2023年人工智能领域发展七大趋势
2022年人工智能领域发展七大趋势
有望在网络安全和智能驾驶等领域“大显身手”
人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。
美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。
增强人类的劳动技能
人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。
比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。
总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
更大更好的语言建模
语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。
2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。
众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。
网络安全领域的人工智能
今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。
随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。
人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。
人工智能与元宇宙
元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。
人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。
低代码和无代码人工智能
2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。
美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。
自动驾驶交通工具
数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。
特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。
此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。
创造性人工智能
在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。
2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)
【纠错】【责任编辑:吴咏玲】人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能促进经济高质量发展:机理、问题与对策
摘要:人工智能技术具有渗透性、协同性、替代性、创造性等技术—经济特征,人工智能促进经济高质量发展的机理可概括为对三类产业的扩张效应、赋能效应和活化效应。其中,核心产业扩张效应与融合产业赋能效应交互构建了促进高质量发展的动态循环过程,潜在关联产业活化效应则通过提供非匹配、非集约、非规整、非公平问题解决方案促进经济社会高质量发展。当前,中国在世界人工智能领域第一梯队的地位愈发巩固,技术创新处于关键突破期,在地域空间上则形成了三大城市群为重要引擎、沿海地区快速增长、内陆地区稳定增长的发展格局。我国人工智能促进经济高质量发展还存在核心产业低质扩张、融合产业低效赋能、潜在关联产业低迷活化、相关社会伦理道德规范缺失、相关人才短缺且结构不合理等问题。为此,我国要推进基础理论研究和关键共性技术开发,提高科技自立自强能力;优化行业发展环境,促进产业生态良性发展;完善相关法律法规和伦理规范制度,促进人工智能“科技向善”;构建高素质人才培养体系和人才流动机制,促进包容性均衡发展;加快人工智能创新应用先导区和创新发展试验区建设,推进改革试点和应用示范。
关键词:人工智能;高质量发展;技术创新;核心产业;融合产业;潜在关联产业
基金项目:国家社会科学基金重点项目“新技术革命背景下全球创新链的调整及其影响研究”(19AJY013)
人工智能(AI)是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。作为新一代信息技术革命的代表技术之一,人工智能利用计算设备模拟人类思维决策过程,广泛应用了计算机、数学、物理学、生物学、逻辑学等学科的理论与方法。自1955年达特茅斯会议首次提出“人工智能”概念以来,人工智能经历了60余年的曲折发展,研究重点从早期(1956—1974年)基于符号主义的逻辑推理、启发式搜索,到中期(1974—2006年)符号主义与连接主义融合催生的神经元网络方法、专家系统,发展到近期(2006年至今)基于行为主义纲领的深度学习方法突破所带来的多领域广泛应用[1]。1974年以来的人工智能发展都可归类为连接主义,但2006年之前的连接主义主要对人类大脑活动进行模仿,并没有合理借鉴大脑产生智能的机制。2006年,深度学习方法在卷积神经网络等模型和参数训练技巧等方面取得突破,同时信息设备、算法算力、使用数据也迎来了革新、进步与增长,人工智能实现了跨越式的发展。目前,人工智能研究领域主要分为六大类:计算机视觉、自然语言处理、机器学习、认知及推理、机器人、博弈及伦理。人工智能已经成为世界各国竞争角逐的焦点,其发展水平是国家核心竞争力的重要体现,将对经济发展、社会进步、国际政治经济格局产生深远影响。
党的十九大报告明确提出,推动互联网、大数据、人工智能和实体经济深度融合,作为我国深化供给侧结构性改革、建设制造强国、促进经济高质量发展的重要举措。党的十九届五中全会通过的《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》强调,要推动互联网、大数据、人工智能等同各产业深度融合,这是建设制造强国、质量强国、网络强国、数字中国重要内容,是提高经济质量效益和核心竞争力的关键。本文对人工智能如何促进经济高质量发展的机理进行探讨,分析人工智能促进经济高质量发展存在的问题,提出相应的对策建议。
一、人工智能促进经济高质量发展的机理分析
习近平总书记在十九届中央政治局第九次集体学习时强调,人工智能是新一轮科技革命和产业变革的重要驱动力量,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。人工智能具有溢出带动性很强的“头雁”效应,在移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术的驱动下,人工智能加速发展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征,正在对经济发展、社会进步、国际政治经济格局等方面产生重大而深远的影响。我国经济已由高速增长阶段转向高质量发展阶段,迫切需要新一代人工智能等重大创新添薪续力,要推进人工智能和产业发展融合,为高质量发展提供新动能[2]。
