人工智能在21世纪水与环境领域应用的问题及对策
水,是人类赖以生存和发展的重要资源。可持续的水资源、水环境和水生态关乎人类健康与经济繁荣。但近半个世纪以来,人口增长、人类活动加剧与气候变化等一系列因素使然,水安全问题已成为全球性重要议题[1]。2015年9月,联合国可持续发展峰会正式通过《2030年可持续发展议程》,包含17个可持续发展目标(SDGs),并呼吁各国和各地区通力合作,促进科技创新,为落实SDGs探索有效的实施路径和解决方案[2]。其中,SDG6为“清洁饮水和卫生设施”(CleanWaterandSanitation),旨在“为所有人提供水和环境卫生并对其进行可持续管理”。近年来,人工智能(AI)技术的飞速发展[3],为实现SDG6提供了新的思路和手段。本文结合SDG6的核心内涵和进程难点,分析总结AI在SDG6相关领域的应用现状及效应,探讨利用AI推进SDG6进程中亟待解决的关键问题,为水与环境领域和AI领域的技术创新及协同发展提供科学建议。
1SDG6的核心内涵与进程难点1.1SDG6内涵的进步性水是保障人类经济社会与自然生态系统健康发展的关键资源。SDG6是SDGs的重要组成部分,也是实现其他16个SDG的核心基础(图1)。SDG6共包含了8个具体目标和11项监测指标,涵盖了水资源、水环境、水生态、水设施及与水科技相关的国际合作等多个主题[4]。SDG6是基于联合国千年发展目标(MDGs)历史实践经验及对未来水安全更高期望而提出的更为全面、系统和深具前瞻性的发展新框架。
图1联合国可持续发展目标6(SDG6)与其他16个目标图选项总体而言,SDG6内涵的进步性主要体现在4个方面。①更注重目标落实的公平性。SDG6的目标,由MDGs的“全球无法获得水与环境卫生服务的人口减半”转向“为所有人提供水和环境卫生并对其进行可持续管理”,并提出平等对待妇女和儿童等弱势群体对清洁饮水与环境卫生的需求,以及帮助发展中国家开展水与环境领域的能力建设。②更强调水循环管理的系统性和整体性。SDG6已经明确要求提高水资源的利用效率,在用水过程中强化资源能源回收与安全循环,减少污水和废水排放对水环境和水生态的不利影响,确保供水安全。③更关注与人类活动相关的水安全危机。水污染频发、水资源短缺、水生态退化等与人口增长和人类活动加剧相关的水与环境可持续发展的挑战,成为SDG6的重点关注对象。④更重视跨国界、多系统及不同部门间协作对水资源和水系统集成管理的重要性及其利益平等性的实现。SDG6对强化跨界流域水生态完整性保护,促进多系统、多行业、多部门对水资源利用与再生循环的协同管理提出了更高的要求。
1.2落实SDG6的挑战SDG6为2030年全球水与环境可持续发展指明了清晰方向,但也面临着新挑战。目前,各个国家和地区的发展阶段,及不同国家和地区在水与环境领域的科技水平均存在不同程度的差异,使得SDG6内部不同具体目标之间及其与其他SDGs之间存在着相互增强或制约的复合关系[5-7]。因此,系统性认识SDG6在落实过程中遇到的困难,并以此为攻坚方向,因地制宜地提出解决路径和方案,是世界各国、各地区共同实现SDG6的重要基础。具体的,SDG6在落实过程中正面临3个方面挑战。
(1)数据监测与分析评估手段不足,严重制约了联合国组织及各国、各地区对水与环境卫生真实现状和发展成效的全面掌握。对SDG6各个具体目标的有效度量和监测是保障实现水与环境可持续发展的重要环节。截至2019年,SDG6的11项监测指标中仍有4项多数国家未能定期提供监测数据[8]。当前,对SDG6各个具体目标的度量和监测主要依赖统计或普查数据[9]。前者常因城市和农村区分不明确等因素而导致统计数据缺乏代表性和空间解析能力[10];后者则受普查工作的人工和时间成本限制,所得数据的实时性不佳、不确定性大,数据代表性极为有限[11]。因此,科学评估SDG6进程,急需发展长时序、多尺度、多维度、高分辨率的数据监测与指标模型化手段。
