博舍

心得体会 人工智能课程收获 人工智能课程的收获和感想1500字怎么写

心得体会 人工智能课程收获

 

人工智能课程收获

 

人工智能课程收获

 

人工智能学习心得

 

今天是我学习人工智能的第一堂课,

也是我上大学以来第一次接触人

工智能这门课,

通过老师的讲解,

我对人工智能有了一些简单的感性

认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,

许多人为此做出了不懈的努力。

我觉得这门课真的是一门富有挑战性

的科学,

而从事这项工作的人不仅要懂得计算机知识,

还必须懂得心

理学和哲学。

 

人工智能在很多领域得到了发展,

在我们的日常生活和学习中发挥了

重要的作用。如:

机器翻译,机器翻译是利用计算机把一种自然语言

转变成另一种自然语言的过程,

用以完成这一过程的软件系统叫做机

器翻译系统。

利用这些机器翻译系统我们可以很方便的完成一些语言

翻译工作。目前,

国内的机器翻译软件有很多,富有代表性意义的当

属“金山词霸”

,它可以迅速的查询英文单词和词组句子翻译,重要

的是它还可以提供发音功能,为用户提供了极大的方便。

 

通过这堂课,

我明白了人工智能发展的历史和所处的地位,

它始终处

于计算机发展的最前沿。

我相信人工智能在不久的将来将会得到更深

一步的实现,会创造出一个全新的人工智能世界。第二篇、人工智能

课程知识总结

 

人工智能课程收获

 

Agent

:通过传感器感知所处环境并通过执行器对该环境产生作用的

人工智能课程的收获和感想300字

 

在大学期间,我学习了人工智能课程,本着对机器学习理念和技术的热忱,尝

试将自己推向未知的领域。从一开始,我就对人工智能自动化的有效性和强大的性

能特点很感兴趣。经过几次课堂的介绍,以及丰富的网络资源,我越来越深入地了

解了人工智能。

 

在学习课程的过程中,我衷心相信机器学习技术可以消除许多依赖人类劳动力

的苛刻任务,更有效、更快速地完成大量重复性工作,从而获得更低的劳动成本和

更高的工作效率。了解机器学习的基本原理之后,我深入探索了学习算法和机器学

习工具,深刻领会了他们的功能和实现的方式。我更加熟练地掌握了

Python

语言,

并熟悉框架,从而更好地理解和使用人工智能技术。

 

通过本次学习,我不仅增加了知识和技能,而且更加深入地理解了机器学习如

何实现许多日常任务,并给出了更加高效和可操作的解决方案。这段期间,我坚持

不懈的努力,温故知新、探索学习,最终将人工智能技术运用于实际场景,得到了

显著的效果。

 

总的来说,学习人工智能课程是一段有意义的旅程,它拓宽了我的视野,激发

了我深入研究和学习,实践让我深刻感受到了机器学习与智能自动化带来的巨大潜

力,为未来我将在人工智能领域中取得更大功创造了良好的条件。

 

人工智能学习心得体会

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,他由不同的领域组成,如机器学习,计算机视觉等等,总的来说,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。

人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称AI。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。人工智能研究的近期目标是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据先行的计算机的特点研究实现智能的的有关理论、技术和方法,建立相应的智能系统。例如目前研究开发的专家系统,机器翻译系统、机器人等。随着社会的发展,技术的进步,人工智能的发展是任何人都无法想象的。

由于网络技术特别是国际互联网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

人工智能讲座心得体会

 

1

 

17

 

 

人工智能讲座心得体会

 

 

 

 

 

通过这学期的学习,

我对人工智能有了一定的感性认识,

人觉得人工智能是一门极富挑战性的科学,

从事这项工作的人必

须懂得计算机知识,

心理学和哲学。

本站为大家整理的相关的人

工智能讲座心得体会,供大家参考选择。

 

人工智能讲座心得体会

 

 

 

 

 

通过这学期的学习,

我对人工智能有了一定的感性认识,

人觉得人工智能是一门极富挑战性的科学,

从事这项工作的人必

须懂得计算机知识,

心理学和哲学。

人工智能是包括十分广泛的

科学,它由不同的领域组成,如机器学习,计算机视觉等等,总

的说来,

人工智能研究的一个主要目标是使机器能够胜任一些通

常需要人类智能才能完成的复杂工作。

 