(一)人工智能的技术—经济特征
人工智能技术既具有一般通用型信息通信技术所具有的渗透性与替代性特征,同时还具备与各经济要素协同配合提升经济效率的协同性特征,以及替代人类脑力工作的创造性特征。
1.渗透性。作为一种兼具通用性、基础性和使能性的数字技术,人工智能具备与经济社会各行业、生产生活各环节相互融合的潜能,这种广泛应用于经济社会各领域的特征被定义为通用型技术的渗透性。在发展初级阶段,人工智能只能应用于简单场景,解决一些抽象概念性的游戏问题,但随着人工智能技术发展,人工智能被越来越多地应用于多元场景、复杂场景,问题解决边界也向实际应用拓展。这种应用复杂化的趋势即是对人工智能技术渗透作用的印证。渗透作用是通用型技术最基本的技术—经济特征,也是计算技术领域重大创新能够引发技术革命,带来技术—经济范式转换的技术基础。渗透性特征决定人工智能具有对经济增长产生广泛性、全局性影响的潜力。在可预见的未来,人工智能技术将更加全面地融入日常生产生活活动之中,成为经济社会不可替代的一部分。
2.协同性。人工智能的协同性在一定程度是其渗透效应的具体实现。人工智能技术作为通用型技术渗透进入经济社会各个方面,在生产领域,人工智能技术的应用可以提升资本、劳动、技术等要素之间的匹配度,加强上游技术研发、中游工程实现、下游应用反馈各个生产环节之间的协同,从而提高运行效率。在消费领域,人工智能技术可以实现对用户消费习惯与消费需求的自动画像,完成需求与供给的智能匹配,进一步释放消费潜力的同时,实现经济的高质量增长。总的来说,人工智能的协同性特征体现在对经济运行效率的提升。蔡跃洲等核算了中国在过去三十年中ICT资本对增长的贡献率,并使用格兰杰因果检验印证了ICT资本与全要素生产率TEP增长具有因果关系,ICT资本通过与各个经济要素的协同促进了经济效率提升,最终推动了GDP的增长[3]。
3.替代性。随着设备设施与技术研发的持续发展,信息通信技术(ICT)产品相对价格持续下降,从而出现ICT产品对其他投资的大规模替代。如芯片领域的摩尔定律预言集成电路晶体管数目约18个月便会增加一倍,这使得芯片在能够解决更多问题的同时成本持续下降,实现对非ICT资本的不断替代。人工智能除了对非ICT资本的替代效应外,更能实现对劳动要素的直接替代,蔡跃洲等将人工智能对就业的影响分解为负面的替代效应与正面的抑制效应,并得出结论认为就业总量基本稳定的趋势还将延续一段时间,人工智能完全替代人类劳动的极端情形中短期不会出现[4]。人工智能技术持续发挥替代效应,在作为独立要素不断积累的同时,对其他资本要素、劳动要素进行替代,其对经济发展的支撑作用由此不断强化。
4.创造性。生产自动化能够实现对一些高强度、高难度的持续劳动进行替代,而人工智能之所以引起人们对就业前景强烈担忧的原因更在于其能够实现对人类脑力工作、创造性活动的替代。当下人工智能技术已经被广泛应用于药物发现及筛选、材料识别及模拟等科研活动,更是在金融、数字建模、应急救援、音乐绘画等领域被广泛赋予分析决策甚至是创造创新的权力,展现出人类历史上从未有过的来自人类头脑之外的创造力量。人工智能的创造性可以生产出额外的知识,增加人类整体智慧总量,从而促进技术进步,提高经济效率。针对人工智能将完全取代人类工作的担忧,Holford对人工智能的创造性进行了分析,认为人工智能技术主要通过符号解释、形式化和意义捕捉的方式获取知识,对于人类整体知识和隐性知识的复杂性、创造性较难模仿。在不出现颠覆性技术突破的情况下,人工智能技术无法实现对人类创造的完全替代[5]。
(二)人工智能促进经济高质量发展的机理与效应
人工智能代表了未来经济发展的无限可能性,现有观点普遍认为人工智能可以通过提高生产率促进经济增长。在微观个体活动方面,人工智能发展传统自动化为“智能自动化”,持续释放个体创造力,极大提升劳动生产率。在中观行业生产方面,人工智能不断提升生产能力与资本效率,对行业进行分析并作出控制决策,解决某些行业生产准确率低、工作量大、设备闲置、安全性差等一系列问题。在宏观经济发展方面,人工智能促进管理效率、资源配置效率和社会交易效率的提升,推动创新并提高全要素生产率,深化分工形式,大大拓展产品创新的空间,从提升分工专业化效率转向提升分工多样化效率,从多样性角度拓展生产可能性边界[6-7]。师博从生产、分配、交换、消费四个方面探讨了人工智能充分契合创新、协调、绿色、开放、共享的新发展理念,在生产环节发挥创新效应与技术外溢效应实现创新发展;在分配环节优化分配结构同时提升分配效率深化共享发展;在交换环节,通过平台经济、国际共建等方式实现协调、开放发展;在消费环节改进消费质量,加速绿色消费,贯彻绿色发展理念。人工智能在贯彻新发展理念的同时,与经济社会充分融合,实现经济的高质量发展[8]。任保平等聚焦人工智能与实体经济的融合增长效应,从培育高端要素、优化要素禀赋结构的供给侧到普及智能产品与服务、多元化需求渠道的需求侧,双向探讨人工智能对实体经济的融合促进作用,并结合我国当前发展阶段,分析人工智能对传统产业、新兴产业、新商业模式以及供需协同的带动作用,提出构建融合支持体系、加强新基建、培育产业环境、优化投融资支持、深化对外开放等建议[9]。罗以洪基于数字产业化、产业数字化、数字化治理的模型框架,结合宏观理论中四部门经济的各个部门与要素特征,提出政府、消费者、生产者、国外消费者、国外生产者以及金融机构四部门数字经济模型,细化资源型、技术型、融合型、服务型四种数字经济类型,提出具有针对性的数字经济高质量发展路径与对策建议[10]。
已有研究对人工智能如何促进经济高质量发展的机理分析主要集中在以下几个角度:一是基于微观、中观、宏观三重视角进行分析,其具有坚实的经济逻辑支撑,易于进行理论分析,并提出相关政策建议;二是从生产、分配、交换、消费等经济环节进行分析,其更加全面地聚焦经济社会整体的高质量发展,并与新发展理念有着高契合度;三是以中国信息通信研究院提出的数字经济分析框架(数字产业化—产业数字化—数据价值化—数字化治理)为基础进行分析,这一角度具备国际通用性,同时在实证分析方面具有广泛的研究基础,有较多的研究基于相同框架对国内外不同主体进行数字经济测算。与此同时,上述角度都存在一定缺陷:微观、中观、宏观三重视角难以聚焦人工智能产业如何实现发展的高质量,经济环节视角则难以提出有针对性的促进建议,并且在量化发展质量、实证分析路径效应方面二者都有着较大的局限性。数字经济框架则是为数字经济所设计,套用于人工智能产业需要进一步探讨其适配性。
本文基于人工智能的技术—经济特征,对经济社会产业进行划分,并根据划分结构针对性分析人工智能对经济高质量发展的促进机理。经济社会产业可以分解为三种类型,即核心产业、融合产业、潜在关联产业(见图1)。首先,作为一项系统性较强的数字技术,人工智能催生了一系列配套核心产业,其产品服务涵盖了上游研发到下游应用的产业链各环节。其次,人工智能通过发挥渗透性、替代性、协同性、创造性四大技术—经济特征,对一些已有产业进行技术赋能,进而创造出智慧农业、智能制造、智慧建筑、智慧医疗等一大批产业融合新生态。最后,针对目前经济社会中市场化程度不高,尚与人工智能关联较弱的经济社会领域,在不久的未来,人工智能可能通过对其资产与产业环节的“激活”,实现意料之外的爆发式增长。
