人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能是让机器人取代人类吗
图集英国金融时报网13日发表专栏作家王尔山撰写的题为《人工智能是让机器人取代人类吗?》的文章。文章说,微软亚洲研究院院长洪小文博士说,只有等人类了解了创造力的产生过程,才有可能教会计算机人类特有的那种创作。
早春2月在北京做这个采访,我特别想问洪小文的一个问题,是以AlphaGo击败人类围棋高手为代表的这一波人工智能热潮可以维持多久,人工智能目的是要让机器人取代人类吗?
这跟洪小文的履历有关:1995年加入微软,2007年出任微软亚洲研究院院长、2014年兼任微软亚太研发集团主席,早在1980年代就师从卡内基·梅隆大学人工智能先驱学者罗杰·瑞迪做语音识别研究,与李开复、沈向洋成为同门师兄弟。
而瑞迪的导师是约翰·麦卡锡,在1955年首先提出ArtificialIntelligence(人工智能)这一术语,次年,1956年夏天,在达特茅斯学院牵头组织了人工智能暑期研究项目,许多人认为人工智能就是从这次会议开始成为一个学术领域。
洪小文:AI的终极目标是成为人的守护天使
麦肯锡和瑞迪两人均因在人工智能领域做出具有开创性的杰出贡献而先后获得该领域最高奖——图灵奖,瑞迪还在2009年当选中国工程院外籍院士,理由之一就是培养了包括洪小文在内一大批杰出华人学者。
“我从1980年代跟瑞迪学语音识别的时候就觉得人工智能这题目很吸引我,因为人的智能是我们人类自觉最了不起的东西,怎样才能让机器也同样拥有呢?”
他说他永远不会忘记,当时他和学长李开复考虑的思路,跟导师瑞迪和他的导师麦卡锡并不一致,但瑞迪对他们说,“我虽然不认同这个方向,但我支持你们去尝试。”之后他们果然做出一个很不错的成果,洪小文说,“后来罗杰拿图灵奖的时候我们也有小小的贡献。导师的导师麦卡锡也拿过图灵奖——这也是很荣幸的,我们有图灵奖师承的传统。”
500年来棋一局
很容易看出“师承”是洪小文一个关键词,几乎每一个回答都能看到老师的影响。
比如,说到业界对人工智能当前处于哪个发展阶段看法不一,有说春天,也有说秋天,洪小文认为,“其实我也不知道这是春天还是秋天。大家知道人工智能已经经历至少2个冬天,我自己经历过一个半冬天,就是第一个冬天的末期跟第二个冬天。科学研究从来就不是一蹴而就的。即使从我们研究员的角度来看,这都是一个很长的周期。”
“今天人工智能红得不得了,很多人会觉得这就是近几年的事,但我会说,如果没有这些学者——我真的很尊敬这些早期的学者——没有他们从50年、60年前开始做这样的努力,那绝对没有今天的成果,因此我非常希望媒体能更多报道这些从这么早期就默默耕耘的学者和他们奠定的人工智能发展方向。”
至于到底哪一天我们真的可以到人工智能临界值、可以做一个机器跟人的智力一模一样,洪小文说预测未来是非常危险的,麦卡锡的说法是5到500年,“我的老师瑞迪的说法也有趣:他会说大概还要10年,但他会马上补充,‘如果时光倒流,你是在30年前问我,我的回答也是10年,如果你在5年前问我,我的回答也是10年;直到你今天问我,我也说还要10年。’”
那我甚至可以帮他回答,洪小文说,你若在10年后问他,他肯定也跟你说可能还要10年,这样说起来还是跟麦肯锡说的500年比较接近。
——500年?!
