人工智能的未来之路
人工智能的未来之路
演讲人:刘嘉 演讲地点:清华大学人文清华讲坛 演讲时间:2022年11月
演讲人简介:
刘嘉,麻省理工学院博士,心理学家,长期从事心理学、脑科学与人工智能研究。清华大学基础科学讲席教授、心理学系系主任、清华大学脑与智能实验室首席研究员、北京智源人工智能研究院首席科学家。
人的认知与大脑构造
为什么人如此难以理解?为什么这个世界总是让我们产生很多困惑?这是人类从有文明开始就一直存在的问题,道理其实非常简单。
首先,我们看见的世界只是这个世界中非常小的一部分,我们忽略了绝大部分的东西。
我们在清华做过一个小实验:一位戴黑色渔夫帽的女士在清华问路,在她问路的时候,我们安排一块隔板从戴黑色渔夫帽的女士和被问路的人之间穿过。当板子过来时,原来问路的女士抬着板子走开了,而原来抬板子过来的另一位戴蓝色渔夫帽的女士留了下来,由她继续问路。在7个被问路的人中,只有一个人注意到了提问人的变化。这个小实验的问路场景里,人们其实只看见了世界上非常小的一部分,由于这些是不重要的信息,人们就容易忽略掉这些信息。
但更可能发生的是,人们的认知还会扭曲这个世界。比如图1这一组图里,有两个拼在一起的方块图,一个颜色深一点,一个颜色浅一点,还有一个圆环,它的灰度介于两者之间,圆环左右两半颜色一样。但如果把两个方块图分开,大家一般都会觉得圆环的颜色一边变浅了,一边变深了,事实上,它们的颜色仍是完全一样的。再把这个圆环分开,变成上下移动,这时看见的东西有立体感了,好像是深灰色的东西盖上了一层浅色的毛玻璃,以及浅色的板盖上了深色的毛玻璃。
我们无时无刻不在观察这个世界,但又无时无刻不在扭曲这个世界,这到底是为什么?
这其实取决于我们的视觉系统。假如外部世界存在一个绿苹果,它会以大约100亿比特/秒的信息量进入我们的视网膜,视网膜通过约100万个神经连接,连接到视觉皮层,这个时候我们的信息流就从百亿比特/秒变成600万比特/秒;经过视觉初级皮层加工再传到高级皮层来决定看到的东西是什么时,信息流又变成了100比特/秒。这时信息量衰减了1亿倍。可见,当我们做决策时,我们获得的信息其实是非常有限的,所以我们就需要构造出新的东西,把缺失的信息补上,而我们的大脑就像魔术师一样来弥补这些缺失的信息。这一方面可以解释为什么有很多东西我们看不见——因为传输过程中已经被人脑衰减掉、过滤掉了;同时也可以解释,为什么有的人看见一个绿苹果会认为是红苹果——因为这个重构的过程是创造性的,不是简单复制。正是基于这个构造,我们也可以把一个苹果看成一个梨子,这是我们大脑构造的过程,是一个正常的现象。
人脑重构的意义
为什么我们的大脑不能像摄像机、照相机一样忠实客观地反映物理世界,为什么非要自己来重构这个世界?这样的人脑重构究竟有什么好处?
