人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能发展中面临的问题有哪些
最大的问题就是泛滥。我是程序员,要做项目,有的时候,某些模块,确实要从github上下载。不瞒各位,现在下载的十有五六都是人工智能算法的。做一个软件项目,要避开人工智能,几乎不可能了。第二大问题,就是掩盖让机器有人类意识,二者都是广义上的人工智能。现在这些算法,怎么改进,也不至于让机器有人类意识。不过这样倒好,如果电脑成为人脑,是全世界人民的灾难。什么是人工智能 (AI)
虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,106KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。
然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。
StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:
人类方法:
像人类一样思考的系统像人类一样行动的系统理想方法:
理性思考的系统理性行动的系统艾伦·图灵的定义可归入"像人类一样行动的系统"类别。
以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。
目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。
随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。
关于人工智能若干重要问题的思考
在真实的人机环境系统交互领域中,人的情景意识(SituationAwarensss)SA、机器的物理SA、环境的地理SA等往往同构于统一时空中(人的五种感知也应是并行的),人注意的切换使之对于人而言发生着不同的主题与背景感受/体验,类似基督教中的三位一体。在人的行为环境与机的物理环境、地理环境相互作用的过程中,人的情景意识SA被视为一个开放的系统,是一个整体,其行为特征并非由人的元素单独所决定的,而是取决于人机环境系统整体的内在特征,人的情景意识SA及其行为只不过是这个整体过程中的一部分罢了。另外,人机环境中许多个闭环系统常常是并行或嵌套的,并且特定情境下这些闭环系统的不同反馈环节信息又往往交叉融合在一起,起着或兴奋或抑制的作用,不但有类似宗教情感类的柔性反馈(不妨称之为软调节反馈,人常常会延迟控制不同情感的释放),也存在着类似法律强制类的刚性反馈(不妨称之为硬调节反馈,常规意义上的自动控制反馈大都属于这类反馈)。如何快速化繁为简、化虚为实是衡量一个人机系统稳定性、有效性、可靠性大小的主要标志,是用数学方法的快速搜索比对还是运筹学的优化修剪计算,这是一个值得人工智能领域深究的问题。
人机环境交互系统往往是由有意志、有目的和有学习能力的人的活动构成,涉及变量众多、关系复杂,贯穿着人的主观因素和自觉目的,所以其中的主客体界线常常模糊,具有个别性、人为性、异质性、不确定性、价值与事实的统一性、主客相关性等特点,其中充满了复杂的随机因素的作用,不具备重复性。另外,人机环境交互系统有关机(装备)、环境(自然)研究活动中的主客体则界线分明,具有较强的实证性、自在性、同质性、确定性、价值中立性、客观性等特点。无论是在古代、中世纪还是在现代,哲学宗教早已不单纯是意识形态,而且逐渐成为各个阶级中的强大的政治力量,其影响不断渗透到社会生活的各个领域,更有甚者,把哲学、政治、法律等上层建筑都置于宗教控制之下。总之,以上诸多主客观元素的影响,进而导致了人机环境交互系统的异常复杂和非常的不确定。所以对人机环境交互系统的研究不应仅仅包含科学的范式,如实验、理论、模拟、大数据,还应涉及到人文艺术的多种方法,如直观、揣测、思辨、风格、图像、情境等,在许多状况下还应与哲学宗教的多种进路相关联,如现象、具身、分析、理解与信仰等等。