人工智能的定义可以分

为两部分,

人工

智能

人工

比较好理解,

争议性也不大。

有时我们会要考虑什么是人力所能及制造的,

或者人自身的智能

程度有没有高到可以创造人工智能的地步,等等。但总的来说,

人工系统

就是通常意义下的人工系统。关于什么是

智能

,就

问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人

唯一了解的智能是人本身的智能,

这是普遍认同的观点。

但是我

们对我们自身智能的理解都非常有限,

对构成人的智能的必要元

素也了解有限,所以就很难定义什么是

人工

制造的

智能

了。

人工智能心得体会9篇

人工智能观后感推荐度:烘焙的心得体会推荐度:读书的心得体会推荐度:合唱的心得体会推荐度:服务心得体会推荐度:相关推荐

人工智能心得体会9篇

当我们受到启发,对学习和工作生活有了新的看法时,可用写心得体会的方式将其记录下来,这样有利于培养我们思考的习惯。那么问题来了,应该如何写心得体会呢?下面是小编为大家收集的人工智能心得体会,欢迎大家分享。

人工智能心得体会1

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会2

一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:

1、促进教育方式的变革,培养学生的综合能力

在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

3、培养学生的团队协作能力

机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。

4、扩大知识面,转换思维方式

在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识

二、中小学机器人教学活动的几点做法:

考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

人工智能心得体会3

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:

第一教材的缺乏,

第二师资的缺乏,

第三课程实施的场地缺乏,

第四怎么教的问题。

在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,

针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;

针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;

针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,

分为三个阶段:

第一阶段大班STEM基础教学,

第二轮实践教学建立社团校队,

第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会4

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的`变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

人工智能心得体会5

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点―变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会6

人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会7

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay―ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

对人工智能对世界的影响的感受及未来畅想

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生

在当前社会中的呢?

在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

人工智能心得体会8

一、研究领域

在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

二、各领域国内外研究现状

近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。

1、分布式人工智能与艾真体

分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。

分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。

mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。

2、计算智能与进化计算

计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。

进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。

达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。

直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。

3、数据挖掘与知识发现

知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。

从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。

机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。

比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。

4、人工生命

人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。

人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。

人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。

人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。

三、学了人工智能课程的收获

(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。

(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。

(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。

(6)基本了解人工智能程序设计的语言和工具。

四、对人工智能研究的展望

对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。

人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努。里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。

当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊――神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。

五、对课程的建议

(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。

(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。

(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。

(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。

人工智能心得体会9

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1、人工智能学科的诞生

12世纪末13世纪初,西班牙罗门・卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯・诺依曼提出存储程序的思想和建立通用电子数字计算机的冯・诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2、逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(G.LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3、逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4、人工智能――当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5、结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

【人工智能心得体会】相关文章:

人工智能心得体会11-15

人工智能心得体会8篇11-29

人工智能心得体会(8篇)11-30

关于人工智能的论文02-05

管理拒绝“人工智能”02-09

人工智能观后感11-23

《人工智能》观后感04-29

《人工智能》观后感11-09

人工智能观后感09-09

人工智能导论范文3000字共14篇

人工智能导论范文3000字第一篇

摘要:为了提高“人工智能导论”课程的教学质量,协调好教与学的双边关系,结合教学实践,从教学体系、教学内容、教材、教学方法、考核方式等方面进行了探讨和总结。

关键词:人工智能;教学内容;教学方法

中图分类号:G642文献标识码:A

1引言

人工智能(AI)是二十世纪五十年代后期兴起的利用计算机模拟人类智能活动去求解问题的学科,与空间技术、原子能技术一起被誉为二十世纪三大科学技术成就,目前广泛应用于专家系统、机器翻译、语音识别、文字识别、计算机视觉、机器人、电子游戏等方面,已经成为计算机技术发展以及许多高新技术产品中的核心技术。

为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程,特别是作为计算机方面专业的核心课程之一。我校自从1993年开始为自动化专业本科生开设“智能控制”选修课,1996年为自动化、计算机、机械等专业本科生开设“人工智能导论”、“人工智能及其应用”课程。目前,我校软件学院、信息学院、机电学院都开设了“人工智能导论”课程,已经成为计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其目的是使学生了解人工智能的基本概念和基本原理,初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,为学生提供最基本的人工智能技术和有关问题的入门性知识,提高学生应用开发软件的能力和水平,为今后在相关领域的研究和应用奠定更为坚实的基础。因此,建设好“人工智能导论”课程具有重要意义和很广的受益面。