上一次看到这个时间跨度恰好也跟人工智能有关:当时AlphaGo击败韩国选手李世石,有人提到“500年来棋一局,仙家岁月也无多”,探讨机器若被赋予人工智能会不会夺走人类下棋的乐趣,并最终要在很多事情上以机器特有的简单高效方式碾压人类。
对此,洪小文淡定回答,如果算法继续由人撰写而机器只会按人提供的算法进行运算,那么,即便是此刻最先进的计算机,在本质上跟十几个世纪以前人类发明的算盘是一样的;哪怕计算机可以完成一些特定类型的任务,但不代表计算机就能理解这些任务。
以计算机写作为例,微软也在研究,“这听起来很神奇,但简单说就是用所谓的深度学习。首先把机器训练好,告诉它这个图跟哪些字会相关:一开始我们找了很多数据先把它训练好,训练好以后,今天就带一个新图丢给这个深度学习的机器,它就会产生一些字,用这个字做引子;我们同时训练出它学习古今中外的诗词,收集起来,加上字跟字之间的关系,做出一个神经网络,然后,你只要有一个字起头了,机器就可以把后面的字找出来,最终变成一首诗、一首歌曲。”
“但人绝对不用担心,绝对不需要担心会失去工作。怎么说呢?比如上面提到的看图作诗,机器很容易就可以产生好几首,但我想不要说作家了,就是一般人看到这些诗也可以很快判断出,‘哎,我觉得这个比较好’,光做到这一点人就已经很有价值。毕竟,让机器通过深度学习产生一个作品是容易的,但判断永远是我们人类的长项,机器不知道哪一个作品能打动我们,有不知道这作品究竟在讲什么。”
只有等人类了解了创造力的产生过程,才有可能教会计算机人类特有的那种创作,红花小文说,但这是最难的,可能我们永远都搞不清楚。
“人工智能发展到现在,我们利用大数据加上计算机、移动互联网,已经可以做很多事情(比如微软在2016年10月刷新对话语音识别词错率新低,率先让机器达到人类速记员的水平),但要达到人的智慧还有很长的路要走,目前都以logicaltest(逻辑测试)为主,强调理性,固然这符合人类对智慧的定义,但人类还有非常丰富的情感、情绪、同理心,等等。也正因为这样,让人工智能可以继续作为一门非常值得研究的学问——若我们假设几年之内就能让机器达到人的智慧,那这门学问应该就封顶了,就没有再研究的必要了。”
科学家VS.科幻小说家
既然人工智能研究之路其修远兮,作为研究院院长该如何应对?比如,怎样确定哪个题目值得做、哪个可以再放一放?理想的研究者具备什么特点?
2017年是洪小文担任微软亚洲研究院院长第十年,是微软研究院这个中国分部自1998年11月成立以来任期最长的院长,前3任院长依次分别是李开复、张亚勤、沈向洋,都是业界响当当的名字。
回顾研究院成立当天,李开复作为首任院长从美国总部请来助阵的研究员,就包括洪小文。那天,比尔·盖茨通过视频向到场嘉宾解释他在1991年成立研究院的目的,就是“致力于开创先进的计算机技术,使未来的计算机会看、会听、会说、会学习,让人们能像与人交流一样与计算机交流。”
从那时起到现在,18年来,微软亚洲研究院英才辈出。谈到管理之道,小文博士认为包括两方面:一是要有中心思想,“比尔·盖茨先生所言就是我们的愿景,我们相信这个方向,虽然不知道要多久、要经过多少个冬天,但我们真的对人工智能怀有憧憬——你也可以说是傻劲吧,但这种坚持很重要。”