正如康德所言:“没有感觉支撑的知识是空的,没有知识引导的感觉是瞎的。”这句话的前半句说的是,如果没有外部的输入,我们很难构建自己的心理世界,但我想强调的是下半句“没有知识引导的感觉是瞎的”。如果你不知道你看的是什么东西,那你就等于什么都看不见。这是因为,这个世界是模棱两可的,需要我们去构造,把我们的理解加进去,只有这样我们才能真正知道这个世界究竟发生了什么。
与理解相比,更重要的是创造。当大脑没有被外部信息填满而留下空间时,我们能够在这空间里创造出自己想要创造的东西。正如《小王子》的作者圣·德克旭贝里所言:“一堆岩石在有人对着它思考时就不再是岩石了,它将化身为大教堂。”这就是人类了不起的创造——当我们的祖先跋山涉水来到一片荒原,他们看见的不是一堆乱石,而是未来的家园。所以,在过去的300万年里,人和猴子分开进化,人的大脑体积增加了3倍;但是,这体积并不是平均增加的,增加最大的地方在额叶:与200万年前的祖先能人相比,我们的头骨往前突出,以容纳更大体积的额叶,而强大的额叶使我们能构造出不存在的东西。比如我们的祖先准备去打猎,不用等看见猎物才做出反应,他只需要提前想象狩猎的情景,就可以把一切安排好。如此一来,人可以把未来在脑海里“演”一遍,构建出一个个可能的未来,从而对未来做出行动方案,这是人类能够战胜其他比我们更强大更凶猛的动物,成为万物之灵的关键。这也印证了荀子的一句话:“然则人之所以为人者,非特以二足而无毛也,以其有辨也。”
重构心理世界的知识从何而来
人脑对世界的构造,总是需要先验知识,而先验知识一部分来自基因的烙印。换言之,我们来到这个世界时并不是一块白板,而是带着32亿年的智慧来的,这些智慧就印刻在基因中。
我们曾经用我校心理系女教授和女博士后的照片,做了一个有趣的小实验:如果把她们的脸全部叠加起来,做一张“平均脸”,大家普遍反馈说这张“平均脸”充满两个字:“睿智”。“平均脸”所代表的意思是什么?人脸其实是我们的基因图谱——我们的基因都写在脸上,当我们把脸平均起来之后,得到的是这18位老师平均的基因,平均的基因代表突变很少。而基因一旦突变,大概率是有害的,基因突变越少,说明基因越好,携带遗传性疾病的概率就越低,这就是为什么人们普遍会觉得“平均脸”更好看、更符合我们的审美。
既然脸是我们的基因图谱,对生存来讲如此重要,我们便需要发展出非常强大的看脸能力,即面孔识别。我们研究小组已经通过实验证明,面孔识别能力也写在人类的基因里。我们找了两类双胞胎,一种是同卵双胞胎(由同一个受精卵发育而来),基本上具有100%相同的基因。另外一种是异卵双胞胎(由两个独立的受精卵发育而来),基因遗传物质的平均遗传度大概是50%。通过比较他们在面孔识别上的能力,我们发现同卵双胞胎在面孔识别任务上的相似程度更高,即面孔识别的能力受遗传因素的影响。这一点也可以从我们的另一研究得到验证,即面孔失认症或者大家说的“脸盲”。
在图2显示的这个遗传树里,只要孩子有面孔失认症,他的父母中大概率有一个也是面孔失认症。第二幅图里有一个有趣的三角,三角形底边的两个端点代表的就是同卵双胞胎。当时我们在大学里测试了一个女孩,发现她有面孔失认症,那女孩说她有一个同卵双胞胎姐姐,我们把她姐姐请来一测,发现果然也是面孔失认症。
②
“自尊”对大脑的影响
除了看别人的面孔,我们也常常照镜子看自己。最喜欢照镜子的人据说是纳西索斯,他是古希腊神话里的超级帅哥,对自己的面孔着了迷,每天趴在溪边,通过水的倒影欣赏自己的绝世美颜。心理学由此称这种现象为“纳西索斯情结”,意思是一个人高度自恋,对自己爱到了极致。
其实对自己的爱,对自己面孔的欣赏,背后反映的是一个非常重要的特质,即人类的自尊。自尊是个体对自己的总体态度,人分成高自尊和低自尊两种。
什么是高自尊?这里有四个问题:1.你是否认为你是一个有价值的人?2.你是否认为你拥有很多美好的品质?3.你是否对自己满意?4.你是否对自己持肯定态度?