由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有望而生畏的感觉,在教学过程中,老师教、学生学都比较吃力。为了更好地实现上述教学目标,提高本课程的教学质量,协调好教与学的双边关系,使学生由望而生畏的感觉,变为有用有趣的感觉,根据已有人工智能课程在教学与实践方面的经验和方法,结合“人工智能导论”课程的近几年教学实践,对课程的教学体系、教学内容、教学方法、教学手段、考核方式等方面进行了探索总结。

2调整与优化教学体系和教学内容

“人工智能导论”是计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其研究领域及内容十分丰富,涉及的基础面广。因此如何选好教学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件重要而又困难的事情。

另外,在选择和确定教学内容时必须兼顾基础知识和新兴技术,注意与相关课程(如离散数学、数据结构、概率论、自动控制原理、Matlab系统仿真、面向对象的编程技术等)的链接,密切理论与实际的关系,通过课堂讲授和课外训练,注意学生能力培养,提高他们的学习效果和整体素质。

3加强课程立体化建设和系列教材研究

人工智能导论范文3000字第二篇

一、人工智能的定义解读

人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。

二、人工智能的发展历程

事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:

第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

三、人工智能的多元应用

1、人工智能在管理系统中的应用

人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。

2、人工智能在工程领域中的应用

人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3、人工智能在技术研究中的应用

人工智能导论范文3000字第三篇

摘要:时代是不断发展的,对于电气信息类专业的学生来说,社会岗位在综合素质和专业能力方面提出了对学生诸多新的要求。因此为了促进学生能够在毕业之后获得良好的发展,在电气信息类专业教育教学中,教师要对原有课程教育模式和课程教育手段进行有效的改革以及创新,从而促进学生专业能力的提高。为了使学生更加积极地进行知识内容的学习,教师要在电气信息类专业教育教学中充分的发挥人工智能的优势,提高课堂教学的效果。

关键词:人工智能;电气信息类;教学应用

教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。

一、人工智能时代的概述

其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业•2•本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。

二、人工智能对电气信息类专业人才需求的影响分析

三、人工智能给电气信息类专业提供的机遇

四、人工智能技术在电气信息类专业教育教学中的应用路径

(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。

(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。

(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。

(四)利用人工智能技术进行辅助性的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。

人工智能导论范文3000字第四篇

摘要:针对普通高等院校学生和人工智能课程的特点,结合DBR(DesignBasedResearch)成果,提出一种

>>引入深度学习的人工智能类课程中西合璧的人工智能课程双语教学模式可调戏的人工智能生活中的人工智能不断超越的人工智能逐渐靠近的人工智能正在落地的人工智能2035年的人工智能航天类专业“人工智能”课程的教学探索林业院校人工智能课程教学的思考人工智能导论课程的兴趣教学法人工智能概论课程的教学思考“人工智能”课程教学的实践与探索游戏开发应用中的“人工智能”课程教学方法探讨人工智能的应用研究人工智能的日常应用人工智能的应用和发展浅析电气自动化控制中的人工智能应用分析继电保护中的人工智能技术及其应用电气自动化控制中的人工智能应用分析常见问题解答当前所在位置:l)。在情境创设时,教师根据学生特点提出了多种应用需求,例如化妆品销售咨询等。学生利用该工具,兴趣盎然地开发了自己的小型专家系统,不仅理解了专家系统的特点、作用、运行方式等,还具有强烈的成就感。

面向研究的情境创设

苏霍姆林斯基认为,研究型教学法应该充分体现学生的主体地位,激励、引导和帮助学生去主动发现问题、分析问题和解决问题,激发学生学习的内在兴趣和成就动机[4]。人工智能课程中包含了大量的前沿问题,研究型课题比比皆是,如何平衡这些研究课题与兴趣、实用的关系,是教学设计中重点考虑的内容。

下面以“规划”中的路径规划内容为例,详细分析以研究为导向的情境创设过程。表2给出了整个教学设计。

综合几次研究课题完成情况,班级中有1/3的学生通过广泛查阅资料和多次与教师讨论,提交了质量尚可的标准格式论文,并因此获得了学院的科研学分。除此之外,教师还组织这部分具备一定科研潜力的学生参加科研项目,进一步磨练科研技能,极大提高了学生的学习兴趣和能力。

3DBR驱动的教学过程

人工智能课程各单元内容相对独立,难以形成统一的联系,怎样验证各单元的学习效果?从提出问题到任务解决,每个单元的学习通常要跨越几节课甚至几周,怎样在此期间保持学生的兴趣和关注?