第二就是要有长期的心态,他说,“我们当然希望研究员每年都会出成果,但如果今天有研究员跟你说:你不要来烦我,给我两年,我给你成果;两年以后,他说,快出来了,再给我1年;3年过去了,他说,哎,再给我半年……这就是做研究院领导容易感到为难的地方,我们要做到奖赏分明,但要对未来做判断却不容易。也许把时间拉长来看就公平了:比如10年后再看,如果这10年来我的大部分决定以及我鼓励的项目都出了成果,那就代表我是一个好领导;如果我鼓励的项目没出成果,我不鼓励的东西却出了成果,那我就不是好领导。关键是,即使对未来做判断很难也必须做一些判断,然后给研究员最好的环境、最自由的文化,希望好的事情就会发生。”
至于理想的研究员人选,“有人说我们研究院的人是不是比较聪明,我觉得这世界上每个人都很聪明,只是每个人的聪明都用在不同的地方。做我们的研究员要对技术、对未来最有憧憬。我常开玩笑说我们跟科幻小说家有什么不同,今天很多的科研成果,50年前、甚至100年前就有科幻小说家写过了,但科幻小说家只做梦,我们的研究员不但要做梦,还要把梦想实现,哪怕很可能穷一生之力都无法实现。”
——这听上去就像他的老师瑞迪在1995年3月接受图灵奖的致辞的回声,当时瑞迪的标题就是《ToDreamthePossibleDream》(做有可能的梦),要将人工智能的梦想实现。
洪小文也说,“比如我的导师瑞迪,以及他的导师麦卡锡,一生做人工智能研究却没能实现自己的憧憬,做一个有认知、有感知的机器,但他们都很坚持。今天我们要找的人也要像这样充满热情,除了要有一定的专业训练,更重要的就是能坚持。前面提到人工智能研究已经有60年历史,今年是第61年,有过至少2次冬天,今天突然红得不能再红,那前面会不会再有1次冬天?还会发生什么?……但研究员不应该在意这些,而要继续往前走,这才是科研之道。”
30年后,人与AI并存的日常
设想30年后会怎样,洪小文说,“有一个非常好的场景就是终极助理,每一个人都有一个终极的个人助理,它永远知道你下一步要做什么、提前帮你准备好——像我这工作,这个会见完有下个会见,下个会见完还有另外一个,别人在做什么,有些人我可能只见过两面,再见面就会很尴尬,不知道怎么说对方的名字,实际上还不仅是名字,还有上次我跟他谈过什么,这助理就能帮我做好准备,并且还能延伸到个人生活上,比如我要去机场接我妈,应该什么时候出发、路况怎么样,凡此种种,真可以做到无缝对接。”
让每个人都有一个守护天使,洪小文说他很喜欢老师瑞迪这一描述,“我不知道这要不要30年,有可能不用。”
至于人工智能会不会让机器取代人类甚至夺取世界,“我的回答就是要相信人类的智慧,毕竟技术就是技术,人工智能跟移动技术、互联网技术、PC技术是一样的。有时我觉得大家是不是给人工智能太沉重的负担,好像人工智能跟其他技术都不一样。技术都是人类发明的,也是可以拿去用的,关键在人,而我完完全全相信人的智慧,相信我们研发的技术和机器都是为我们服务的。人是世界上最聪明的生物,人的智慧一定会把人工智能用在正途,做可以对人类产生最大益处的事。有人可能会把这些东西拿去做坏事,但那是坏人,我们有法律,我们有智慧可以界定和应对。”
伴随洪小文对人类智慧的高度信任而来的,是他在不同场合多次强调独立思考的重要性。
应该怎么训练独立思考的能力,以及第二个问题,设计人工智能超级助理能不能把这一点考虑进去,于是机器除了能帮我们轻易取得信息,也可以帮忙提醒:请您自己判断,这消息是真的假的?