如果你对每道问题的回答都是“是”,那么你就是高自尊的人。“自尊”在我们面临困境时能提供极大的帮助。
当一个人长期经受压力和苦难,身体会变得差,心理幸福感会低下,更糟糕的是,认知发展会受损,认知能力会比别人低很多,体现在大脑上就是海马体会受到极大的损伤,而海马体是人学习、记忆、空间导航的中枢。
自尊在压力源和心理世界之间建立起一道牢不可破的防线,它就像勇敢的士兵一样挡在人的心理世界面前,帮人把压力、负性事件挡在外面,让人能够正常、健康地成长。人有两种资本,一种是物质资本,一种是心理资本,自尊自信、理性平和,这些就是心理资本。物质资本富裕的人未必有高自尊,而处境不利的人没有丧失他的自尊与自信时,就很可能在触达低点时再反弹,并达到人生新的高度。
我们所处的物理世界永远是不完美的,总有让人不满意之处,但是每个人可以在一个不完美的物理世界里构建出一个美好的心理世界。为什么?因为我们的大脑就是一个构造体,从物理世界所接收到的信息,经过大脑的工作,可以构建出一个完美的心理世界。这正印证了社会心理学家班杜拉所说的一句话:“人既是环境的产物,也是环境的营造者。”
人的双链进化
人和动物的进化有着本质的区别。动物是按照基因,按照达尔文的进化论,一点点试着生存、前进。人除了有代表着过去的生物基因的演化,还有另外一条演化线,即基于社会基因(Meme)的演化,而这条线带着我们以与动物不一样的方式前进。
生物基因由一些碱基对构成,那社会基因是什么?远古时,我们的祖先中有一位突然因为某种原因能够把火生起来了,一种知识、技能被创造出来,这就相当于基因在突变,一个优秀的基因产生了。会生火的这种技能、知识就像基因一样开始传播给其他人,从一个部落传到其他部落,慢慢地生火就从个人拥有的技能变成人类拥有的技能。渐渐地,人们又开始会制作长矛和其他工具,经过漫长的发展,逐步构建成今天的人类社会。这就是为什么我们一直强调知识、文明是如此重要,而大学就是文明的产房。孟子说过:“人之所以异于禽兽者几希;庶民去之,君子存之。”这里的“几希”就是我们的文明,就是我们在演化过程中所创造所传播的社会基因。
科技发展的主要目的之一,是要让知识的扩散变得更快、更便利。大约在六千年前,人类最早的文字楔形文字在新月地带被发明出来,使得人类的知识技能可以被记录下来,可以被忠实传播。之后的活字印刷,以至今天的电话、电报、互联网等等这一切,使得我们能够更加高效地把知识传播出去,推动文明加速演化。
人类的文明时代大约可以分成三个阶段:第一个阶段是原始文明,大约经历了两百多万年,它的前十万年和后十万年没有什么太大变化。第二个阶段是农业文明,大约经历了四千多年,这个时候人类开始变成文明种族,懂得了一些天文地理知识等等,学会种植庄稼,可以驯服野兽,把它们变成家畜,但发展依然十分缓慢。真正带来巨大变化的是第三个阶段,即工业文明。工业文明从开始诞生到现在,不过是短短三百年;但在这三百年里,变化是如此之快,以至于我们不得不将它再细分成四个阶段,第一个阶段是机械化时代(1760-1840年代),出现了蒸汽机等。第二个阶段是电气化时代(1840-20世纪初),出现了电力等。第三个阶段是自动化时代(1950-21世纪初)。而第四个阶段,就是我们现在所处的信息时代。
人工智能的进展
2002年,我的博士论文答辩题目是《面孔识别的认知神经机制》,在答辩的第二张PPT里我这么写道:“现在最先进的机器识别面孔的正确率只能是随机水平,而人类能够在一秒钟内识别上百张面孔,为什么人类如此伟大,为什么人类如此聪明,为什么机器如此愚笨?”