(2)水循环系统构建、监控、模拟、评估和整体优化调控的困难。完整的水循环系统涉及地表水、地下水、雨水及城镇供水排水系统等多个自然和人工水单元过程,是复杂、多样、动态和相互联系的庞大体系[12],而水系统工程的传统研究思路和管理模式则较为封闭和单一;此外,世界各国和各地区在相关领域的科技能力也存在差异,这使得水循环系统的构建、监控、模拟、评估和整体优化调控遇到极大的挑战[13,14]。如何突破传统的封闭式研究思路和模式,打造开放式的水科技创新生态,突出学科交叉融合和国际科技合作,是实现水资源与水系统集成管理的核心科学问题。
(3)水环境与水生态风险的复杂性。随着工业化快速发展及人类消费需求的扩大化和多元化,水中污染物呈现种类愈发复杂和时空变化相异的特征,水环境与水生态风险普遍提高[15-17]。如何从极其复杂、多变的水系统中快速识别、深入认知和高效解决复合污染及风险,是发展健康、可持续、高弹性未来水系统亟待解决的关键技术难点。
2AI在水与环境领域的研究及应用现状AI是计算机科学的一个分支,它是研究和开发用于模拟、延伸和拓展人类智能的理论、方法、技术及应用系统的一门新的技术科学[18]。近年来,随着计算机算力的大规模发展及算法的不断突破,AI得到了快速发展,这为水环境污染防控、水质安全保障、涉水设施优化重构及流域生态系统管理等技术的研发和创新提供了强大的工具。梳理和总结国内外近10年相关文献发现,AI技术主要在4个方面的研究和应用中发挥重要作用。
2.1水环境污染识别与风险响应识别和响应水污染事件是高效防控水环境污染的重要前提,也是供水安全的基础保障。
(1)水质指标建模与数据融合。AI在水质指标模型化及多维时空数据融合等方面的应用实践,为提升水污染的研判能力和防控水平创造了新机遇(图2)。例如,利用人工神经网络自适应选择方法,以水质遥感和检测数据为特征,可实现非线性水质指标模型的构建和应用,为水体水质管理与数字规划提供必要的基础数据[19]。融合神经网络、支持向量机、分类回归树等AI算法,可以对更为复杂的水环境水质变化及其地球生物化学过程进行集成模拟,为水体水质保护与恢复提供重要的模型工具[20-22]。
图2面向AI的水环境污染物识别与风险响应技术体系图选项(2)风险物质检测与毒性评估。将AI与光谱分析技术进行结合,是时下的研究热点。近红外光谱可用于快速检测生化需氧量等水体水质指标,而耦合以最小二乘支持向量机为代表的AI算法可以提升近红外光谱预测水质变化的准确性,为水污染的定量评估提供快捷方案[23];将反向传播神经网络和k均值聚类算法应用于激光诱导击穿光谱分析,为高效、准确和低成本估算重金属等传统检测时间长、检测费用高的地表水水质必要指标提供了新的思路和方法[24]。与此同时,国内外也在探索将AI应用于环境毒理学研究,这为新型污染物的毒性预测与风险评估提供了经济、高效的新手段[25]。
(3)水质预警与污染应急方案构建。随着原位监测传感技术和设备的快速发展,基于深度神经网络的AI技术在空间大数据分析中开始发挥重要的作用,这为优化水质监测布设方案、提高污染源解析能力、制定污染预警和应急防控体系等方面提供了有力的技术和决策支持[26-29]。
2.2水质安全保障技术研发随着水处理标准的不断提升,新型水质净化功能材料的设计与应用、污染物去除机制解析与高效技术研发、污染物定向资源能源转化和调控成为水处理领域的研究热点[30,31]。
(1)新型水质净化功能材料的设计与应用。基于AI的材料基因组学技术得到了快速发展,为环境友好新型功能材料的设计和开发提供了高效途径[32]。通过对材料开发过程的失败试验和历史数据进行反演学习[33],再结合目标污染物特征,对新材料的成分与特性进行计算模拟和优化,有望摒弃传统以试错为核心的材料研发范式,这将极大地促进水质净化新材料的产业化发展(图3)。