在充满变数的人机环境交互系统中,存在的逻辑不是主客观的必然性和确定性,而是与各种可能性保持互动的同步性,是一种得“意”忘“形”的见招拆招和随机应变能力。这种思维和能力可能更适合复杂的人类各种艺术过程。对此种种,恰恰是人工智能所欠缺的地方。
3、人机之间的不同之处
人与机相比,人的语言或信息组块能力强,有限记忆和理性;机器对于语言或信息组块能力弱,无限记忆和理性,其语言(程序)运行和自我监督机制的同时实现应是保障机器可靠性的基本原则。人可以在使用母语时以不考虑语法的方式进行交流,并且在很多情境下可以感知语言、图画、音乐的多义性,如人的听觉、视觉、触觉等具有辨别性的同时还具有情感性,常常能够知觉到只可意会不可言传的信息或概念(如对哲学这种很难通过学习得到学问的思考)。机器尽管可以下棋、回答问题,但对跨领域情境的随机应变能力很弱,对彼此矛盾或含糊不清的信息不能反应(缺少必要的竞争冒险选择机制),主次不分,综合辨析识别能力不足,不会使用归纳推理演绎等方法形成概念、提出新概念,更奢谈产生形而上学的理论形式。
人与机器在语言及信息的处理差异方面,主要体现在能否把表面上无关之事物相关在一起的能力。尽管大数据时代可能会有所变化,但对机器而言,抽象表征的提炼亦即基于规则条件及概率统计的决策方式与基于情感感动及顿悟冥想的判断(人类特有的)机理之间的鸿沟依然存在。
4、人工智能与哲学
人类文明实际上是一个认知的体现,无论是最早的美索不达米亚文明(距今6000多年),还是四大文明之后日新月异的以西方为代表的现代科技力量,其原力起点都可以落实到认知这个领域上,历史学家认为:以古希腊文化为驱动力的现代西方文明来源于古巴比伦和古埃及,其本质反应的是人与物(客观对象)之间的关系;而古印度所表征的文明中常常蕴含着人与神之间的信念;排名最后的古代中国文明是四大古文明中唯一较为完整地绵延至今的文化脉搏,其核心之道理反映的是人与人、人与环境之间的沟通交流(这也许正是中华文明之所以持续的重要原因吧)。纵观这些人、机(物)、环境之间系统交互的过程中,认知数据的产生、流通、处理、变异、卷曲、放大、衰减、消逝是无时无刻不在进行着的……
有人说人工智能是哲学问题。这句话有一定的道理,因为“我们是否能在计算机上完整地实现人类智能”,这个命题是一个哲学问题。康德认为哲学需要回答三个问题:我能知道什么?我应该做什么?我可以期待什么?分别对应着认识、道德、信仰。哲学不是要追究“什么是什么”,而是追求为什么“是”和如何“是”的问题。自从2013年10月回国后,自己一直在思考人机交互的本质问题,偶然间与朋友交谈时聊及共在(Beingtogether)一词,顿感很是恰当,试想,当今乃至可见的未来,人机之间的关系应该不是取代而是共存的时代吧:相互按力分配、相互取长补短,共同进步,相互激发唤醒,有科有幻,有情有义,相得益彰……非常巧合的是,2014年以来,机器学习、互联网、机器人、人工智能等领域的发展也相当迅速,深度学习、类脑计算、情景感知一时间成了关键词、成了时髦语,但细细品来,其核心实质都不过是解释与建构的问题,形而上一把后竟会变成所谓高大上的哲学问题。
其实哲学与科学、宗教一样,都是一个人为了能够获得理解而必须相信(除非你相信你不应当理解)的过程,这不是盲从,而是一种先信仰后理解的先验吧!比如,在科学中,物理学研究世界是什么样的(解释世界),计算机(数学)研究怎么造一个世界(建构世界),在这两者之间若没有相信、信任、信仰等先于理解而存在,恐怕是难以坚持进行下去的吧,毕竟在伸手不见五指的黑夜中,人是很难自行产生前行动力的(如一个没有利润的环境常常少见商人身影一般)。而信仰是一种赞同的思考,常常是一种非理性的激情、冲动情感,通过非理性而达到理性(通情达理),这不能不说是一个有趣的悖论!或许,这同时也是无中生有的禅理(以情化理)吧!