图1三类产业:按照与人工智能联系程度来
1.核心产业的扩张效应。人工智能作为一项系统性较强的数字技术,其应用的实现离不开技术研发、软硬件开发、算法模型训练、具体场景应用等一系列环节,从而催生了一系列支撑配套的核心产业,有着完备的产业链条,其产品服务涵盖了上游研发到下游应用的各环节。在软件层面,人工智能技术包括算法软件、图谱模型、处理流程等内容的开发,而在硬件层面,人工智能技术涵盖专用芯片、存储器、处理器等硬件设施的生产,除此之外,还包含对数据的搜集与处理,对样本进行学习,对模型进行训练等一系列配套工作。人工智能技术是一项涵盖诸多技术产品的复杂系统,从上游的技术研发到中游的工程实现,再到下游的应用反馈,系统中各个环节都对应着相匹配的产品及服务,随着行业的发展人工智能行业逐渐形成了一套相对独立的核心产业体系。
人工智能促进经济高质量发展的路径之一,即是人工智能核心产业的扩张增长效应。人工智能产业体系根植于高新信息技术产业,但不同于其他信息技术产业,人工智能具有与生产生活应用更高的融合度,可以快速响应具体问题,根据不同的场景生态提供对应的应用方案。不断增长的应用需求使得人工智能产业保持较高速度的增长,同时也促进了基础信息技术产业的壮大,人工智能核心产业的扩张增长符合产业结构优化升级方向,其对经济的支撑作用不断强化,促使经济实现高质量发展。
2.融合产业的赋能效应。人工智能技术发挥渗透性、替代性、协同性、创造性的技术—经济特征,输出智能化设施、智能化方案,对已有产业进行智能化改造,实现数字经济与实体经济的融合发展,通过提质增效促进经济高质量发展。
在农业领域,人工智能融入农业生产、物流、出售等环节中,实现农业生产的无人数控、基于数据分析的生产决策、智能农业机器人的精准执行等转变。中国工程院院士赵春江认为,数字技术将实现农业的产业结构升级、产业组织优化和产业创新方式变革,进一步实现农业从自然资源依赖向知识资源依赖的转变[11]。在工业领域,人工智能基于不同工业行业的产业特征提供生产服务的精准升级,一方面在生产端实现冗余资产的发现切除、错配资产的优化调整、闲置资产的重新激活,促进生产效率的提升;另一方面在消费端实现用户需求的快速响应、精确匹配、个性定制,充分释放消费端潜力。人工智能目前已经实现了客户识别、定向展示、工业数据分析等诸多应用。在服务业领域,人工智能早已应用于金融、旅游、物流、文化体育等各个领域,其中在金融领域进行赋能的研究与实践最丰富,人工智能的分析与决策潜力被认为是打造数字金融体系,实现包容性增长的重要路径之一[12]。如今人工智能技术正越来越多地被应用于供应链、交通物流、工业互联等领域,在工业、农业、金融、公共安全等行业逐步构建多样化行业技术服务及解决方案平台,将智能技术与行业数据、专业知识、业务流程深度融合,形成细分领域垂直行业平台,提供相对通用的行业应用服务。人工智能核心产业与融合产业促进经济高质量发展的动态作用机理见图2。
图2人工智能核心产业与融合产业促进经济高质量发展的动态作用机理
核心产业与融合产业之间并非独立增长的割裂状态,相反,人工智能对融合产业的增长赋能离不开人工智能核心产业高质量智能化设施与智能化方案的支撑,而核心产业的持续迭代更新也无法脱离融合产业提供的技术升级需求与场景数据反馈,一些阶跃性的模型优化与算法创新在高质量的场景数据支持下可以在短时间内达到极佳的训练效果并迅速投入推广使用,节省大量训练成本。核心产业与融合产业对经济高质量发展的促进作用是一个具有循环化、动态化特征的交互促进过程,在这个交互过程中,核心产业的底层架构创新能力与迭代速度持续提升,数据更加自主可控、安全高效,而融合产业的赋能边界不断拓展,逐步覆盖国民经济全产业链各环节。两类产业对经济高质量发展的促进路径具有内生自我反馈机制,在循环往复、不断深化的持续性过程中,实现更加全面、深化、自主、包容的经济高质量发展。
3.潜在关联产业的活化效应。除核心产业的扩张效应与融合产业的赋能效应外,作为一项颠覆性技术,人工智能还将对经济体系中的潜在关联产业产生重要驱动作用,即产生“活化效应”,带来创造性地增长。很多原本与数字技术毫无关联的产业,在人工智能行业产品输出、服务输出、技术输出、范式输出、商业模式创新等助力下得到活化,迎来了新一轮高质量发展行情。比如,在十余年前,外卖还只是人们拨打商家电话进行点餐配送行为的别称,而如今,外卖在人工智能技术的加持下,通过算法推荐、匹配骑手、产业链优化等方式,已经成长为一个万亿规模的巨型市场。在日常出行领域,人工智能技术为高效安全出行提供支持,在房地产行业,人工智能技术为交易主体实现智能匹配,降低交易时间成本,提升社会福利。我们正处于一个剧烈变革的时代,在可预见的未来,这种活化效应将越来越多地刺激经济社会的各个潜在关联产业,实现高效集约、创新绿色的高质量增长。
活化效应与融合产业的赋能效应有所区别:一是活化效应面对未来,活化对象更多指目前还未与人工智能技术产生交集的潜在行业;二是赋能效应的对象是融合产业,赋能过程中人工智能与融合产业的交互作用、动态发展,需要融合产业不断提供产品服务信息,而活化效应更多通过人工智能核心产业单向输出实现。
此外,对于部分潜在关联产业,特别是非正规部门(可称为市场外潜在关联产业),人工智能通过将其进行资本化来实现活化效应。索托在《资本的秘密》一书曾讨论这类广泛存在于发展中国家,严重阻碍社会部门运转以及经济产业发展的产业,包括城乡接合部非正式市场系统、非法作坊、非法建筑等。这些正式体系之外的经济部门在一定程度上弥补了正式经济领域的空白,但当其比重过大时便会形成对经济社会发展的强大阻力[13]。邱泽奇等将这类资产获得市场进入机会定义为资产的资本化过程,认为促进有效资本增长的途径有两条:其一,提高资本化程度;其二,增加资产数量[14]。在市场外潜在产业的资本化方面,数字技术展现了前所未有的催化效率,而人工智能技术更是综合大数据、识别匹配、智能决策等流程于一体,在社会各个方面实现冗余资产的发现切除、错配资产的优化调整、闲置资产的重新激活,促进了资产的高速、高效资本化。
人工智能通过对市场内潜在关联产业的活化效应,解决产业内存在的问题:其一,供求双方信息流通受阻,市场信息不对称的非匹配问题;其二,产业规模增长而质效降低的粗放增长非集约问题。对于市场外潜在关联产业,人工智能的资本化效应则解决了两方面的问题:其一,非正式产业尾大不掉的非规整问题;其二,数字设备能力差异化、市场进入机会不平等、地域发展不均衡等非公平问题。人工智能充分发挥对潜在关联产业的活化效应,作用范围逐步覆盖国民经济全产业链各环节,提供经济发展过程中非匹配、非集约、非规整、非公平问题的解决方案,实现经济的高质量发展。
二、我国人工智能发展现状
长久以来,中国在世界科技发展历史中扮演着追赶者的角色,而人工智能是我国在新一轮技术革命中率先取得领先优势地位的少数领域之一。2020年中国人工智能核心产业规模达到3251亿元,年度行业投融资金额突破800亿元[15],人工智能正加速与实体经济融合发展,助力产业转型升级、提质增效。