图3AI辅助的环境功能新材料研发范式图选项(2)污染物去除机制解析与高效技术研发。与健康密切相关的药物和个人护理品、内分泌干扰素、持久性有机物等微污染物在市政水处理系统中的迁移转化机理是发展高效水处理技术的关键和难点[31,34]。随机森林、最小绝对值收敛和选择算子、前馈神经网络等AI算法的引入,非线性模拟与预测微污染物在水处理过程中的行为成为了可能,这为强化水处理技术提供了新方法[35,36]。随着基于宏基因组学和代谢组学等分子方法的污水生物处理机理研究不断深入[37,38],如何从污水处理系统的微生物大数据中识别关键功能微生物,成为强化污水生物处理的核心难点。将AI技术与生物信息学结合[39],为水处理系统的信息挖掘和微观解析提供了重要机遇,为阐明污水生物处理机理开辟了新途径(图4),但如何提高信息挖掘解析的准确性和可解释性仍是当前的主要难题。
图4基于AI的污水生物处理机理与定向强化技术研究新思路图选项(3)污染物定向资源能源转化与调控。水污染控制的核心范式逐渐从污染物去除向资源化和能源化转变[40],而数字孪生等虚拟和增强现实的前沿AI技术将有望突破实时仿真同步调控水中污染物定向转移转化的技术难题,但仍有诸多关键技术难题有待突破[41]。
2.3涉水设施优化重构与集成管理随着城市化进程的加快和社会经济的发展,城市水安全问题愈发凸显,主要表现在水污染频发、水资源短缺及水生态退化等方面[42]。城市是人类活动的中心,包含完整的水循环系统,体系庞大、过程复杂、涉水单元相互联系紧密、受人类活动影响显著是其主要特征[43]。但是,传统水系统工程以取水、供水和排水为分割化目标,对其研究和管理的范式既封闭也单一,缺乏从系统论和整体论的角度去优化、管理甚至重构能满足城市可持续发展的涉水设施新范式。若延续传统思路,从现在到未来很长一段时间内,城市水安全问题仍将难有实质性突破。
近20年,机理模型、传感器和集成分析等信息技术在水行业的兴起迭代与变革,尤其近几年AI的爆发式发展,为突破城市水系统的优化重构与集成管理瓶颈提供了关键性技术(图5)。例如,将模拟退火算法等AI技术运用到排水系统的规划设计及雨水资源的利用管理,可以为排水系统的前瞻布局、优化设计与即时调控提供强大的科技支撑[44-46]。进一步地,通过构建基于遗传算法的二级优化调度模型,也可在实现城市用水量动态预测的基础上,优化供水能耗,实现供水系统运营成本的精准控制、过程能耗和碳排放的有效降低[47-49]。
图5数据驱动的水循环集成管理与人工智能模式图选项近年来,AI技术也被运用于城市水系统与水资源的集成管理与优化调控研究[50,51];在不久的将来,将有望构建以AI为核心的下一代城市智慧水系统,以适应城市快速发展的需求变化。
2.4流域生态系统过程模拟与统筹管理水与环境过程是涉及地球多圈层、多过程、多尺度和多要素相互交叉作用的耦合过程,其机理复杂,涉及数据量大且多,是地球与生态环境领域的重大科学难题和研究前沿[52,53]。其中,流域生态系统作为水、土、气、生、人多要素互相作用形成的复杂系统,是自然和社会耦合系统的缩微[54],也是探索水资源、水环境与水生态统筹管理的重要尺度[55]。保障流域生态系统健康对于实现SDGs具有重要的科学价值和实际意义。近年来,AI技术与卫星通信、空间定位、遥感、地理信息系统等对地观测技术进行了有效融合,实现了地球科学大数据平台构建[56],使自然降水[57]、水土流失[58]、冰川消融[59]等大尺度水文循环过程及其驱动因子得以实现科学模拟,从而为流域生态系统的过程解析与综合评估提供极为关键的数据基础。
进一步地,如何对自然-社会-经济系统互馈过程进行集成模拟[60,61],是科学实现流域生态系统多过程、多要素统筹管理的关键,而AI的飞跃式发展可为此提供强大的技术支持。例如,随机森林、梯度增强回归树、回归向量机等AI算法可以快速学习并预测流域生态系统对集水区土地覆盖类型、营养盐等胁迫因子、植被季节性演化等动态因素的级联响应[62,63],为决策者制定流域管理目标与治理措施提供便利。