DBR是情境设计、实施、评价、再设计、理论形成等环节多次迭代循环的过程,柯林斯称之为“不断进步的修正”(ProgressiveRefinement),以检测设计的价值。因此,评价是教学过程中非常重要的一环。本课程教学主要做好两个环节,以驱动整个教学过程的推进。

1)实践环节。

通常的实践环节是课程结束后固定时间的实际任务,而本课程的实践却贯穿整个教学过程,是单元教学、教师、学生之间的粘合剂。实践包括应用型实践和研究型实践,一般在每个单元教学开始,提出问题后,实践任务就被布置下去,例如前面所述的“黑白棋”、“路径规划算法研究”等。学生接受任务后,带着问题搜索解决途径,在此期间需要教师提供方法指导及答疑(既可固定时间,也可通过E-mail等形式)。及时地交流,特别是针对实际问题的交流,不仅有效率,而且便于教师及时调整教学设计。

2)教学评价。

除了课程考核以外,每个教学单元结束时都有反馈和评价环节。评价方式包括单元测试、编写软件测试、研讨会等。具体采用何种形式,要根据前一阶段的反馈信息决定。这些来自学生反馈信息包括前一阶段学习的接受情况、兴趣点、其他课业繁忙情况等。在学期的不同时间点采用合适的评价方式,有助于加强学习刺激,总结和发现教学设计中的问题,及时调整。

通过上述两个环节的推动,精心设计的教学内容得以顺利实施并被学生欣然接受。2/3的学生在整个学期教学中都保持了积极的态度和充分的关注度,确实感受到人工智能的魅力,并能够从技术角度看待人工智能,消除了未学或初学时的神秘感。

4教学实施效果分析

1)正效果分析。

中原工学院计算机学院作为普通工科院校,以培养实用型人才为主,人工智能并非主干课程,学生重视程度不足。两年来,经过教师与学生的共同努力,教学改革成果逐步体现。人工智能类学生人数从过去的5%上升到15%,科研论文数量从1%上升到20%。有20%的学生接触过或正在从事人工智能类项目的研究与开发,考研选择人工智能科目的学生比例从0上升到15%,考研成功人数占毕业生总人数的20%。

人工智能导论范文3000字第五篇

人工智能毕业论文_机械/仪表_工程科技_专业资料。人工智能的历史人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉......

人工智能的研究方向、领域和应用领域摘要:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的研究方向、研究领域、应用领域值得我们关注和探讨。关键字:人工智能、研究方向、......

人工智能论文_理学_高等教育_教育专区人工智能一、什么是人工智能几个世纪以...

广告语言,又称广告词,有广义和狭义之分。以下是为大家整理的关于有趣的楼盘房地产广告语的文章3篇,欢迎品鉴!【篇一】有趣的楼盘房地产广告语1天鹅苑&bu

人工智能导论范文3000字第六篇

〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。

〔关键词〕人工智能,数论,简单性原则

〔中图分类号〕N1〔文献标识码〕A〔文章编号〕1004-4175(2020)02-0005-06

人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比AI与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。

一、数论哲学为人工智能提供质料基础

人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。

“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。

毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。

毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。

二、演绎逻辑与分析哲学成为搭建人与机器联系的桥梁

除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。

集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。

人工智能导论范文3000字第七篇

《基于当前社会的人工智能初探》

本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。

弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。

人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。

第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。

人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。

第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?