洪小文认为这是非常必要的题目,“第一个问题,这是我会重视教育的原因,我没有什么了不起的解决方案,但有一点我可以讲,就是要注意多倾听不同的声音。”
尤其当大多数人都这样说、民调显示大多数人都这样说,并且民调也做得很系统、很科学,这时更应警觉而注意花力气去听另外那部分声音,“你听了以后未必就会改变判断,但现在更严重的问题在于那些声音没有出来,民调只说多数人是那样说,而你也没有积极找那些声音来听并作独立思考,这就容易形成另一种一言堂——我想,不管是什么样的社会,也不会说这问题大多数的人觉得这样,那就应该这样。从这个角度讲,怎样照顾少数人的权益、怎样做独立思考,在未来会变得更重要。”
至于第二个问题,他说,“你提到人工智能,这很大程度上要用到数据。数据是什么?英文说garbagein,garbageout,如果你数据的采样不对或偏袒某一方,你得出的结果就会有偏差,因此这第二个关于人工智能的问题更难,难在你怎么才能察觉自己不知道的事情。”
“我们无论从事AI研究也好、做产品也好,都要在意怎样把我们的产品做得更安全、怎样把我们的产品做到不会因为数据而造成我们自己没有想到的某种偏见。这是80/20的原则:我做这事要照顾到大部分人的权利,但不要忘记少数人的声音,因为每一个人在很多议题上都有可能变成少数,毕竟人本来就存在各种差别。这在人工智能领域就更难了,有时你把它做完就变成一个产品拿去用了,要等出了问题你可能才会意识到。”
因此,人类未来的希望在于有更多人能做独立思考,“如果以后不做研究了,我想做教育,而且跟多数人设想的去大学教计算机不一样,我想的是怎样将计算思维和独立思考带到中小学去,因为教育的本质就是准备人类迎接未来,我是真的很想做。”
这么说我们应该对未来更有信心还是更担心呢,因为我们并不知道现在是不是已经有足够能独立思考的人可以应对建造人工智能超级助理的要求?
没想到,从人工智能学者角度谈完未来的艰巨挑战,洪小文依然可以淡定回答,“我是一个乐观者,我觉得未来只有更好,我相信大部分人跟我一样,在新的一年一定会比去年更进一步——比如今天我提到的另一种一言堂,以前我就没这样想过——人一定会犯错误,但我们一定会从错误中学习。不能说这以后就一定不会犯错误,但希望以后犯比较少的错误,甚至把事情做得更好。”
“这也是我相信AI+HI(人类智慧)=超级智能的原因。”他说。
+1【纠错】责任编辑:张敏彦ChatGPT刷爆全网,人工智能真的能大规模取代人类吗
一款由OpenAI公司开发的ChatGPT智能聊天机器人爆红全网。上线仅2个月活跃用户就破了亿,成为抖音之后,全球用户最快破亿的APP。
微软CEO纳德拉说:“对于知识性工作者来说,这完全等同于工业革命。”
以前,我们以为人工智能机器人首先取代的会是简单的体力劳动,但谁都没想到的是,人工智能机器人首先取代的竟然是简单的脑力劳动。
ChatGPT之所以能够在2个月内用户破亿,关键就在于,它在某些领域已经开始展现出比人类更高的智慧,对人类的工作已经形成足以令人恐慌的替代性作用。在接下来的2-3年里,许多人都会因人工智能技术的进步而失业。这已经是不可阻挡的技术浪潮。
ChatGPT到底有多强?它能干哪些工作?队长跟大家说几个简单的例子。
第一个,在线客服。在ChatGPT没出现之前,我们对在线客服机器人可谓是深恶痛绝。因为它根本就不智能,简直就是智障。其中臭名远扬的就有鹅厂的在线客服机器人,经常逼得用户亲自前往鹅厂总部,讨要说法。
那么,有了ChatGPT机器人后,它就可以大规模取代人工在线客服了。如果一家公司,原来需要100个在线客服,以后可能就只需要2-3个在线客服就够了。90%以上的问题都可以交给ChatGPT去回答。后台可以删掉所有的负面词汇,然后给它投喂行业内所有的客服数据,它会像知心小姐姐一样,回答它所知道的一切。
第二个,标准化新闻写作。队长是做媒体的,但队长毫不怀疑,ChatGPT可以完成绝大部分的标准化新闻写作,尤其是事实类新闻报道。但它的缺陷是,写不了新闻评论。它只能算是一个高级写作机器人,缺乏视角、观点、立场和深度。