未来,在地球科学大数据与社会经济指数相融合的基础上,对AI算法与气候变化和人类活动的物理模型进行集成[64-66],在流域尺度上开展自然-社会-经济系统的综合调控研究,则有望突破绿色流域构建与统筹管理技术体系。
3AI在水与环境领域应用亟待解决的关键问题及对策建议第4次工业革命势头强劲,以AI为核心的信息技术突飞猛进,为水与环境领域从传统的经验型、定性决策为主向精准型、定量智能决策转变提供了颠覆性发展的新机遇,为面向未来的健康、可持续、高弹性、智慧化水系统重构创造了可能。AI技术的迅速进步,为水环境风险防控、水质安全保障及水系统优化管理等技术从微观到中观和宏观尺度的发展与应用注入了新的活力,从而为加速SDG6目标进程带来了一系列积极效应。尽管如此,该过程也将面临诸多新挑战。纵观前述篇章所及的科学探索和实践,未来AI技术在水与环境领域深入应用仍有若干关键问题亟待解决。
(1)黑盒效应与算法可解释性。尽管以机器学习为突破口、以深度学习为实现方法的各种AI技术在水与环境领域中崭露出优异的预测性能,但其可解释性一直是推广应用的短板。例如,目前深度神经网络所具有的高判断能力是通过构造多层非线性映射函数进行逐层抽象而取得的,黑盒效应是其主要特征[67];换言之,以数据驱动机器学习为核心的AI技术虽然可以实现感知、学习、行动甚至自主决策,但技术有效性主要受限于无法向使用者解释其分析和决策的合理性、评估其模型的优缺点、预测其在新任务上的普适性等问题,甚至无法确保其在未来应用中的安全性。另外,具有水环境相关学科背景的研究人员、工程师和管理者通常不具备AI领域的相关知识和技术经验,这使得他们在科学选择、综合评估及认知理解AI技术解决水与环境问题时面临较大困难,从而导致AI技术的实际价值未能得到充分发挥。建议:未来应加速突破具备可解释性的AI新技术,以及发展面向水与环境领域的AI技术系统构建理论与评估方法,这对促进AI技术在水与环境领域研究、应用及教育的全面发展具有重要意义。
(2)大规模算力与环境负效应。随着监测、传感和模型技术的不断发展,水工业的运营模式正逐步向数字化探索转型[68],这意味着与水资源、水环境和水生态相关的数据体量正呈现急剧上涨的态势,而其中不乏存在数据不确定性、冗余性等问题[69]。AI虽然有能力解决这些挑战,但未来随着水系统数据量的不断增大、数据不确定性的日益提高及数据间联系的愈发复杂化,基于AI的水与环境解决方案将消耗大量计算资源。此外,实现水循环系统的集成管理与协同调控也必须仰赖深度神经网络等算力密集型AI技术的应用,而大规模算力的发展是前提条件。然而,大型计算设施的建设和运行会消耗巨大的资源和能源,并产生碳排放等环境问题。有研究指出,目前流行的深度神经网络在海量训练过程中可排放超过280吨的二氧化碳当量,这是美国汽车平均生命周期内碳排放量的5倍[70]。美国环保署统计称,目前世界上建成数据中心的耗电量占全球总耗电量3%,且耗电量正以每4年翻一番的速度快速增长;同时,信息与通信技术的温室气体排放量约占全球2%,碳足迹的贡献与民航业碳排放量总和持平[71,72]。AI的粗放型应用,将可能加重全球能源危机与气候变化,甚至对生态环境系统产生未知的溢出效应,从而对能源和气候相关SDGs目标的落实产生不利影响。实际上,人脑在进行感知和认知时,不仅要处理当前数据,还需调动大脑存储的相关知识进行理解和推理,但该过程消耗的卡路里远小于训练AI模型所需电耗[73]。在机器学习过程中引入人脑存储的水和环境领域知识进行数据初筛与研判,可以减少不必要的算力密集型过程,这有利于减少AI应用时的能耗和碳排放等问题。建议:未来应强化AI技术同水与环境领域知识的深度融合,发展基于AI算力最小化的水循环管理与风险防控体系和模式,在解决水与环境问题的同时,减少甚至避免不必要的溢出效应。