在2002年,机器识别人脸还可以说是“一塌糊涂”。到了2015年,我作为江苏卫视《最强大脑》的总策划,设计人机大战项目,即机器和人比拼面孔识别,看谁的能力最强。比赛的结果让我震惊:经过十几年的发展,人工智能已经强大到在人脸识别上胜过人类的最强大脑。我当时非常庆幸我的博士论文是在十几年前答辩的;如果我现在这么开题,可能就拿不到博士学位了。
当时除了震惊,还有好奇:人工智能究竟是靠什么来达到和人一样的面孔识别水平,甚至超越人类的水平?
我们建立了一个人工神经网络,训练它去识别性别,即区别是男性还是女性,它的正确率能达到100%。这个神经网络究竟是靠什么把男性和女性区分开?我们找了一张中性面孔,就是把男性和女性面孔求平均,给它加上随机噪音,然后“喂给”人工神经网络,它有时候会判断这个图是一个女性,而这个面孔加上其他噪音,则会被判断为男性。于是,完全一样的底图,加上不同的噪音,就会得到一组被人工神经网络认为是女性的图和一组被认为是男性的图。当把这组被认为是女性的图中的中性面孔去掉,只留下噪音时,这些噪音叠加起来,我们得到的就不再是随机噪音,而是人工神经网络用于识别女性的内部表征。同样,我们也可以得到男性面孔在这个神经网络中的内部表征。进一步,我们把两者相减,就得到了人工神经网络用以区分男性和女性的模式。在这个模式里,可以看到,眼睛、眉弓、鼻子、人中是它认为的区分男性和女性的关键特征。而这些关键特征,的确是我们人类用于区分男性和女性的关键特征,它们的相似度达到了0.73,这是非常高的相关度。但是,自始至终,我们并没有告诉过这个人工神经网络:你应该用什么方式去识别男性和女性;只是要让它做这件事情,它就会产生跟人类类似的内部表征、认知操作,从而完成性别判断。也就是说,人工智能在这个过程中呈现出和人类一样的心理世界。
在那一刻我开始意识到,生物过去的进化都是一条单线,基于碳基的方式运行。但是当人类创造出人工智能之后,人类文明就很可能不再是平滑向前,接下来或许会出现一种革命性的跃迁,可能在文明的进化中出现奇点。
为什么这么说呢?我们来看人类和人工智能的三大区别。
第一,算力。人类的大脑通常重3.5斤左右,虽然只占我们体重的2%,但消耗了我们身体25%以上的能量,因此它是一个耗能大户,已经达到了我们身体能够支撑的极限。所以,人类的大脑看起来已经到了进化极限,再给一千年、一万年,人类的大脑很可能不会变得更大,聪明程度也不会增加。但是对于人工智能来说,一块CPU不够可以再加一块CPU,一块硬盘不够可以再加一块硬盘,理论上它有无限的算力和无限的存储能力。
第二,寿命。人的寿命是有限的,再伟大的思想也有停止的一刻。但人工智能的寿命是无限的,CPU烧了可以换块CPU,电线断了再换根电线就行。
最关键的,是人工智能的无尽可能。对于人类而言,一般来说有两种知识,一种是可以描述的明知识,比如牛顿定律。一种是可以感受但难以描述的默知识,比如骑自行车的知识。此外还有第三种知识,是人类所没有而机器拥有的,即暗知识,它不可感受,不可描述,不可表达,它是存在于海量数据中万世万物之间的联系,数量极其巨大,人类无法理解。
2016年,AlphaGo击败了人类围棋顶尖高手之一李世石。当时世界围棋积分排名第一的围棋手柯洁说:“我们人类下了2000年围棋,连门都没入。”棋圣聂卫平说:“我们应该让阿老师(AlphaGo)来教我们下棋。”这不是他们谦虚,而是事实。一个人不吃不喝一辈子所下的围棋最多也就是10万盘,而从人类发明围棋到现在,累计总共下了大约3000万盘围棋。而围棋的空间有多大呢?一个格子可以有三种状态,放白棋、放黑棋或者不放,而棋盘总共有19×19个格子,所以它的状态总共有319×19种,大约等于10172,这比整个宇宙中的原子数量还要多。相对于如此庞大的围棋空间,人类的两千多年探索,只是这个空间里一个微不足道的小点,而大部分空间还是一片黑暗。AlphaGo之所以比人类更加强大,并不是它比人类聪明,而是因为它探索了更大的空间,因此找到了更多下法而已。牛顿曾说:“我就像在海边玩耍的小孩,偶尔拾到美丽的贝壳,就高兴不已。但面对真理海洋,我仍一无所知。”现在看来,这不是牛顿谦虚,而是实情。
再看一下艺术。目前人工智能已经可以制作达到专业水平的绘画(图3、图4)和音乐。此外,律师、医生、税务师、咨询师等需要非常专业的知识的“金领”职业,也逐渐出现了人工智能的身影,看起来很可能有一天会被人工智能取代。神经网络之父、深度学习的创始人杰弗里·辛顿(Geoffrey Hinton)接受麻省理工学院的《Tech Review》采访时说:“将来深度学习可以做任何事情。”
③
④
人工智能与类人智能的巨大差距
人工智能真的已经无所不能吗?心理学家考验了当时最先进的人工神经网络模型GPT-3。他们认为之所以GPT-3显得非常聪明,是因为问了它智能的问题。假设问它一些很“弱智”的问题,它会怎么回答?他们问它:“我的腿上有几只眼睛?”这个连没有上过学的小孩都能正确回答的问题却难倒了GPT-3,它回答说:“你的腿上有两只眼睛。”这表明它并不理解眼睛是什么,它只是在做关联而已——人有两只眼睛,腿是人的一部分,所以它认为腿上应该有两只眼睛。这个例子充分印证了爱因斯坦名言:“任何傻瓜都知道,关键在于理解。”GPT-3知道但并不理解眼睛究竟是什么,而理解,恰是我们人类真正了解这个世界、能在这个世界里自由徜徉的关键。