新闻是一个需要为内容负责的行业。如果出现重大新闻失误,ChatGPT不能背锅,这是人工智能最大的弱点。可以说,时政新闻,是人工智能机器人暂时还无法进入的领域。
举一反三的话,你要看你的工作能否被替代,你就看你是否需要为你的工作承担重大的法律责任。在这个情况下,会计师、律师和建筑设计师等需要终身负责的职业,是难以被替代的。它不可能代替你去坐牢。
第三个,程序猿。人工智能技术是程序猿发明和推动的,但程序猿也在革自己的命。许多代码具备复制性和通用性,这些可复制、可通用的代码都能由ChatGPT所完成。
那么,基层的程序猿都有可能被大量替代。
除了上面三个职业外,像画师、平面设计、论文代写以及口水歌等,都能被ChatPGT所替代。
ChatGPT的工作模式其实并不复杂。我们可以把它理解成一个超级洗稿机器人。它的素材量巨大无比,理论上可以包含全人类的数据资料。当我们让它去写一篇文章时,它会迅速检索海量数据库,对人类的原创内容进行重新组织,进而生成一篇新的文章。
它缺乏人类的思想,但它可以完成那些不需要思想的内容创作。它可能写不出《三体》这样的科幻小说,但你让它写个睡前小故事,写个鸡汤文,写个历史小短文,那太简单了。它可以在一分钟内给你写完满满的一本杂志。
ChatGPT的出现可以让搜索引擎变得更智能。我们以前使用百度搜索时,它是单向的。百度有什么信息,就出来什么信息。但有了它,以后的搜索就是双向的了。你可以像聊天一样,去不断地追问,直到得出你想要的答案。
很多美国大学生都用这玩意儿代写论文,代写作业。以后,在学校厕所里的论文代写广告可能很快就会消失了,这个行业要死掉了。
对付应试考试,ChatGPT具有先天性优势。它最擅长的就是标准。
化和机构化,标准化和结构化程度越高,ChatGPT的替代能力越强。以后,ChatGPT要是写出一篇高考满分作文,大家也不要惊诧。
我们一直在讲的人工智能革命,从数字货币,到元宇宙,都没有真正地大规模落地,也没有真正地深入到人类的生活。数字货币关系到金融稳定,元宇宙缺乏配套的产业链技术,可ChatGPT不同,它是可以直接拿来用的,具备广泛的应用场景。
就像前文中所提到的在线客服、平面设计师、画师、论文代写、口水歌、程序猿以及文案编辑等,都能有所取代。ChatGPT不会彻底消灭这些行业,但它作为一款人工智能工具,可以大幅减少用工数量。
它具有极强的通用性,可能是人类人工智能革命的转折点。微软已经把ChatGPT应用到必应搜索引擎中,试图颠覆谷歌搜索的霸主地位。它能丰富人们的搜索结果,提高搜索体验,百度搜索也很快会引入相关人工智能机器人。
如果人工智能机器人得到广泛应用,它首先带动的不是互联网行业,而是云计算行业。它每天需要处理海量的数据,对算力消耗极大。OpenAI公司投身微软,就是想获得微软云计算的支持。不然,仅算力成本就是OpenAI所不能承受之重。
人工智能不能取代人类的真正原因
原标题:人工智能不能取代人类的真正原因人工智能(ArtificialIntelligence),英文缩写为AI,是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新的技术科学。AI所涉及的学科十分复杂和广泛,例如:哲学和认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论等等,同时人工智能又是一门边缘学科,属于自然科学和社会科学的交叉。
目前,人工智能已经应用在机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序设计、智能控制、机器人学、语言和图像理解、遗传编程等领域中。由此看出,人工智能已经渗入到人类生活中并且将人类的生活提升到另一个层次,而就在这样的发展形势下,有人对人工智能提出了担忧和质疑:人工智能会不会从体力劳动和脑力劳动方面逐步取代人类?