实际上,目前以符号表征、计算为代表的计算机虚拟建构体系是很难逼真反映以物理生理心理等理论解释真实世界的(数学本身并不完备),而认知科学的及时出现不自觉地把各理(物理生理心理)解释与各机(计算机飞机拖拉机)建构之间的对立统一了起来,围绕是(Being)、应(Should)、要(Want)、能(Can)、变(Change)等节点展开融合进而形成一套新的人机环境系统交互体系。
有时候,世界是确定的,不确定的是我们自己,面对相同的文字、音乐、视频、等情境事物,我们常常会随心情的不同而产生不同觉察和理解,境随心转。有时候,世界是不确定的,确定的反而是我们自己,面对不同的文字、音乐、视频、等情境事物,我们却能够处变不变而产生恒定表征,形成概念,心随境转。不管怎样,世界包括我们自己是由易、不易、简易、迁易、无易、有易、一易、多易……等诸多演化过程构成的,在这些纷繁复杂的变化中,都需要一种或多种参考框架体系协调其中的各种矛盾、悖论,而若追溯到这些框架体系的起源,应该就是人机环境之间的交互作用。或许,最好的智慧/智能真的就隐藏在这些交互中的自相矛盾之中?!若果真如此,那又该如何破译呢?
哲学意义上的“我”也许就是人类研究的坐标原点或出发点吧,“我是谁”、“我从哪里来”、“要到那里去”这些问题也许就是人工智能研究的关键瓶颈吧?!
5、结束语
人工智能,尤其未来的强人工智能很可能是一种集科学技术、人文艺术、哲学宗教为一体的“有机化合物”,是各种“有限理性”与“有限感性”相互叠加和往返激荡的结果,而不仅仅是科学意义上的自然秩序之原理。它既包含了像科学技术那样只服从理性本身而不屈从于任何权威的确定性知识(答案)的东西,又包含着诸如人文艺术以及哲学、宗教等一些迄今仍为确定性的知识所不能肯定事物的思考。它不但关注着人机环境系统中的大数据挖掘,还对涉及“蝴蝶效应”的临界小数据也极为敏感;它不但涉及计算、感知和认知等客观过程,而且还对算计、动机与猜测等主观过程颇为青睐;它不但与系统论、控制论和信息论等“老三论”相关,更与耗散结构论、协同论、突变论等“新三论”相联。它是整体与局部之间开环、闭环、自上而下、自下而上交叉融合的过程,是通过无关-弱相关-相关-强相关及其逆过程的混关联变换。
通过研究,我们是这样看待指人工智能技术问题的:首先人工智能过程不是被动地对环境的响应,而是一种主动行为,人工智能系统在环境信息的刺激下,通过采集、过滤,改变态势分析策略,从动态的信息流中抽取不变性,在人机环境交互作用下产生近乎知觉的操作或控制;其次,人工智能技术中的计算是动态的、非线形的(同认知技术计算相似),通常不需要一次将所有的问题都计算清楚,而是对所需要的信息加以计算;再者,人工智能技术中的计算应该是自适应的,人机系统的特性应该随着与外界的交互而变化。因此,人工智能技术中的计算应该是外界环境、机器和人的认知感知器共同作用的结果,三者缺一不可。
研究基于人类行为特征的人工智能系统技术,即研究在不确定性动态环境中组织的感知及反应能力,对于社会系统中重大事变(战争、自然灾害、金融危机等)的应急指挥和组织系统、复杂工业系统中的故障快速处理、系统重构与修复、复杂坏境中仿人机器人的设计与制造等问题的解决都有着重要的参考价值。
鉴于研究人工智能系统涉及面较广,极易产生非线性、随机性、不确定性等系统特征,使之系统建模研究时常面临着较大困难。在之前的研究中,多种有价值的理论模型被提出并用于描述表征、学习、理解、自主、预测等系统行为,但这些模型在对人工智能的实质及影响因素方面考虑还不够全面,也缺乏对模型可用性的实验验证,所以本文重点就是针对人机环境系统的实质及对人工智能影响因素这两个关键问题进行了较深入探讨,追根溯源,以期早日实现高效安全宜人可靠的强人工智能系统。返回搜狐,查看更多