(3)数据有效性与标准化。AI作为数据驱动型新技术,若期望其效能在水与环境领域得以发挥,另一重要基础在于确保数据体量和质量的有效性。目前,全球水业正呼吁和尝试推动数字化运营模式转型[74],尤其是强调给水处理、污水处理及供排水过程中水量、水质和能耗等基础数据的监测分析,这为AI应用创造了有利条件。但对于绝大多数国家和地区而言,城镇水处理系统的水量和水质等基础数据普遍依赖人工记录,数据即时性和有效性较差;而污染物在水系统中的迁移转化过程瞬息万变,仅依靠人工记录数据很难反馈水系统的即时状况,若以此训练AI算法,其结果势必与实况存在巨大偏差而导致预测性能不高。近几年,水量、水质和能耗等在线监测传感设备及物联网技术的快速发展[75],为解决数据即时性和有效性的瓶颈带来了机遇。尽管如此,目前国际上在数据质量、接口和协议等方面仍未统一标准,这也是未来以AI为核心的新一代水系统与智慧城市体系进行融合亟待解决的关键核心问题。建议:未来应大力发展水与环境领域的数据在线监测与传感技术,落实数据质量、接口和协议的标准化;与此同时,在不同国家和地区的发展水平、人力和物力投入仍存在差异的前提下,突破当前水系统可用数据量普遍较小的约束,研发基于小数据样本的AI算法和技术系统是当下发展的权宜方向。
(4)限域应用及不平等性问题。实现公平性是SDGs追寻的共同目标,而AI技术的限域应用和推广,可能会导致全球不同国家和地区在水与环境治理方面出现甚至加剧不平等性问题[76,77]。AI被认为是21世纪的三大尖端科技之一,但目前无论是与AI相关的知识教育、技术研发还是实际应用,均多见于发达国家。尤其在涉及跨境流域水资源管理方面,发达国家利用其AI优势可增强国家层面的水资源管理与调度能力建设,使其在跨境流域管理中占据研判先机与话语权,从而有能力制约发展中国家和地区的水资源利益分配,这无疑与联合国SDGs实现公平性的目标背道而驰[78]。建议:结合发展中国家和地区在水与环境领域的共性问题和重大挑战,开展国际科技、教育与投资合作,帮助发展中国家和地区在AI等新兴领域部署能力建设,突破因尖端科技限域应用而带来的不平等性问题。
4未来展望以落实推进联合国面向2030年的SDGs为宗旨,利用AI等新兴信息技术,以数字化、智慧化为模式,实现城市或城市群水循环的全系统管理及环境风险的高效防控,是环境工程学科的重要研究方向和前沿。机遇与挑战并存,深化AI技术在水与环境污染防控、水质安全保障、涉水设施优化重构、绿色流域构建等方向应用的过程中,要强化数据驱动算法与领域知识引导的结合。在确保模型预测准确性的基础上增强模型可解释性,发展面向AI算力最小化的水系统管理与风险防控技术体系和运营模式。形成标准化的模型算法、数据质量和接口协议的构建理论与效应评估方法,在解决水与环境问题的同时,减少以致避免不必要的溢出效应。关注AI技术在发展中国家,尤其是“一带一路”沿线欠发达国家和地区水与环境治理能力建设中的角色地位,减少因AI限域应用而带来全球治理的不平等性问题。展望未来,通过水与环境领域和AI领域的融合创新与协同发展,有望在全球范围内重构健康、可持续、高弹性和智慧化的下一代水循环系统,以满足增进全人类福祉和保护水生态环境的重大需求。
人工智能促进教育变革创新
通过云平台布置电子作业,利用数据分析课堂上学生学习行为,推进学校管理流程迈向数字化……前不久,2022国际人工智能与教育会议在线上举行,来自全球数十个国家的政府官员、专家学者、一线教师、企业代表等相聚“云端”,畅叙人工智能时代教育发展图景。
作为引领新一轮科技革命和产业变革的重要驱动力,人工智能催生了大批新产品、新技术、新业态和新模式,也为教育现代化带来更多可能性。习近平总书记强调,“中国高度重视人工智能对教育的深刻影响,积极推动人工智能和教育深度融合,促进教育变革创新”。国务院印发的《新一代人工智能发展规划》,明确利用智能技术加快推动人才培养模式、教学方法改革;教育部出台《高等学校人工智能创新行动计划》,并先后启动两批人工智能助推教师队伍建设试点工作;中央网信办等八部门联合认定一批国家智能社会治理实验基地,包括19个教育领域特色基地,研究智能时代各种教育场景下智能治理机制;科技部等六部门联合印发通知,将智能教育纳入首批人工智能示范应用场景,探索形成可复制、可推广经验……“人工智能+教育”不断碰撞出新的火花,为教育变革创新注入强劲动能。