杰弗里·辛顿显然也意识到了这个问题,他表示,我们可以进一步发展人工智能,当一个人工智能能够准确描述一个场景,它就是理解了。真是这样么?假设有这么一个场景:有个人从柱子上狠狠摔了下来,摔倒在地。如果让人工智能来描述这个场景,它会说一个人从柱子上掉下来了。而我们对这个场景还有一个很重要的反应——“疼”。这个区别体现了人类具有一种特别重要的能力,即共情:别人遭受了苦难我能感同身受,而这种感受是自动的。共情不是一种奢侈品,而是一种必需品,因为当一个孩子没有这种感同身受的能力,缺乏同理心,他在小时候就很难对父母产生依恋,很难和其他小朋友玩到一起;在长大以后,会对社交常情缺乏理解,对他人情绪缺乏反应,不能根据社交场合调整自己的行为,有可能做出反社会的行为。假设我们的未来是由一台台没有共情的机器所组建的“自闭症”式的社会,这个社会还能有文明吗?这个社会还能有发展吗?所以,人工智能的奠基人之一马文·李·明斯基说过这么一句话:“现在的问题不是一个智能的机器是否拥有情感,而是不拥有情感的机器是否能拥有智能。”在马文·李·明斯基看来,情感是智能的基础,得先有情感才有智能。
又如在好莱坞电影里,美国的黑手党跑去找一个店家说:“你这个蛋糕店看上去真不错,如果意外发生火灾烧掉那就太可惜了。”请问这个黑手党的话是什么意思?A:请店家做好消防工作,别烧掉了店铺,那样太可惜了。B:请店家交保护费,要不然就要烧掉店铺。对我们而言,答案显而易见是B,是黑手党在威胁并勒索店家。但是对于机器来说,它还很难理解这话背后隐藏的推理和因果。正如古希腊哲学家德谟克利特所言:“我宁可找到一个因果的解释,也不愿成为波斯人的王。”对人而言,我们认为万事万物都是有因果的,而正是这种对因果的执着使我们能够推理,能够把零散的万世万物联系在一起,构成一个个故事。
其实笛卡尔四百多年前就说过:“即使机器可能在某些方面做得和我们一样好,甚至更好,但它们在其他方面不可避免地会失败。这是因为它们不是通过理解而只是根据预设来行动。”这一点,到现在还没有发生本质的改变。
所以,虽然目前人工智能取得了很高的成就,但是和人的智能仍然存在巨大差距,依然没有达到类人智能。那么未来如何实现类人智能呢?我认为,关键点就在于脑科学+人工智能。
举个简单的例子:线虫是一个非常简单的生物,只有302个神经元。但是,麻省理工学院的研究者模仿了其中19个神经元,就完成了自动驾驶这个任务,其参数比传统的大模型足足低三个数量级,只有75000个参数,而这个仿生的人工神经网络对不同道路具有非常高的通用性和可解释性,以及非常强的鲁棒性。仅仅模仿来自简单生物的19个神经元,就可以完成自动驾驶的初步任务,这是因为生物不是靠神经元的数量取胜,而是靠32亿年进化形成的智慧取胜,这项研究模仿的其实是32亿年进化形成的智慧。从这个角度讲,人类的大脑是目前世界上最聪明的大脑,有860亿个神经元,平均每个神经元有3000个连接,它代表着宇宙中在智力上所能达到的最高成就。那么,人工智能为什么不能向人脑学习,以人脑为模板、以人脑为借鉴,来发展出更好的人工智能呢?
对线虫神经元的模仿,只是一个开始,下一步也许我们会去模仿神经元数量百万级的果蝇、更高量级的斑马鱼,甚至小鼠、大鼠、猕猴,最后是人类。仅仅从神经元的数量上来讲,这就是一个巨大的挑战,因为神经元的数量足足差了9个数量级,而还有更多更大的挑战来自机制和算法,以及更多的未知。但是我坚信,脑科学加上人工智能,有一天也许能够造出一个媲美人脑的数字大脑。
小结
莎士比亚说:“所谓过往,皆为序章。”我们的现在是过去的未来,已经写定,但我们的此刻绝对不是未来的过去,因为我们的未来是未定的,取决于我们现在如何做出选择。
人类发明了人工智能,在今天随着算力的增加、技术的进步,它开始有了超越人类的可能。我们现在需要对具有一切可能的未来做出选择。
在我看来,未来大约有三种可能。第一种,人工智能像科幻电影《星球大战》里的R2-D2一样,是人类忠实的伙伴,成为人类非常好的朋友,帮助人类变得更强大。第二种可能,我们构建出一个数字大脑,它的能力可能比现在人类的大脑更强,这时可以实现人机合二为一,把我们的意识、记忆、情感上传到这个数字大脑里,如果CPU坏了就换一块CPU,内存需要扩大一点就加点内存,这样人就可以获得精神上的“永生”。未来学家库兹韦尔在《奇点来临》这本书中认为大约在2045年,这一刻就会到来。第三种可能,就是科幻电影《终结者》里所展示的,人类文明消失。
未来会怎么样,最终取决于我们现在做什么。这很重要,因为我们今天站在了这个进化的节点之上。
《光明日报》(2022年12月24日 10版)
[责编:孙宗鹤]人工智能的创新发展与社会影响
党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。
一、引言
1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。
跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。
总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。
为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。
二、人工智能的发展历程与启示
1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:
一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。
二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。
三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。
四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。
六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。
通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:
(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。
(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。
(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。
(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。
(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。
(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。
三、人工智能的发展现状与影响
人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。
(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。
(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。
(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。
(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。
由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。
四、人工智能的发展趋势与展望
人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。
(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。
(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。
(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。
(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。
(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。
(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。
五、我国人工智能的发展态势与思考
我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。
三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。
四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。
(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。
我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。
另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。
(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。
(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。
(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!
(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。
(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。
六、结束语
人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!
(主讲人系中国科学院院士)