(一)基于行业发展视角,中国处于人工智能领域的第一梯队地位
目前我国在人工智能领域的论文发文量、专利申请量方面都居于世界前列,并且增长速度正进一步提高。总体而言,中国人工智能处于全球第一梯队位置,成为仅次于美国的第二大贡献国。
根据中国科学技术发展战略研究院、科技部新一代人工智能发展研究中心发布的《中国新一代人工智能发展报告2020》数据显示,2019年中国共发表人工智能论文2.87万篇,比上年增长12.4%,单年论文规模达到美国的1.5倍,相比2013—2018年共产出7.4万篇有了大幅提升。在全球近五年前100篇人工智能论文高被引论文中,中国产出占21篇,相比2018年增加5篇。中国在人工智能领域各顶级国际会议上的活跃度和影响力不断提升,在自动机器学习、神经网络可解释性方法、异构融合类脑计算等领域中都涌现了一批具有国际影响力的创新性成果。中国人工智能专利申请量2019年超过3万件,比上年增长52.4%[16-17]。另据深圳市人工智能协会发布的《2021人工智能发展白皮书》,截至2020年底,中国人工智能相关企业数量达到6425家,同比增长25.37%,企业数量位居全球第二[18]。另外,中国始终以积极的姿态推动人工智能领域的国际合作,在国际人工智能开源社区的贡献度已成为仅次于美国的第二大贡献国。
(二)基于技术研发视角,中国正处于人工智能发展的关键突破期
人工智能对经济社会高质量发展的促进力量根植于自身的通用性技术特征,而作为一项引领新一轮产业变革的数字技术,其对产业的变革动力来源于底层的一系列技术创新。中国信息通信研究院对人工智能技术创新程度和突破难度进行分类,从高到低分为颠覆、阶跃、创新优化和工程实现四个发展层级[17]。目前,我国在创新优化和工程实现技术方面处于全球领先位置,但在颠覆性和阶跃性技术方面相对缺乏,缺乏全球引领能力。
据中国信息通信研究院测算,现阶段我国在视觉、语音等基础智能任务的工程实现水平,处于世界领先位置,算法模型的二次创新优化能力同样居于世界前列,但在基础理论、原创模型等颠覆性、阶跃性技术领域仍不具备领导能力[19]。具体而言,中国有一大批人工智能研发机构致力于吸收改造领域内的人工智能算法技术并对其进行场景应用方面的训练,在完成工程实现的同时,基于丰富的场景、用户数据对技术模型进行较小的创新优化。如中国科学院大学人工智能学院近年来开发了基于大数据的互联网机器翻译核心技术及产业化(2017)、大规模知识图谱构建关键技术与应用(2020)等项目。在企业方面,旷视科技融合算法、算力和数据,打造新一代AI生产力平台旷视Brain++,开源深度学习框架“天元”,其ShuffleNet模型具备轻量级CNN模型结构,在同等计算复杂度下可编码更多信息。极智嘉科技基于丰富运营经验和场景积累,建立了国内机器人数量最多、出货能力最大的机器人拣选仓库产品和解决方案系统,覆盖订单拣选、自动搬运、包裹分解等不同物流应用场景,提供环境地图构建、动态环境适应、混合场景多传感器融合、自适应运动等一系列技术服务。依图科技与上海交通大学、芯片公司ThinkForce合作建立“视觉计算与应用”联合实验室,搭建全球最大的人像系统,覆盖超15亿人像,为全国20余省的安防、海关总署、中国边检等合作伙伴提供人像比对服务,并广泛应用在招商银行、浦发银行等多个互联网金融业务场景中。
尽管中国在视觉、语音、自然语言处理等基础应用任务的算法开发上技术完成度高、处理能力强、迭代速度快,多所企业与高校在全球权威比赛中成绩优异①,但是,在颠覆层级的基础理论开发,以及阶跃层级的模型原创或技术优化方面,中国缺失与产业体量相匹配的领导力。一方面,知识工程、深度学习、神经网络等人工智能基础理论开发需要相关统计学、认知学、神经学等底层学科作为理论基础,而中国长久以来一直在现代基础学科理论创新方面落后于欧美发达国家,缺乏基础性创造性贡献。另一方面,中国还没能掌握人工智能热点发展方向的决定权,技术标准、数据标准体系长期对标国际,国内研发重心长期跟随国际,缺失人工智能领域技术研发话语权,短期难以突破领域内寡头垄断格局。
①商汤、旷视、依图、腾讯等企业在细粒度图像识别、自动驾驶场景定位及追踪、行人重识别(ReID)、人体视频解析等复杂任务各类比赛中成绩优异;哈工大讯飞联合实验室(JointLaboratoryofHITandiFLYTEKResearch,HFL)在推理阅读理解评测任务(HotpotQA)全维基赛道中获得第一。
(三)基于地域空间视角,中国形成了三大城市群为重要引擎,沿海地区快速增长,内陆地区稳定增长的发展格局
自2017年国务院发布《新一代人工智能发展规划》以来,全国各地加快推进具有地方特色、符合地方定位的人工智能战略规划布局,央地共治共同推动人工智能发展成效显著,相关细化政策不断完善落地。当前中国形成了以京津冀、长三角、大湾区三大城市群为重要引擎,沿海地区快速增长,内陆地区稳定增长的人工智能地域发展格局。其中,京津冀城市群形成以北京为绝对核心的单核加速发展态势,长三角城市群构建以上海、杭州为正副核心的双核引领发展态势,大湾区城市群形成以深圳、香港、广州为核心的三极协同发展态势。三大城市群以外,主要有成都、武汉、长沙、合肥等城市支撑起了内陆地区人工智能领域的发展。
截至2020年底,中国人工智能企业数量达到6425家,京津冀、长三角、大湾区三大区域占据了企业总数量的80%以上。广东、北京、上海、浙江在企业专利申请数量方面领先全国,广东、江苏、北京、浙江是人工智能专利转移最活跃的地区,这些地区通过科技成果供给激发了区域经济发展新动能。2019年人工智能论文发表活跃度排名依次为北京、江苏、广东、湖北等地。2020年人工智能领域从业人员超过60万人,而北京、上海、深圳、杭州聚集了80%以上的人工智能人才①。三大城市群的人工智能快速发展离不开一大批人工智能研发机构的底层支撑,笔者根据机构资料与中国信息通信研究院对人工智能技术层级划分标准,对地处三大城市群的人工智能研发机构进行了简要划分。在北京,有清华大学神经网络结构研究中心、北京大学智能科学系、微软亚洲研究院、百度深度学习研究院支撑起颠覆与阶跃层级的技术开发,中科大模式识别实验室、北理工仿生机器人与系统国际合作联合实验室、旷视科技计算机视觉研究院等则聚焦创新优化与工程实现级的技术研发。上海与杭州在颠覆与阶跃层级的基础理论开发有上海交通大学人工智能数学基础、机器认知计算研究中心、复旦大学类脑智能教育部重点实验室、深兰科学院等校企机构,创新优化与工程实现级则有浙江大学计算智能与信号处理研究所、多源感知与机器智能研究所、之江实验室、上海智能机器人工程技术研究中心等研发机构提供支撑。大湾区地区有着广泛的人才吸引力与技术流动性,建有华为云计算异构系统关键技术工程实验室、中山大学大数据与计算智能研究所、无人系统研究所、深圳人工智能与大数据研究院、香港中文大学智能系统实验室;云从科技—中国民航共建智慧民航研究中心(广州)、大疆智能无人系统开放创新平台等一大批校企研发机构。
①数据来源:深圳市人工智能行业协会。其中,企业专利申请数量:广东28.32万件,北京10.28万件,上海6.13万件,浙江3.67万件
三、我国人工智能促进经济高质量发展存在的主要问题
(一)关键核心技术缺乏与产业话语权缺失导致核心产业低质扩张