“人工智能+教育”,应用就在身边。音乐课上,虚拟数字人“元老师”跨越时空限制,带领多所学校学生同唱一首歌;体育课上,学生开始跳绳项目测试,智能终端上实时显示心率变化、跳绳次数、平均速度等数据。技术改变课堂,潜力无限。比如,借助虚拟现实技术,学生能够模拟穿上太空服行走在宇宙,感受浩瀚星河的魅力;通过增强现实技术体验川剧变脸,平面的课本知识变得可感可知。现实中,越来越多的学校已经开设或准备筹备人工智能教育教学活动。
“人工智能+教育”,变革教育生态。教、练、考、评、管各环节均有人工智能辅助,让教师教得更好;虚实融合多场景教学、协同育人,让学生学得更好;海量线上数据和逐渐强大的算力,让学校管理更加精准。此外,在人工智能支撑下,优质数字教育资源跨越山海,推动教育更加公平、开放。在西藏墨脱县,得益于多媒体器材配备到雅鲁藏布大峡谷深处、“智慧课堂”全覆盖,门巴族孩子小学入学率实现100%。
我国发展“人工智能+教育”具备良好基础和独特优势。比如,语音识别、视觉识别等技术世界领先;国家智慧教育平台汇集了海量的数据资源,2.91亿在校学生和1844.37万专任教师展现出丰富的应用需求;教育领域数字化基础条件全面提档升级,全国中小学(含教学点)互联网接入率达到100%,99.5%的学校拥有多媒体教室,学校配备的师生终端数量超过2800万台。也应看到,人工智能技术在教育领域的应用仍处于起步阶段。“数字鸿沟”可能将部分学生排除在智能教育之外,数据收集、使用、分析等环节存在安全隐患,相关公共政策制定较为滞后……以人工智能赋能教育现代化,这些都是需要回答好的课题。
着眼未来,应携手打造高质量、有温度的人工智能教育生态。人机协作如何更聪明,人机对话如何更友好,是“人工智能+教育”的长期课题。一方面,技术应服务育人,在让其“授业”“解惑”的同时,必须坚持教师“传道”的主体地位。另一方面,人也要理解、善用技术,努力提升信息应用能力,让人工智能更好辅助教学。教育是动态的、发展的,理性思考人与技术的关系,把握教育规律、用好技术手段、凝聚各方力量,进一步推动人工智能与教育深度融合、创新发展,才能更好赋能教育现代化,培养顺应时代发展要求的创新人才。(吴丹)
人工智能与国家政治安全
原标题:人工智能与国家政治安全人工智能技术的蓬勃发展和广泛应用,给人类生产生活带来了极大便利,同时,也对国家主权、意识形态、执政环境、社会关系、治国理念等带来冲击,深度影响国家政治安全。充分认清人工智能对国家政治安全的挑战,研究应对之策,对于有效维护国家政治安全,意义重大。
人工智能影响政治安全的机理
作为一种颠覆性技术,人工智能进入政治领域后,既具有技术影响政治安全的一般规律,又体现出其不同于以往技术的鲜明特点。
从技术影响政治安全的一般机理来看,主要体现在三个方面。第一,技术进步不可避免地直接或间接服务于政治安全。政治安全是国家安全的根本,经济、社会、网络、军事等领域安全的维系,最终都需要以政治安全为前提条件。因此,包括技术在内的一切社会条件,首要的任务是为政治安全提供服务和保证。综观人类历史上的技术进步,往往被首先考虑用于维护国家安全特别是政治安全,尽管这些技术研发的初衷并非如此。人工智能亦然。第二,政治安全与技术进步相生相克、相生相长。马克思认为,先进技术进入政治领域后,有效提高了“社会控制和权力再生产”。同时,政治安全对技术进步的需求,反过来成为技术不断进步的推动力。但技术并非完美的政治工具。一旦技术利用不当、发生技术失控,或者技术自身缺陷所蕴含的风险爆发,政治安全可能被技术进步反噬。第三,技术进步倒逼政治发展转型,给政治安全带来新课题新挑战。从历史上看,技术进步对社会结构、社会关系、社会文化等带来的变化和冲击,从来不以人的意志为转移。当火枪火炮成为主战兵器时,继续用木盾藤牌来保卫政权的行为无疑是愚蠢的,迫切需要当政者转变思想观念,寻求能够有效维护政治安全的新模式新方法。当计算机网络技术逐渐普及时,西方国家政党纷纷利用互联网进行政治宣传和选举拉票。人工智能较之以往的技术,拥有前所未有的机器“主观能动性”优势,必将对政治安全理念、安全机制、安全路径等带来更大的改变。