以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。

强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。

人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。

有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。

人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。

人工智能导论范文3000字第八篇

2019新型冠状病毒国际病毒分类委员会,2019nCoV,世卫组织于2020年1月命名SARS-CoV-2,2020年2月11日。冠状病毒是一个大的病毒家族,

税务是税务的缩写。有广义和狭义之分。以下是为大家整理的关于2021党支部组织生活会个人对照检查材料的文章18篇,欢迎品鉴!第1篇:2021党支部组织生活会

党员领导干部要结合自己的工作和思想实际,进行深刻的自我反省,这有利于做好工作。以下是为大家整理的关于2022民主生活会党员领导干部个人对照检查材料的文章3篇

民主生活会是指党员和领导干部开展批评和自我批评的组织活动制度。以下是为大家整理的关于党史生活会意见征求表的文章5篇,欢迎品鉴!第1篇:党史生活会意见征求表

评估是汉语词汇,拼音是Kǎohé它意味着检查、检查和验证。严家训&米德省事&ldquo有一位彬彬有礼的官员对此感到羞耻,想留下来并进行了评估。以下

对比为汉语单词,拼音为Du-igravezhào、它意味着两个不同的、对立的和相关的事物,或者同一事物的两个不同的、对立的和相对的方面,被比较在一

意见是上级领导机关规划下级机关工作,指导下级机关工作活动的原则、步骤和方法的一种文体。以下是为大家整理的关于乡党委党史学习教育专题民主生活会征求意见的文章6篇

诚实,一个中国词,最早出现在《楚辞》中战国时期伟大诗人屈原的感悟:我年轻清白,不为正义所倾倒。”东汉著名学者王毅在《楚辞·章句》中评论道:如果你不接受它,你将是

门店经理是连锁经营企业指定管理单独门店的经理职位的名称。它也可以是独立商店所有者的头衔。它是商品经济浪潮中的一个新词。以下是为大家整理的关于店长的工作流程及工

人工智能导论范文3000字第九篇

摘要:大作业的设置对学生深入理解课程内容,提高求解问题的能力具有很大的帮助。文章在笔者多年从事人工智能教学的基础上,探讨人工智能导论课的大作业设置问题,提出大作业应具备的基本条件,说明选择四子棋作为大作业的理由,给出四子棋大作业的评分规则,并对学生的大作业总体情况进行分析,验证选择四子棋作为大作业题目的合理性。

关键词:人工智能;作业;博弈

现在很多课程都设置了大作业,这对学生深入理解课程内容,提高求解问题的能力以及调动学生学习的积极性有很大的帮助。多年来,我们在人工智能导论课上一直设有大作业,受到了同学们较好的评价。下面就如何设置大作业问题,谈一点我们的体会,与各位同行进行交流[1-2]。

1大作业应具备的条件

在以往的教学实践中,我们曾经选择过不同类型的题目作为大作业,比如五子棋程序、基于拼音的整句输入法、基于归结的问题回答系统等。这些题目虽然也起到了很好的效果,但存在着一些不足。比如五子棋程序,如果采用一般的简单规则,则存在先手必胜的策略,而正式比赛规则又过于复杂;而且五子棋是一个比较大众的游戏,有的同学下棋水平比较高,而有的同学则不熟悉,这样大家不在同一个起点上,对于不熟悉的同学存在着不公平。基于拼音的整句输入法、基于归结的问题回答系统等,则缺乏趣味性,少了同学之间的“竞争”,不利于调动同学们学习的积极性。

经过思考,我们认为一个好的大作业,应该具备以下几个条件:

1)与课程学习内容紧密结合。

2)趣味性强,能调动同学们学习的积极性。

3)背景知识简单易懂,以便让学生集中在与课程有关的内容中,而不是把大量的精力花费在背景知识上。

4)规模适中,不需要花费大量精力处理诸如程序的存储空间问题等。

5)尽可能对所有同学都是公平的,不存在部分同学熟悉,部分同学不熟悉的情况。

经过认真的总结和思考,最终我们选择了四子棋作为大作业的题目,并对传统的四子棋规则加以改良,使其尽可能地符合上述基本条件。大作业的最终要求是,用程序实现一个四子棋程序,并通过比赛的方式评判大作业的成绩。

2为什么选择四子棋

在说明我们为什么选择四子棋作为大作业之前,首先我们介绍一下什么是四子棋。图1是一个四子棋的棋盘,由M行N列组成。游戏双方分别持不同颜色的棋子,设A持白子,B持黑子,以某一方为先手依次落子。假设为A为先手,落子规则如下:在M行N列的棋盘中,棋手每次只能在每一列当前的最底部落子,如图中的红点处所示,如果某一列已经落满,则不能在该列中落子。棋手的目标是在横向、纵向、两个斜向共四个方向中的任意一个方向上,使自己的棋子连成四个(或四个以上),并阻止对方达到同样的企图。先形成四连子的一方获胜,如果直到棋盘落满双方都没能达到目标,则为平局。

那么,我们为什么选择四子棋作为大作业题目呢?