在当前世界局势中,人工智能被视为经济社会发展重要的新增长点,各国都十分重视人工智能技术的发展,国内人工智能企业与高校科研院所在国际市场中极易被打上“中国”的标签,并遭遇一些来自非市场力量的压迫。中国目前在创新优化级、工程实现级的人工智能技术研发工作取得了巨大成就,但在颠覆性理论突破与阶跃性模型创新方面还有所不足,中国还未能掌握人工智能热点方向的决定权,技术标准、数据标准体系不得不长期对标国际,研发重点跟随国际脚步,缺失人工智能领域技术研发话语权。同时,在关键技术、芯片制造、架构设计、底层平台方面中国还面临着发达国家“卡脖子”的局面。人工智能促进经济高质量发展的路径之一是通过其核心产业的扩张增长,在核心技术话语权缺失的情况下,中国将难以发挥核心产业的扩张效应,甚至长期陷入“大而不强”的被动局面。
(二)产学研合作存在“梗阻”与要素流通不畅导致融合产业低效赋能
人工智能对融合产业的赋能过程涉及特定产业专业与人工智能专业的交叉复合知识,更需要研发端长期布局,熟悉特定产业的运行架构与关键症结。然而,目前中国不同人工智能主体的研发重心存在偏差,高校科研院所相对重视人工智能理论开发与模型训练问题,而人工智能企业更重视场景应用与技术服务,产业端与研发端之间的界限依旧牢固,市场激励基础理论研发与基础研发促进产业升级的双向路径不通畅,技术、人才、制度、数据等要素难以自由流动,核心产业与融合产业之间的产品服务流与信息数据流渠道受阻,原本的动态融合逻辑被打破,人工智能对融合产业赋能成本高、效率低、效果差,无法充分发挥对经济高质量发展的交互促进效应。
(三)平台垄断问题与溢出效应不足导致潜在关联产业低迷活化
在人工智能时代,学习算法不断优化,模型算力持续进步,数据的经济价值将得到前所未有的深度挖掘和充分释放,为海量用户数据提供了完美的商业可能。同时,人工智能技术依赖数据进行正反馈循环发展,行业自然倾向于垄断,当人工智能头部平台公司形成一定的市场势力,市场机制将很难阻止其利用“技术+市场势力”的循环进一步深化垄断格局。人工智能产业主体通过数据垄断而限制、排除竞争的行为,将成为反垄断法面临的新时代课题[20]。当前,我国数字经济平台垄断问题已经有所凸显,以滴滴为代表的一批数字平台被国家互联网信息办公室核实存在严重违法违规收集使用个人信息问题,要求下架整改[21-22]。人工智能行业存在的垄断问题对行业发挥溢出效应有着严重的阻碍,行业活力被抑制,导致人工智能对于潜在关联产业的活化效应严重释放不足。
(四)相关社会伦理道德规范缺失,隐私保护和安全性问题突出
与发达国家相比,我国还缺乏与人工智能相关的社会伦理和法律规范系统研究和整体规划,对于人工智能使用和赋能造成的潜在风险、隐私保护,缺乏事前预见性和事后应急处置方案,特别是在社会治理领域的应用,容易诱发隐私侵犯、侵入式检测事件,甚至诱发危及社会稳定和政权安全的严重群体性社会问题。人工智能法律法规有待完善,行业发展尚需伦理准则规范,法律地位不明确、算法不透明、危险决策不可解释等一系列风险亟须解决。
此外,我国还存在开源软件使用不当导致的知识产权侵权风险、强制开源导致企业核心技术泄露风险(如使用GPL等许可协议,要求引用/修改/衍生代码的开源/免费使用,不允许修改/衍生的代码作为闭源商业软件发布和销售)、不遵守许可协议造成合同违约风险,以及多个开源许可证不兼容风险等一系列问题。在开源软件使用不当方面,我国人工智能领域在国际上声誉受损和被经济制裁的案例时有发生。
(五)相关人才短缺且结构不合理,难以支撑实体经济高质量发展
1.高端人才总量偏少。知名AI领域机构ElementAI发布的2020年《全球AI人才流动报告》称,尽管中国在人工智能处于世界前列,论文数量排名也居于全球第二位置,但中国人工智能人才储备表现不佳,在全球AI人才库中,美国拥有188300人,再次位列第一,印度拥有86213人,居次席,中国拥有AI人才数量仅为22191人,排在第四位;并且,据测算,2014—2019年,中国人工智能高端人才呈现越来越严重的净流出状态[23]。
2.人才结构不合理。我国人工智能人才主要集中在应用领域,而美国则主要集中在芯片、机器学习、计算机视觉等重要基础技术领域。我国目前缺乏具备人工智能和实体经济交叉知识体系的复合型人才,但高校专业设置落后于科技发展实际,人工智能专业教学存在缺乏实践、领域宽泛、知识陈旧、碎片化严重等问题。产业界则存在人才使用和激励机制不完善的问题,对如何评价科技人员贡献缺乏有效办法,人工智能技术人员在选拔、任用、培养、使用上缺乏有效激励办法。
四、对策建议
(一)推进基础理论研究和关键共性技术开发,提高科技自立自强能力
针对核心产业低质扩张问题,充分发挥新型举国体制优势,集合产学研多方优势,加大在机器学习、智能计算、核心算法、基础软硬件等人工智能前沿理论和关键核心技术研发应用的投入力度,坚持创新在经济高质量发展中的核心地位,增强科技自主创新能力,尽快在基础理论研究和关键共性技术获得突破,解决一批“卡脖子”技术问题,提高人工智能领域科技自立自强能力。
针对融合产业低效赋能问题,大力推进以企业为主体、“政产学研用”相结合的开放式协同创新,提高创新生态系统开放性、协同性。加强人工智能相关的企业国家重点实验室建设,支持企业与高校、科研院所等共建研发机构和联合实验室,打破产学研壁垒,进一步疏通二者之间技术、人才、制度、数据的流动路径,加强面向人工智能和行业共性问题的应用基础研究,联合开展关键共性技术攻关。鼓励不同产业领域对人工智能技术的创新应用,加快人工智能应用覆盖速度,拓展人工智能应用赋能边界。鼓励实体经济与人工智能的深度融合,推进融合产业动态高质量发展。
(二)优化行业发展环境,促进产业生态良性发展
人工智能与实体经济深度融合需要优化发展环境,包括完善的市场建设、公平的竞争环境、良好的商业秩序、政府规范合理的行为及其激励与保障下企业对于技术创新与产业创新的追求(而非对于寻租及政策套利活动的追求)。
在反垄断方面,贯彻落实《中华人民共和国反垄断法》和《国务院反垄断委员会关于平台经济领域的反垄断指南》,强化对数字经济平台企业反垄断执法,坚决制止平台企业利用算法歧视、算法操纵、数据垄断、侵犯隐私等手段,侵害消费者利益,实施排除、限制竞争的行为。
在政策环境方面,推进普惠性产业政策转型,由当前“政府选择+政策支持”的产业政策,与“产业规划—项目选择—政策支持—效果评估”的政策实施方式,转变为“环境建设+市场选择”的产业政策,与“产业规划—环境建设—体制机制保障—企业行为—市场选择”的政策实施方式[24]。
在市场环境方面,完善全国统一、竞争有序的市场体系建设,加大知识产权保护力度,防范打击人工智能领域知识产权侵权行为。建立完善人工智能知识产权交易制度,促进人工智能技术在产业间的扩散。完善资本市场支撑环境,优化人工智能与实体经济融合的金融市场支持。完善区域间技术、人才、资本流动环境,积极引导中西部地区重视人工智能产业发展,解决地域发展不均衡问题。
(三)完善相关法律法规和伦理规范制度,促进人工智能“科技向善”
新一代人工智能技术是一种数据驱动型技术,存在着技术上鼓励数据的全社会流动共享与安全上要求个人加强隐私信息保护之间的深层矛盾。数据的高质量、大规模、可得性关乎人工智能发展的成败,因此在数据安全性方面,需要政府重视相关法律法规体系建设,行业协会加快制定行业标准规范,企业内部建设并严格执行数据泄露惩罚机制。