从人工智能影响政治安全的独特机理来看,主要体现在两个方面。第一,算法和大数据将左右智能机器“认知”“判断”,继而影响政治行为体的抉择。人工智能的核心“三大件”是算法、算力和大数据。一方面,算法是否公正不偏袒、大数据是否真实完整未被删减篡改伪造污染,直接决定机器的研判结果,并影响人的判断和行为。另一方面,与传统的人口学变量的定量分析不同,大数据、云计算、机器学习等可以将数以亿计的政治行为体抽象成社会的“节点”,人工智能通过分析信息中节点的度数、介数和接近度,来揭示权力集聚规律、赢得政治威望的秘诀,这为执政安全提供了新的技术支撑和智慧渠道。第二,人工智能技术对经济、军事、社会、网络、信息等领域的影响向政治领域传导,间接冲击政治安全。作为一项赋能性技术,人工智能正在逐渐“改写”各领域的秩序规则,给各领域带来机遇和挑战。尽管以往的技术进步也是如此,但其影响的深度和广度远远不及人工智能。而且,以往各领域安全问题“错综复杂、交织并存”的程度,也远远不及人工智能时代高。其他领域的安全问题一旦发酵,极有可能冲击政治安全。
人工智能给政治安全带来新挑战
技术变革具有两面性,人工智能既是维护政治安全的新机遇,也是新挑战。
挑战之一:人工智能技术的普及应用,导致政治权力呈现出“去中心化”趋势。在人工智能时代,数据即代表着权力。掌握数据的主体既有国家权力机构,也有个人、企业团体、社会组织等非国家行为体。“互联网数据”结构的“多节点、无中心”设计,决定着处于线上社会任何位置的主体,均不可能比其他位置的主体位势高。人人都有“麦克风”“摄像机”,处处都是“舆论中心”“事发现场”,这一显著特征,弱化了传统的线下科层制国家管理结构和单向治理模式,政治话语权由政府这个传统的权力中心逐渐向社会层面弥散,国家治理难度大大增加,政治安全风险也大大增加。目前,这种风险已初露端倪。2019年9月,因有人线上传播“老师辱骂原住民学生是‘猴子’”的种族歧视谣言,印尼巴布亚省爆发严重骚乱,导致26人死亡、70余人受伤。
挑战之二:随着人工智能技术和数据垄断持续扩张,资本权力的扩张将危及国家权力边界。生产力的发展变化必将带来生产关系包括政治权力结构的调整。作为“第一生产力”的科学技术,其发展进步势必引起国家权力结构的调整。当人工智能技术广泛应用于经济社会各领域并引起变革时,将会推动国家治理结构与权力分配模式做出相应调整。从当前种种迹象来看,资本的权力依托技术和数据垄断持续扩张,将成为新时代国家治理结构调整的重大课题。一方面,人工智能技术研发门槛很高,依赖于大量的、长期的资本投入和技术积累,这导致社会各产业、各阶层、各人才群体间的技术研发能力、资源占有程度、社会影响力等方面极不平衡,以互联网商业巨头为代表的技术资本将占据明显优势。另一方面,人工智能技术强大的赋能作用,以及良好的经济社会应用前景,导致资本趋之若鹜。商业巨头实际上掌握了目前人工智能领域的大部分话语权,并正在逐步形成行业垄断。人工智能时代,巨头企业以强大资本为后盾,逐步垄断技术、控制数据,或将不可避免地在一定程度上逐渐分享传统意义上由国家所掌控的金融、信息等重要权力,进而可能插手政治事务。因此,国家是否有能力为资本权力的扩张设定合理的边界,是未来政治安全面临的重大挑战。