首先,四子棋规则简单,几句话就能说明其比赛规则;其次,四子棋的规模适中,每一步的可落子点不多;第三,四子棋是一个博弈类的游戏,趣味性强;第四,可以用博弈树搜索等方法求解,与课程内容联系密切;第五,四子棋虽然简单,但是几乎所有同学以前都没有遇到过,所以对大家都是公平的。这些都能很好地满足我们前面提到的大作业应具备的几个条件。

3对四子棋的改进

为了更好地适应大作业的要求,我们对传统的四子棋游戏规则做了一些扩展,以更利于程序求解,避免存在必胜策略,使得同学们集中在求解策略的设计上。改进的目的一是为了更好地体现算法的作用,二是尽可能减少人为的必胜策略的影响。为此,我们对传统的四子棋规则做了如下的改进。

1)棋盘大小不固定,双方博弈时,在一定的范围内,随机地产生棋盘的大小。

2)随机地增加一些不可落子点。

比如在图2所示的棋盘中,“红叉”点就是一个不可落子点。当“红叉”点的下面落满了棋子时,只能在“红叉”点的上面落子,而不能在“红叉”点出落子。

对四子棋这样的两点改进,主要是为了避免静态的必胜策略的使用,引导大家更多的关注动态策略的使用,根据当前局势,实时地计算最佳的落子策略。

图2不可落子点的说明

4大作业评判规则

如何评判大作业的成绩对学生会起到一定的引导作用,为此我们提出了“赛会制”和“探索制”两种评判机制。

所谓的赛会制,就是建立一个比赛平台,所有同学的程序提交到平台上,按照以下规则参加比赛。

1)正确性验证。要求同学们针对四子棋问题实现一个α-β剪枝程序[3],给定一些特定的节点,判断剪枝是否正确。通过正确性验证者获得基本分。

2)全体同学采用大循环的方式进行比赛,任何两个程序之间进行两局比赛,先手后手各赛一局。

3)要求5秒内必须完成一次走步。

4)胜者获得2分,负者获得0分。

5)平局时,用时少者获得1+x分,用时多者获得1-x分。

6)按照获得的总分数进行排名。

7)要求就大作业内容写一篇小论文,根据排名和论文情况给出总成绩。

为了鼓励同学创新,探索新的方法,除了“赛会制”外,我们还设立了一个“探索制”供学生选择。选择探索制的同学,要求在方法上有所创新。比如采用机器学习的方法,寻找评判局面优劣的方法、权重系数等。要求写出一篇论文,对所用方法进行介绍,对不同方法进行比较,通过实验等验证方法的可行性和有效性。选择探索制的同学,虽然也参加比赛,但是最终成绩主要体现在论文的完整性和水平上,不看具体的成绩排名。这样就可以使得学生有更多的发挥空间,对于一些优秀的同学比较有吸引力。

5结果分析

在先期少数同学实验的基础上,我们从2010年开始全面在人工智能导论课上实施四子棋大作业,共有160名同学选择了“赛会制”的方式完成了四子棋大作业。为了验证该大作业的合理性,我们对大作业总体情况做了一个简单的分析,结果如下:

1)全部同学都通过了正确性测试。这是因为我们事先给出了一些测试样例用于学生自测,通过了这些样例后再提交基本就没有问题了。通过对部分同学的调查,也确实发现一些同学在做正确性测试之前,对α-β剪枝算法理解有误,通过写程序并测试程序的正确性发现了理解上的问题。这也可以看出正确性验证在这里的重要性。

2)全部160个学生的程序中,无一人全胜,也无一人全败,即便是总成绩第一名也失败了22局,而最后一名也取得了18局的胜利。

3)平局数很少,在全部比赛中,只有176局平局,仅占全部比赛的,平均人均平局数为局,平局数少也是我们希望看到的结果。

4)先手后手胜负比较均衡,经统计,先手胜与后手胜的局数之比为10:9,虽然后手稍微劣势一点,但总的来说变化不大,再加上任何两组程序都是先手后手各赛一次,总体上可以消除先手后手所带来的影响。