贯彻落实《中华人民共和国网络安全法》《中华人民共和国数据安全法》,呼吁尽快出台《中华人民共和国个人信息保护法》。借鉴欧盟《通用数据保护条例》等在数据安全和隐私保护的先进经验,结合实际情况出台相关实施细则和配套政策,在确保数据安全和个人隐私、企业秘密前提下,鼓励数据互联互通。组织社会学家、法律专家、技术专家针对相关问题展开合作,全社会广泛参与讨论,制定完善相关法律法规和伦理规范,规范人工智能信息收集、保存、使用、共享、转让、信息披露等活动,实现信息安全、隐私权与数据可得性之间的平衡,确保人工智能“科技向善”。
(四)构建高素质人才培养体系和人才流动机制,促进包容性均衡发展
人工智能核心产业扩张增长过程的专业性与融合产业赋能增长过程的复合性对相关人才的数量、质量提出了高要求。中国需要在鼓励高校设立人工智能专业的同时,鼓励设立“人工智能+”复合专业,培养融合专业人才。基于多学科构建人工智能人才协同培育体系,加强优势专业校际交流,深化教育科研改革,加大交叉人才培养力度,增加人工智能人才储备。
我国人工智能发展水平高的机构和企业主要集中在东部地区,中西部人工智能研发和应用水平相对较低,区域发展不平衡问题较为突出。中西部地区应以大力发展数字基础设施为契机,完善地区营商环境和知识产权保护制度,构建灵活顺畅的人才流动机制,通过建立人工智能专项发展基金池等办法,吸引东部人才到中西部地区创业发展,提升中西部地区人工智能发展水平。
拓宽国际人才交流和招揽渠道,扶持人工智能、机器学习,以及数字经济所需的数据分析、云端计算等领域的人才引进及培养。鼓励高校、企业相关团队赴国外顶尖大学及研究机构合作交流人工智能及机器学习等最新技术。完善外籍高层次人认定标准,畅通人才申请永久居留的市场化渠道,为外籍高层次数字科技人才在华工作、生活提供更多便利。完善国际化人才培养模式,加强数字科技人才国际交流合作,推进职业资格国际互认。
(五)加快人工智能创新应用先导区和创新发展试验区建设,推进改革试点和应用示范
目前,工信部已经在上海(浦东新区)、深圳、济南—青岛、北京、天津(滨海新区)、杭州、广州、成都设立了8个国家人工智能创新应用先导区,这是部省协同推进人工智能和实体经济深度融合的重要举措。科技部则分别发函支持北京、上海、合肥、杭州、深圳、天津、济南、西安、成都、重庆、广州、武汉、苏州、长沙等城市和浙江省德清县,建设国家新一代人工智能创新发展试验区,国家新一代人工智能创新发展试验区已达14市1县。
要以创建国家人工智能创新应用先导区和国家新一代人工智能创新发展试验区为契机和载体,发挥先导区和试验区在技术原创、产业生态、人才基础、发展环境等多重优势,不断拓展应用场景,促进人工智能与制造业深度融合,促进人工智能与核心产业、融合产业、潜在关联产业更多融合发展。与此同时,探索新一代人工智能发展新路径新机制,形成可复制、可推广的经验,不断挖掘机制改革“深度”,提升创新能力“高度”,加快应用落地“速度”,增进产业集聚“热度”,导出经验、模式、产品及服务,为经济高质量发展提供有力支撑。
参考文献
[1]姜国睿,陈晖,王姝歆.人工智能的发展历程与研究初探[J].计算机时代,2020(9):7-10,16.
[2]习近平主持中共中央政治局第九次集体学习并讲话[EB/OL].(2018-10-31)[2021-07-07].http://www.gov.cn/xinwen/2018-10/31/content_5336251.htm?cid=303.
[3]蔡跃洲,张钧南.信息通信技术对中国经济增长的替代效应与渗透效应[J].经济研究,2015(12):100-114.
[4]蔡跃洲,陈楠.新技术革命下人工智能与高质量增长、高质量就业[J].数量经济技术经济研究,2019(5):3-22.
[5]HolfordWD.Thefutureofhumancreativeknowledgeworkwithinthedigitaleconomy[J].Futures,2019(105):143-154.
[6]曹静,周亚林.人工智能对经济的影响研究进展[J].经济学动态,2018(1):103-115.
[7]郭晗.人工智能培育中国经济发展新动能的理论逻辑与实践路径[J].西北大学学报(哲学社会科学版),2019(5):21-27.
[8]师博.人工智能助推经济高质量发展的机理诠释[J].改革,2020(1):30-38.
[9]任保平,宋文月.新一代人工智能和实体经济深度融合促进高质量发展的效应与路径[J].西北大学学报(哲学社会科学版),2019(5):6-13.
[10]罗以洪.大数据人工智能区块链等ICT促进数字经济高质量发展机理探析[J].贵州社会科学,2019(12):122-132.
[11]赵春江:加快数字技术应用于农业农村[N].农民日报,2020-12-19(03).
[12]张勋,万广华,张佳佳,等.数字经济、普惠金融与包容性增长[J].经济研究,2019(8):71-86.
[13]赫尔南多·德·索托.资本的秘密[M].于海生,译.北京:华夏出版社,2012.
[14]邱泽奇,张樹沁,刘世定,等.从数字鸿沟到红利差异——互联网资本的视角[J].中国社会科学,2016(10):93-115,203-204.
[15][18]深圳市人工智能行业协会发布《2021人工智能发展白皮书》[EB/OL].(2021-05-28)[2021-06-20].https://www.sohu.com/a/469049593_121123919.
[16]《中国新一代人工智能发展报告2019》发布——我国人工智能论文发文量全球领先[EB/OL](.05-26)[2021-06-08].https://baijiahao.baidu.com/s?id=1634542618791206141&wfr=spider&for=pc.2019-
[17]《中国新一代人工智能发展报告2020》发布[EB/OL].(2020-10-22)[2021-06-14].https://baijiahao.baidu.com/s?id=1681229567542644309&wfr=spider&for=pc.
[19]《人工智能核心技术产业白皮书》发布[EB/OL].(2021-04-21)[2021-06-20].https://www.sohu.com/a/462167290_120056153.
[20]吴汉东.人工智能的数据垄断与反垄断法的时代使命[N].光明日报,2018-07-03(11).
[21]关于下架“滴滴出行”App的通报[EB/OL].(2021-07-04)[2021-07-11].http://www.cac.gov.cn/2021-07/04/c_1627016782176163.htm.
[22]关于下架“滴滴企业版”等25款App的通报[EB/OL].(2021-07-09)[2021-07-11].http://www.cac.gov.cn/2021-07/09/c_1627415870012872.htm.