挑战之三:人工智能技术及其背后的数据和算法潜移默化引导公众舆论,进而影响人的政治判断和政治选择,间接把控政治走向。在人工智能时代,数据和算法就是新的权力。近年来围绕国家大选而展开的种种政治运作显示:拥有数据和技术能够从一定程度上影响政治议程。据有关媒体报道,2020年美国总统大选期间,有人利用网络社交平台的大量机器人账号,发布海量虚假信息,力图影响选民的认知、判断与选择。类似的情况,也曾出现在2016年的美国大选、2017年的英国大选和法国大选中。这些案例非常清晰地显示:只要拥有足够丰富的数据和准确的算法,技术企业就能够为竞争性选举施加针对性影响。当某种特定政治结果发生时,人们很难判断这是民众正常的利益诉求,还是被有目的地引导的结果。
挑战之四:人工智能技术可能被政治敌对势力用于实施渗透、颠覆、破坏、分裂活动。利用先进技术威胁他国政治安全,这样的例子屡见不鲜。计算机网络技术出现后,被西方国家用来进行网络窃密、网络攻击、网络勾联、传播政治谣言、意识形态渗透和进攻。人工智能时代,攻击一国人工智能系统或利用人工智能实施渗透、颠覆、破坏、分裂活动,带来的后果将比以往更为严重。
挑战之五:人工智能技术进步对主权国家参与国际竞争带来严峻挑战。人工智能是当前最尖端最前沿的技术之一,其核心技术多被美欧等发达国家所掌握。这些国家利用它提升生产自动化水平,提高劳动生产率,加快制造业回迁,将冲击发展中国家的传统比较优势,使后者在国际政治经济竞争格局和全球分工中处于更加不利的地位。通过发展军事智能化,进一步扩大对发展中国家的军事优势。国家之间一旦形成技术“代差”,综合实力差距将被进一步拉大。在这种情况下,技术强国对发展中国家实施政治讹诈和技术突袭的可能性增大。
多措并举,维护我国政治安全
政治安全事关我党生死存亡和国家长治久安,我们必须高度重视人工智能带来的政治安全挑战,多措并举,综合施策。
人工智能技术具有高度专业性和复杂性,企业、科研机构常常处于技术创新前沿,而国家政府则往往远离技术前沿,对技术的感知相对滞后,对技术的安全风险准备不足。为此,要强化风险意识,密切跟踪人工智能技术和应用的发展,运用系统思维,定期研判人工智能可能带来的政治风险,提高风险识别、防范和处置能力。要创新技术治理模式,构建政府主导,企业、研究机构、技术专家、公众等多方参与的人工智能治理体系。“治理”不同于“管理”,管理是政府单向的行为过程,治理则是一种开放的、多个利益攸关方参与的互动过程。通过多方互动,政府既可以跟踪掌握技术和应用的前沿动态、发展趋势,掌控治理主动权,又有助于企业、研究机构、专家、民众更好地了解政府关切,共商制定风险管控机制,推进治理工作的科学化民主化。
当前,我国在人工智能技术领域面临的最重大的安全威胁,是关键核心技术受制于人。从现在起到2030年,是我国抢抓机遇的关键期。要举全国之力,集全民之智,打造一批国家级人工智能研发平台,加强基础性、原创性、前瞻性技术研发,从智能芯片、基础算法、关键部件、高精度传感器等入手,加快核心技术突破。
没有规矩,不成方圆。针对技术应用风险,严格人工智能标准制定和行业监管,确保人工智能良性发展。紧跟技术发展变化,动态修订完善相关技术标准。加紧完善人工智能相关法律法规和伦理道德框架,对相关的民事与刑事责任确认、隐私和产权保护、机器伦理等问题予以明确,理顺设计者、使用者、监管者之间的权责关系。要建立健全人工智能监管体系,形成设计问责和应用监督并重的双层监管结构,实现对算法设计、产品开发、成果应用的全过程监管。积极促进行业自律,加大对数据滥用、算法陷阱、侵犯隐私、违背道德伦理、擅越权力边界等不良行为的惩戒力度。要积极主动参与人工智能国际议题设置,共同应对安全、伦理、法律等诸多挑战。抓住人工智能国际准则和配套法规刚刚起步之机,积极参与规则制定,及时宣示我国主张,努力掌握规则制定话语权和国际交往主动权。
针对外部安全风险,加强军事能力建设,为维护国家政治安全提供力量保证。要积极研究探索智能化战争理论,加快推进现代武器装备体系和人才队伍建设,强化智能化条件下部队训练演练,不断提升我军新时代军事斗争准备水平。
(作者:许春雷,系军事科学院博士研究生,现任河北省石家庄市鹿泉区人武部副部长)
(责编:杨虞波罗、初梓瑞)分享让更多人看到