通过以上分析,以四子棋作为人工智能导论课的大作业是可行的、合理的,尤其是经过了改良之后的四子棋,在各个方面都是很均衡的,适合作为大作业使用。

6结语

以四子棋作为大作业,是我们对人工智能导论课的一次尝试,通过各方面的分析可知,这次尝试是成功的,有利于提高学生学习人工智能课程的兴趣,并将所学内容应用于解决实际问题之中。在做大作业的过程中,同学们阅读了大量的论文,对有关博弈问题,甚至是人工智能问题有了更加深入的思考和理解,从中学到了很多课本上学不到的知识。在今后的教学实践中,我们将进一步总结经验,改进大作业的设置,进一步提高人工智能课程的教学水平。

参考文献:

[1]吴文虎.精心铸精品理念须先行[J].计算机教育,2008(13):46-49.

[2]张彦航,孙大烈,战德臣.通过大作业促进大学计算机基础课程教学[J].计算机教育,2007(7):24-26.

[3]马少平,朱小燕.人工智能[M].北京:清华大学出版社,2004.

[4]应宏,刘福明,熊江,等.计算机课程作业改革的实践探索[J].计算机教育,2009(2):47-48.

ExplorationonProjectDesigninIntroductiontoArtificialIntelligence

HUANGYu1,MAShaoping2

(ofComputerandInformationTechnology,BeijingJiaotongUniversity,Beijing100044,China;ofComputerScienceandTechnology,TsinghuaUniversity,Beijing100084,China)

Abstract:Courseprojecthelpsalotforthestudentstounderstandtheknowledgethoroughly,andtoimprovetheircapabilityofproblemsolving,algorithmdesignandsystemimplementation.Basedontheteachingexperienceonrelatedcoursesformanyyears,thispaperexplorestheprojectdesignforthecourseofintroductiontoArtificialIntelligence(AI),andproposesseveralessentialprerequisitestosetupacourseproject.Siziqi,whichisasimilarbutsimplerchessgametoGobang,isdesignedasthecourseprojectwithspecifiedreasonsandevaluationrules.Observationsandanalysesarefurthermadeonthestudents’solutions,whichshowthatitisfeasibletotakeSiziqiasaprojectforAI.

Keywords:ArtificialIntelligence;courseproject;game

人工智能导论范文3000字第十篇

《电脑人工智能日趋成熟》

电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。

现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。

舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。

舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。

人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”

舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。

舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测xxx维的能力。

舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?

讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。

一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。

换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”

微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。

舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。

从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。

显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”

在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。

舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。

目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。

日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。

除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。

舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。

人工智能导论范文3000字第十一篇

摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。

关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识

中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2020)01-0154-03

产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。

一、人工智能能够提升科学知识生产效率

机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。

二、人工智能擅于提取和传递默会知识

三、人工智能可以产生某种机器知识

如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGoZero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGoZero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,GregoryWheeler在《MachineEpistemologyandBigData》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]

机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。

人工智能导论范文3000字第十二篇

【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。

【关键词】STEM教育;人工智能;机器人;编程创新

随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。

一、开展人工智能教育的背景

xxx在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。

二、以课程建设为核心,提升学生的STEM素养

机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。

如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。

以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。

三、以课题研究为引领,推动师生专业化成长

课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。

以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。

四、以参加机器人赛事为驱动,搭建学生个性成长的平台

雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。

通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。

未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。

参考文献:

[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.

[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.

人工智能导论范文3000字第十三篇

关于人工智能的论文_兵器/核科学_工程科技_专业资料。关于人工智能的论文人工智能(ArtificialIntelligence,AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学......

有关人工智能的论文三篇人工智能论文1500精品文档,仅供参考有关人工智能的论文三篇人工智能论文1500随着计算机技术的快速发展和广泛应用,人工智能的思想和技术会对人类产生巨大的影响,可以应用于所有的学科领域,它的影响涉及......

人工智能综述(原创论文)人工智能及其发展***201000445模式识别与智能系统(***科技大学信息工程学院)摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。本文从人工智能的概摘要念出发,首先介绍了人工智能研究......

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