1956年,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家首次提出了“人工智能”这一术语。人工智能学科发展了六十年,而AI是否能代替人类也反反复复经历了很多个阶段,从否认机器人可以代替人类的工作,到承认可以帮助人类做很多事情,到尽管可以做很多事情,但却要人类来处理AI出现的故障;从AI的工作从不出错到训练它完成更新的任务,到最后,认为很多工作根本就不应该是人类应该做的。从人类的心理变化,可以看出,AI正在一步一步的减轻人类的负担,提高人类的工作效率,甚至会让人担心自己的工作会被AI所代替。
1997年,美国IBM公司的“深蓝”超级计算机以2胜1负3平战胜了当时世界国际象棋冠军,成为早期人工智能技术的一个完美例子。2016年3月15日,随着谷歌围棋人工智能“阿法狗(AlphaGo)”与韩国棋手李世石最后一轮较量的结束,这场引起全世界广泛关注的“人机大战”总比分定格在1:4。“人工智能”战胜“人类智慧”。
“阿法狗”完胜李世石,体现了深度学习神经网络技术和人工智能的巨大潜力。但是机器人的智力与人类的智力相比还是有很大差距的,谷歌的人工智能虽然在围棋博弈这方面智力水平达到了职业九段选手,但是人类的感知、学习、理解、认知等综合能力是当前机器人无法达到的。
总的来说,人工智能的目的就是让计算机这台机器能够像人类一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这些细胞的了解甚少,模仿它们恐怕是天方夜谭。就像有些人说的那样:“人能创造机器人,但是机器人永远都创造不了人。就凭这一点,机器人就无法取代人类。”
展开全文智能的布局体现在两个方面,一个通过经验获得知识,另一个是对整体环境的理解。从这个角度来看,机器人在面对未知环境的变化,未知的任务,它的决策能力还是非常弱的。从专业角度分析,人类比机器人强的地方在于学习与理解能力。人可以通过经验来学习新事物,并具备触类旁通的能力。人是通过数以亿计的神经元互相连结构成大脑,大脑是一个并联机制,所以人善于学习,通过所经历的事情或经验,能够发现事物的特征,发现本质规律,从而全面理解周围环境。与此同时,人类生活的日常环境却是多任务的,要面对各种各样的情况。人工智能的优势就在于能用复杂的计算处理简单的任务。因此有专家认为,人工智能自我学习、举一反三的能力还不如5岁孩子。有谁会担心,五岁的孩子来统治人类?
人类制造了机器人并不是用来代替人类,而是来帮助人类、延伸人类的能力。机器人是人造的,需要人去维护,而机器人有很多能力是人所不及的,如一些危险环境,人不能去而机器人可以去;而机器人在很多未知和复杂的危险环境如地震环境,无法做出正确的决策,这时就需要有丰富经验与知识的人类与它合作,共同完成任务,因此人与机器人是合作的关系。
人类大脑的记忆能力和计算能力的确比不上机器,但是人脑的智慧其实是对于信息的分析和决策能力,这是世界上任何最强大的电脑都无法比拟的。正因为如此,人工智能在未来几十年内应该都没有办法赶超我们人类的大脑,但它们会在生活中广泛应用,人类需要担心的并不是人工智能奴役人类,而真正要担心的是人类本身会不会退化。(来源:宇辰网)
声明:本号原创,注明出处即可转载。转载联系微信号:zythkj或QQ:2037535620
中翼网(www.skyservice.cn)飞行行业垂直媒体及服务平台。专注报道最新行业资讯、专业角度评测、热点视频分享、互动社区,发现最优秀的飞行设备,提供最优质的航空服务,促进行业技术交流资本对接,开启全新飞行时代。
投稿及联系:tougao@skyservice.cn联系人:小翼返回搜狐,查看更多
责任编辑: