劳动力的部分替代。

来源:高盛全球投资研究

图8:AI替代法律和行政领域,对于体力劳动和户外工作几乎没有影响,在其他领域则增加了生产率

三、衡量AI对生产力和增长的推动作用

大量的就业机会面临被生成式人工智能自动化取代的风险,这提高了提高劳动生产率的潜力,可以显著增加全球产出。人工智能驱动的自动化可以通过两个主要渠道提高全球GDP。首先,大多数职业的任务都部分会被人工智能自动化替代,因此在采用人工智能后,工人可能会将部分解放出来的能力用于提高生产活动的产出。学术研究表明,采用AI的公司的工人有更高的劳动生产率增长,他们的劳动生产率每年增加2—3个百分点(图9)。尽管生成式AI的能力与早期年份的差异使得预测未来很难,但至少这清楚地表明生成式AI可以推动生产力显着提高。此外,对于一些行业和职业,AI可能会补充人类的工作能力而不是取代其工作,这也会提高生产力。

来源:高盛全球投资研究

图9:学术研究普遍发现,使用人工智能的公司其工人生产率增长2—3个百分点

此外,我们预计许多因人工智能自动化而失去工作的工人最终会通过从事新的职业,以响应新的总体和劳动力需求或者直接从事与人工智能有关的职业,从而提高总产出。这两个渠道都有许多历史先例。例如,信息技术创新引入了网页设计师、软件开发人员和数字营销专业人员等新职业,但同时也增加了总收入并间接推动了医疗保健、教育和食品服务等行业对服务业劳动者的需求。

为了展示最初取代工人的技术创新如何在长期内推动就业增长,我们在图10中展示了经济学家大卫·奥托(DavidAutor)及其合著者最近的一项研究结果。他们使用人口普查数据发现,今天60%的工人从事的职业在1940年并不存在,这意味着过去80年中,超过85%的就业增长是由技术驱动创造新岗位。

来源:高盛全球投资研究

图10:技术创新导致新职业出现,这些职业占就业增长的大部分

图11利用了经济学家DarenAcemoglu和PascualRestrepo的另一项学术研究,将劳动力需求的变化分解为生产率增长和技术驱动的工人失业和再就业(以及其他因素)的贡献,以显示随时间变化劳动力需求的驱动因素。研究发现,技术变革在战后时期的前半段以大约相同的速度替换了工人并创造了新的就业机会,但自1980年代以来,技术变革替换工人的速度超过了创造新机会的速度。这些结果表明,如果人工智能对劳动力市场的影响类似于信息技术的早期进步,那么近期生成式人工智能对劳动力需求的直接影响可能是负面的,尽管对劳动力生产率增长的影响仍将是积极的。

来源:高盛全球投资研究

图11:过去,自动化带来的工人失业情况在1980年前往往被新角色/任务的创造所抵消,但近年来失业情况导致劳动力需求净下降

将显着降低劳动力成本、创造新的工作机会和提高非失业工人生产率的效果相结合,有可能促进劳动生产率的繁荣,就像早期的通用技术(如电动机和个人电脑)出现后的繁荣一样。这些历史经验提供了两个重要的教训。

第一,劳动生产率繁荣的时间很难预测,但在这两种情况下,都是在技术突破后大约20年开始的,当时大约有一半的美国企业采用了这项技术(图12左)。第二,在这两种情况下,劳动生产率增长在繁荣开始后的10年中每年增加约1.5个百分点,表明劳动生产率的增长可能相当可观(图12右)。

来源:高盛全球投资研究

图12:以前的里程碑式技术已导致劳动生产率激增,但时机难以预测

为了估计生成式人工智能广泛应用对美国劳动生产率的提升,我们在图13中总结了直接劳动力成本节省、非失业工人生产率提高以及重新就业对劳动生产率的隐含影响。本文的基准分析结合了上述的主要发现,包括大约7%的劳动者完全被人工智能自动化取代,这些被取代的大多数人只能在生产率略低的职位上找到新工作,部分任务被人工智能替代的劳动者生产率提高与现有估计一致(图9),并且这种影响在10年的时间内实现,大约从半数企业应用生成人工智能的时间开始。在这些假设下,我们估计广泛应用生成式人工智能可以使整体劳动生产率每年提高约1.5个百分点(最近的平均增长率为1.5%),与之前的变革性技术(如电动机和个人电脑)提振劳动生产率增长的幅度相当。本文估计AI对劳动生产率增长的提振幅度相当大,但不确定性也很大。因此,图13还考虑了其他可能的情景,并表明美国生产率增长的提振幅度大概率在0.3—3.0个百分点之间,具体取决于生成式人工智能可以执行的任务的难度级别、最终自动化的工作数量以及应用速度:

首先,我们改变了AI能够完成的O*NET任务的难度等级。在一个相对较弱的AI情景下,例如,生成型AI最终只能“阅读一篇简短的文章并进行摘要总结”(难度分数为2),而不能“确定为新融资的利息成本”(难度分数为4),若按照这种估计,劳动生产率增长的提升将降至每年0.3个百分点。如果AI反而更加强大,再举个例子,能够“分析美国所有医院的医疗服务成本”(难度分数为6),那么劳动生产率增长的提升将达到每年2.9个百分点。

其次,我们改变了被生成型AI完全取代的劳动力的数量。假设没有劳动力被取代,劳动生产率增长的提升略微减少至每年1.2个百分点,因为未被取代的工人仍将经历显著的生产力提升,而假设更大一部分工人被取代,则会使生产率增长的提升达到每年2.4个百分点。

第三,我们改变了AI大规模应用的时间点。如果在20年的时间里实现大规模应用,生产率增长的提升将只有大约一半;如果在30年的时间里大规模应用,生产率增长的提升将仅为三分之一。

从这些分析中得出的主要结论是,劳动生产率的最终提升尚不确定,但在大多数情况下仍具有重要的经济意义。

来源:高盛全球投资研究

图13:生成式人工智能在美国可能会将总体劳动生产率增长提高1.5个百分点,尽管提升的大小将取决于人工智能的能力和应用时间

在图14中,将美国的分析推广到其他国家,假设劳动力的行业组成差异可以解释劳动生产率增长的大部分差异。估计表明,在本文覆盖的国家范围内,AI的应用可能在10年的时间里使全球年度生产率增长提高1.4个百分点(以外汇加权平均计算),尽管预计在新兴市场经济体中,这种影响可能会有所延迟。

来源:高盛全球投资研究

图14:其他国家也可以大力提高生产率,人工智能的广泛采用可能在10年内推动全球年生产力增长1.4个百分点

广泛采用AI可能最终使全球GDP在10年内增长7%或近7万亿美元。尽管AI影响的大小最终取决于其能力和采纳时间表——围绕这两个因素的不确定性足够高,以至于目前还没有将我们的发现纳入基线经济预测——但我们的估计突显了生成式AI在实现其承诺时的巨大经济潜力。

来源:全球科创观察

人工智能与劳动收入份额——来自中国城市数据的经验证据

惠炜

发表于《北京工业大学学报(社会科学版)》

网络首发于CNKI(2022-10-12)

摘要

构建人工智能影响劳动收入份额的理论模型,利用2005—2018年中国287个地级市及以上城市面板数据进行实证验证,探讨人工智能发展对劳动收入份额的影响。研究发现,通过提高工资水平,人工智能发展有利于提高劳动收入份额;短期内,由于存在“索洛悖论”,人工智能发展对整体劳动生产率无显著影响,提高工资水平是人工智能发展提升劳动收入份额的重要机制;长期内,人工智能发展推动劳动生产率提升,通过提高工资水平进而提高劳动收入份额的作用效果被逐渐提升的劳动生产率所抵消,导致长期内人工智能发展对劳动收入份额无显著影响。因此,为发展人工智能,克服索洛悖论,提高劳动收入份额,就要完善人工智能创新发展体制机制,推动人工智能产学研结合;建立完备的工资增长长效机制,提高劳动收入份额;健全人工智能相关专利技术应用保障体系,加快推动产业智能化发展,提高劳动生产率。

关键词

人工智能;索洛悖论;劳动收入份额;工资水平;劳动生产率

基金项目

国家社会科学基金青年项目(18CJY010)

近年来,互联网、大数据、云计算、人工智能、区块链等新一轮技术的飞速发展,已经对我国经济社会发展的各领域全过程产生了深远影响,尤其是党的十八大以来,网络强国战略与国家大数据战略的实施,极大地推动了人工智能与实体经济的深入融合,促使我国人工智能发展取得显著的成就。当前,我国处于已完成第一个百年奋斗目标、迈向第二个百年奋斗目标的重要历史交汇期,中国共产党第十九届五中全会提出[1],不仅要“坚持创新驱动发展,全面塑造发展新优势”,要“以创新驱动、高质量供给引领和创造新需求”,而且要以共同富裕为方向,“提高劳动报酬在初次分配中的比重”,不断实现人民对美好生活的向往。人工智能作为当代科技发展的引领者,广泛应用于工业机器人、语音识别、搜索引擎、计算机软件等领域,不仅有效推动了创新在各领域的应用,还对不同行业的劳动力就业产生了替代效应与创造效应,进而对劳动收入份额带来更为深刻的影响。

当前,我国各地区发展不平衡不充分问题突出,收入分配差距较大,人工智能的长远发展势必会对我国收入分配格局产生深远影响。那么,人工智能将会对劳动收入份额产生何种影响,其内在作用机制是什么都成为亟待解决的问题。本文基于2005—2018年中国287个地级市及以上城市面板数据,深入研究人工智能对劳动收入份额的影响机制。