[23]2020全球AI人才报告:全球AI人才突破47万,中国仅有2万[EB/OL].(2021-03-25)[2021-07-09].https://www.sohu.com/a/457292666_120129517.
[24]高煜.我国经济高质量发展中人工智能与制造业深度融合的智能化模式选择[J].西北大学学报(哲学社会科学版),2019(5):28-35.
方澳,中国社会科学院大学硕士研究生,研究方向为数字经济、政府政策。
郭朝先,方澳.人工智能促进经济高质量发展:机理、问题与对策[J/OL].广西社会科学:1-10[2021-07-26].http://kns.cnki.net/kcms/detail/45.1185.C.20210723.1327.002.html.
中国人工智能创新处于什么发展水平
◎编辑|数字经济先锋号
◎来源|北京工业大学学报
◎作者|王山陈昌兵
人工智能作为新技术创新的代表与引领未来、重塑传统行业结构的前沿性与战略性技术,逐渐成为全球新一轮科技革命和产业变革的重要驱动力量。世界各国在以创新为主的人工智能新技术方面展开了激烈的角逐与残酷的竞争。
目前,我国人工智能技术创新水平如何?技术处于何种发展阶段?我国发展人工智能的优势在哪?未来我国人工智能发展趋势如何?本文即将告诉你答案。
指标体系的构建
基于技术创新大数据,本文创新性地构建多指标测度体系与技术创新综合发展指数;根据综合发展指数模拟各国人工智能技术创新S演化曲线,描绘动态演变轨迹并定位中美技术创新发展位置。重点结合五维度在不同阶段的权重分布,比较中美新技术创新发展差距,探讨影响我国人工智能新技术创新发展的主要因素。提出提高新技术创新水平的具体措施与发展建议,助力实现我国人工智能关键核心技术突破、摆脱被先发国家控制的劣势地位。
表1人工智能技术创新发展水平多指标测度体系
根据技术创新周期不同发展阶段可能呈现出的特征与各特征之间的内在逻辑关系,同时结合人工智能新技术创新发展影响因素与技术创新发展测度相关参考文献,我们选择了基础研究、技术创新、科技布局、产业规模与技术进步5个维度来测度人工智能技术创新发展水平(如表一所示)。
根据指标熵权计算式得到的人工智能技术创新水平各测度指标的权重值(Wj)(如表二所示)。从单个指标权重看,首先体现产业规模的人工智能技术融资规模指标权重最高,然后为人工智能新增企业数指标;其次为体现技术创新程度的人工智能技术优先权年专利申请量指标,研发课题数指标权重最低。从分析维度看,首先产业规模维度权重最大;其次为技术创新维度与科技布局维度,基础研究维度权重值最小。综上可知,产业规模与技术创新维度各参数动态变化对人工智能技术创新所处发展阶段的判断具有显著影响。
表2人工智能技术创新水平测度指标权重值
中美等国的对比与分析
根据分析,目前,我国人工智能技术正处于快速发展的技术成长期后期,技术创新十分活跃,未来将涌入更多的企业和科研机构,竞争也将越来越激烈。而美国人工智能技术萌芽于1990年,于2005年步入技术成长期,2020年开始走向成熟,并预计于2034年进入技术衰退期,目前正处于开展商业应用的技术成熟期,创新动力将持续增强。(拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1,越接近1,说明回归直线对观测值的拟合程度越好,表三可见各国人工智能技术创新S演化曲线拟合优度R²均在0.9以上,拟合效果较为理想。——数字经济先锋号注)
表3中美等国人工智能技术创新发展阶段判定
日本、英国、法国与德国作为较早启动人工智能新技术研究开发与科研成果推广应用的主要发达国家,同样具有较大的先发优势,其技术创新发展水平早期均位列世界前沿且技术发展历程与演化轨迹比较相似,均在1990年左右进入技术创新萌芽期,后经技术不断地积累、发展与突破,分别于2005年与2019年左右步入技术创新成长期与成熟期,目前技术已经成熟。
图1中美等国人工智能技术创新周期S曲线
得益于雄厚的科技与经济实力,美国人工智能技术创新累计综合发展指数遥遥领先于其他各国,日英法德4国作为人工智能新技术创新发展早期的追随者与前期领导者,在人工智能技术领域,同样具有较高的发展水平与先发优势,鉴于人工智能技术创新是一个显著的动态累计过程,且发展周期较长,美日等世界主要发达国家并未因前期先发优势而形成技术发展垄断局面,因而为后发国家的技术追赶提供了巨大的机会窗口。
由图1技术创新演变曲线可预测出,在技术经验渐进性积累与自主创新能力不断提升的条件下,我国正逐步缩小与美国在人工智能新技术创新赛道上的发展差距,预计将在人工智能新技术创新发展的成熟期实现技术的追赶与超越。
目前,中国人工智能技术创新累计综合发展指数已超越英法德日4国,但与技术创新水平处于全球领先地位的美国相比仍有较大发展差距。本文从人工智能新技术创新累计综合发展指数增长率探索未来中国是否能反超美国并掌握创新发展的主导权,图2是各国人工智能技术创新累计综合发展指数增长率变化结果。
图2拟合中美等国人工智能技术创新累计综合发展指数增长率
由图2可知,1985-2003年,美国、英国、法国、德国与日本人工智能技术创新累计综合发展指数增长速率基本处于快速上升状态,尤其是美国。而我国的人工智能技术创新起步晚于美国,在基础研究原创性成果的不足或某些前沿领域的投入缺失的情况下错失了先发优势。但在国家大力扶持与自主创新能力不断提升的情况下,我国人工智能技术发展呈现出了非常强劲的增长态势。
因此,可以预见,在当前快速增长态势下,再加上后天技术的积累以及先发的数据优势,我国必将在人工智能新技术这一赛道上领跑全球。
影响因素动态分析
我国人工智能新技术创新发展速度较快,但关键核心技术水平与美国相比仍有差距。技术创新是一个多阶段过程,不同发展阶段因所需资源、条件不同而影响因素权重不同。本节创新性地引入技术创新不同阶段变量,动态分析不同阶段下人工智能技术创新的多指标测度体系中维度权重变化。进一步深入剖析我国人工智能新技术创新发展的影响因素。
由表四可以看出,中美两国在人工智能技术的发展阶段、技术创新和技术进步等方面存在差异。美国在人工智能新技术基础研究投入、技术创新布局、技术产业链上游的占据等方面具有较为显著的优势,而我国在科技布局、产业规模和融资份额等方面具有一定优势。但是,我国与美国相比,技术进步较为缓慢,尤其是在芯片领域存在较大差距,这将对我国的人工智能产业化形成不利影响。
因此,我们应该着眼于加强人工智能领域的基础研究,不断提升自主创新能力,积极推动技术创新和进步,在技术产业链上游抢占制高点,实现由技术跟随到技术引领的转变。同时,也需要加强与市场的有效结合,促进技术产业化的发展,让科技创新更好地服务于经济社会的发展,实现以科技创新驱动高质量发展的目标。