1

文献述评

基于人工智能可能通过替代劳动力进而引起就业极化和收入极化的担忧,大量学者针对人工智能影响劳动收入份额进行了研究,但已有结论存在争议。当前,学术界对人工智能影响劳动收入份额的研究主要集中在以下2个方面。

(一)人工智能的发展不利于提高劳动收入份额

一方面,人工智能将对就业产生负向影响,导致劳动收入份额下降。由于人工智能的相关机器设备将取代先前由人工执行的工作,实现自动化生产,在提高劳动生产率的同时,降低劳动力平均工资水平与就业率,造成劳动密集度下降,致使工人工资与其单位产出不相关,进而使劳动收入在国民收入中的份额也随之下降[2鄄4]。人工智能在短期内不利于劳动收入份额的提升,并且能够通过就业技能结构高级化、技能收入差距扩大化2个渠道来降低劳动收入份额,对西部地区、非技术密集区以及高劳动收入份额的抑制作用更大(钞小静等,2021)[5]。另一方面,人工智能对劳动生产率的推动作用超过对工资的提升作用,导致劳动收入份额下降(惠炜等,2020)[6]。人工智能的应用能够在一定程度上提升生产效率,这有利于提高资本收入,进而推进新一轮资本积累的实现,因此,布莱恩杰尔夫森(Brynjolfsson,2014)[7]认为,人工智能能提高资本收入份额,从而降低劳动收入份额。程虹等(2021)基于中国企业综合调查数据研究发现,使用机器人对企业劳动收入份额具有显著的负向影响,劳动报酬与劳动生产率未能实现同步提升是造成劳动收入份额下降的主要原因[8]。而余玲铮等(2019)利用广东省企业调查数据发现,机器人的使用会同时推动工资率与劳动生产率的增长,但是前者增长幅度小于后者,导致劳动收入份额下降[9]。由于资本通常掌握在少数人手中,更多的劳动力依旧依靠提供劳动获取收益,人工智能为资本带来的积极效应只有少数人受益,因此,人工智能对劳动和资本两种生产要素带来的异质性不利于要素间收入的公平分配(江永红等,2021)[10]。

(二)人工智能的发展有利于提升劳动收入份额

一方面,人工智能等新一轮信息技术的就业创造效应有利于提高劳动收入份额,相较于不使用信息技术的企业,积极利用信息技术的企业劳动收入份额更高。信息技术的使用不仅能够提高增加值,更能大幅提高平均劳动报酬,致使初次分配更加偏向劳动(申广军等,2018)[11]。金陈飞等(2021)利用浙江省“机器换人”分行业试点企业名单的微观企业面板数据与中国中小企业动态数据库研究发现,人工智能显著提升企业的劳动收入份额,尤其对劳动密集型企业影响更为显著[12]。另一方面,人工智能发展对劳动生产率的提升作用滞后于工资,使得劳动收入份额提升。布莱恩杰尔夫森(Brynjolfsson,2017)等认为,人工智能在推动生产效率提升时具有较长的时滞,随着新就业岗位的不断涌现与劳动生产率的不断提升,劳动收入份额会逐渐稳定或提升[13]。

综上所述,学者对人工智能影响劳动收入份额进行了较为细致的研究,除去人工智能通过就业影响劳动收入份额这一影响路径外,已有研究分歧主要集中于人工智能如何影响劳动生产率,基于此,本文着重探讨人工智能所导致的索洛悖论将对劳动收入份额产生何种影响。以人工智能为代表的新一轮工业革命正逐渐由导入期开始转入拓展期(谢伏瞻,2019)[14],与此同时,我国的劳动生产率增长率却显著放缓,图1所显示的结果与20世纪80年代的“索洛悖论”相类似。索洛悖论指出,信息技术能够带来经济增长,但是对同期的劳动生产率的影响却非常有限。

图1中国劳动生产率增长率变动趋势

戈登(Gordon,2018)认为,新技术革命对经济增长、劳动生产率的推动作用存在一定的滞后期,第三次科技革命所带来的生产率增长主要集中在1994—2004年,远滞后于此次科技革命的爆发时期。人工智能的不断发展,电子数据量已经增长了几十年,但是近年来生产率增长速度却有所放缓[15]。在人工智能、5G、互联网等新一轮信息技术崛起的时代,如何克服“索洛悖论”,保就业、提效率,进而提升劳动收入份额,是当前亟待解决的现实问题。

基于此,本文通过固定效应模型,推演人工智能对不同部门劳动收入份额的影响,结合索洛悖论,定量评估人工智能如何通过工资、劳动生产率影响劳动收入份额。本文第二部分将讨论人工智能与劳动收入份额的理论分析,第三部分作计量模型、数据与实证分析,第四部分进一步分析人工智能影响劳动收入份额,第五部分为结论与启示。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