表4人工智能技术不同发展阶段影响因素权重分布
通过与美国的比较不难看出,我国人工智能新技术创新在基础研究、技术创新与技术进步维度,仍有相当发展空间,由于缺乏占据世界产业制高点的核心技术,存在若干被他国“卡脖子”的领域。
图3中美等国人工智能技术创新逐年发展指数
虽然我国人工智能新技术研发起步较晚,基础研究薄弱,技术创新累计综合发展指数与美国存在较大差距,但由技术创新逐年综合发展指数(图3)可知,我国人工智能新技术创新发展指数自2003年开始逐年上升,正不断缩小与美国人工智能技术创新累计综合发展指数的差距。作为后起之秀,在经历长期以技术跟随为主的技术潜伏期与萌芽期,以及二次创新为主的技术成长期后,依靠后发优势,我国于2017年反超自2003年以来技术创新逐年发展指数呈逐步下降态势的美国,跃居全球首位。
结论及建议
本文基于人工智能技术创新科研大数据,提出了人工智能技术创新水平多指标测度体系与技术创新综合发展指数计算模型,并通过绘制技术创新生命周期S演化曲线,对我国与世界主要发达国家在人工智能技术创新方面的发展阶段进行了评估与预测,深度剖析了我国与美国等国之间在技术创新、科技布局、产业规模、技术进步等方面的差距。
基于这些结论,本文提出了几点建议。首先,要强化基础研究,加大对基础研究长期稳定的支持力度,同时引导企业增加基础研究投入,提高我国基础研究水平和源头创新能力。
其次,要推动应用研究与基础研究的融合贯通,坚持问题导向、目标导向,设立重大科技计划项目,支持设立联合攻关团队(校企联合或校校联合等),或以企业为主导并协调高校和有关科研院所的资源,对有关人工智能的应用技术进行研究开发(委托研究、联合研究等形式)。
此外,还建议要产业化市场化发展,中国目前以高校为主、各自为战的人工智能研发体系不利于中国人工智能产业对前沿技术的把握和整体技术创新水平的进一步提升,也不利于技术的快速转化应用。建议培育一批技术先进、世界领先的企业,并带动产业上下游协同发展,形成持续创新能力、技术全球领先的产业集群。
最后,要完善技术创新机制,应鼓励企业培育和引进掌握关键核心技术的科技领军人才和团队,为产业发展提供智力支持;建立综合的关键核心技术突破与创新机制,将短期与中长期科技积累相结合,建立国家基础研究、产业科技等方面的公私结合的综合创新体系,将产业发展创新需求、国家战略创新需求、科研好奇创新需求等三大方面的创新动力综合起来,并重结合,实现“远水”和“近渴”的融合。
综上所述,通过实施这些建议,我国在人工智能技术创新方面可以进一步提升自身的科技水平和创新能力,缩小与美国等发达国家的差距,加速我国在人工智能领域的发展进程。
原文来源:王山,陈昌兵.中美人工智能技术创新的动态比较——基于人工智能技术创新大数据的多S曲线模型分析[J/OL].北京工业大学学报(社会科学版)。(因篇幅原因,本文有部分删减)
关于我们
「数字经济先锋号」是成都数联产服科技有限公司旗下数字经济研究交流平台。围绕数字产业、数字基建、数字治理、数字生态等数字应用领域,揭示与记录数字经济发展点滴与脉络。
数联产服是一家数字经济行业智库、产业大数据服务商,具备全流程大数据治理-分析-决策支撑服务能力,面向各级政府和产业运营机构提供基于大数据的产业经济发展解决方案和综合服务。
人工智能促进教育变革创新
通过云平台布置电子作业,利用数据分析课堂上学生学习行为,推进学校管理流程迈向数字化……前不久,2022国际人工智能与教育会议在线上举行,来自全球数十个国家的政府官员、专家学者、一线教师、企业代表等相聚“云端”,畅叙人工智能时代教育发展图景。
作为引领新一轮科技革命和产业变革的重要驱动力,人工智能催生了大批新产品、新技术、新业态和新模式,也为教育现代化带来更多可能性。习近平总书记强调,“中国高度重视人工智能对教育的深刻影响,积极推动人工智能和教育深度融合,促进教育变革创新”。国务院印发的《新一代人工智能发展规划》,明确利用智能技术加快推动人才培养模式、教学方法改革;教育部出台《高等学校人工智能创新行动计划》,并先后启动两批人工智能助推教师队伍建设试点工作;中央网信办等八部门联合认定一批国家智能社会治理实验基地,包括19个教育领域特色基地,研究智能时代各种教育场景下智能治理机制;科技部等六部门联合印发通知,将智能教育纳入首批人工智能示范应用场景,探索形成可复制、可推广经验……“人工智能+教育”不断碰撞出新的火花,为教育变革创新注入强劲动能。
“人工智能+教育”,应用就在身边。音乐课上,虚拟数字人“元老师”跨越时空限制,带领多所学校学生同唱一首歌;体育课上,学生开始跳绳项目测试,智能终端上实时显示心率变化、跳绳次数、平均速度等数据。技术改变课堂,潜力无限。比如,借助虚拟现实技术,学生能够模拟穿上太空服行走在宇宙,感受浩瀚星河的魅力;通过增强现实技术体验川剧变脸,平面的课本知识变得可感可知。现实中,越来越多的学校已经开设或准备筹备人工智能教育教学活动。
“人工智能+教育”,变革教育生态。教、练、考、评、管各环节均有人工智能辅助,让教师教得更好;虚实融合多场景教学、协同育人,让学生学得更好;海量线上数据和逐渐强大的算力,让学校管理更加精准。此外,在人工智能支撑下,优质数字教育资源跨越山海,推动教育更加公平、开放。在西藏墨脱县,得益于多媒体器材配备到雅鲁藏布大峡谷深处、“智慧课堂”全覆盖,门巴族孩子小学入学率实现100%。
我国发展“人工智能+教育”具备良好基础和独特优势。比如,语音识别、视觉识别等技术世界领先;国家智慧教育平台汇集了海量的数据资源,2.91亿在校学生和1844.37万专任教师展现出丰富的应用需求;教育领域数字化基础条件全面提档升级,全国中小学(含教学点)互联网接入率达到100%,99.5%的学校拥有多媒体教室,学校配备的师生终端数量超过2800万台。也应看到,人工智能技术在教育领域的应用仍处于起步阶段。“数字鸿沟”可能将部分学生排除在智能教育之外,数据收集、使用、分析等环节存在安全隐患,相关公共政策制定较为滞后……以人工智能赋能教育现代化,这些都是需要回答好的课题。
着眼未来,应携手打造高质量、有温度的人工智能教育生态。人机协作如何更聪明,人机对话如何更友好,是“人工智能+教育”的长期课题。一方面,技术应服务育人,在让其“授业”“解惑”的同时,必须坚持教师“传道”的主体地位。另一方面,人也要理解、善用技术,努力提升信息应用能力,让人工智能更好辅助教学。教育是动态的、发展的,理性思考人与技术的关系,把握教育规律、用好技术手段、凝聚各方力量,进一步推动人工智能与教育深度融合、创新发展,才能更好赋能教育现代化,培养顺应时代发展要求的创新人才。(吴丹)