一文读懂云计算、大数据和AI间的关系和区别
相信大家都听说过云计算、大数据和人工智能,并且它们之间好像互相有关系:一般谈云计算的时候会提到大数据、大数据的时候会提人工智能、谈人工智能的时候会提云计算……三者之间相辅相成又不可分割,那么这三者之间到底是怎么一回事呢,今天小编就来讲讲。
云计算1、云计算最初的目标云计算最初的目标是对资源的管理,管理的主要是计算资源、网络资源、存储资源三个方面。管理的目标就是要达到空间灵活性和时间灵活性,即我们常说的云计算的弹性。而解决这个弹性的问题,经历了漫长时间的发展。
时间灵活性:想什么时候要就什么时候要,需要的时候一点就出来了;
空间灵活性:想要多少就有多少。需要一个太很小的电脑,可以满足;需要一个特别大的空间例如云盘,云盘给每个人分配的空间动不动就很大很大,随时上传随时有空间,永远用不完,也是可以满足的。
然后人们发明了一个叫做调度(Scheduler)的算法。通俗一点说,就是有一个调度中心,几千台机器都在一个池子里面,无论用户需要多少CPU、内存、硬盘的虚拟电脑,调度中心会自动在大池子里面找一个能够满足用户需求的地方,把虚拟电脑启动起来做好配置,用户就直接能用了。这个阶段我们称为池化或者云化。到了这个阶段,才可以称为云计算,在这之前都只能叫虚拟化。
2、云计算的私有与公有云计算大致分两种:一个是私有云,一个是公有云。
私有云:把虚拟化和云化的这套软件部署在别人的数据中心里面。使用私有云的用户往往很有钱,自己买地建机房、自己买服务器,然后让云厂商部署在自己这里。VMware后来除了虚拟化,也推出了云计算的产品,并且在私有云市场赚的盆满钵满。
公有云:把虚拟化和云化软件部署在云厂商自己数据中心里面的,用户不需要很大的投入,只要注册一个账号,就能在一个网页上点一下创建一台虚拟电脑。例如AWS即亚马逊的公有云;例如国内的阿里云、腾讯云、网易云等。
云计算基本上实现了时间灵活性和空间灵活性;实现了计算、网络、存储资源的弹性。计算、网络、存储我们常称为基础设施Infranstracture,因而这个阶段的弹性称为资源层面的弹性。管理资源的云平台,我们称为基础设施服务,也就是我们常听到的IaaS(InfranstractureAsAService)。
大数据人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
1、大数据拥抱云计算大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。
结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。
非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。
半结构化数据:是一些XML或者HTML的格式的,不从事技术的可能不了解,但也没有关系。
其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data。数据本身没有什么用处,但数据里面包含一个很重要的东西,叫做信息(Information)。
数据十分杂乱,经过梳理和清洗,才能够称为信息。梳理和清洗就需要这几个步骤:
第一个步骤叫数据的收集。
第二个步骤是数据的传输。
第三个步骤是数据的存储。
第四个步骤是数据的处理和分析。
第五个步骤是对于数据的检索和挖掘。
2、大数据时代当数据量很小时,很少的几台机器就能解决。慢慢的,当数据量越来越大,最牛的服务器都解决不了问题时,怎么办呢?这时就要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。
一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。
云计算需要大数据,大数据需要云计算,二者就这样结合了。
AI(人工智能)人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
1、机器什么时候才能懂人心虽说有了大数据,人的欲望却不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西一搜就出来了。但也存在这样的情况:我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。
例如音乐软件推荐了一首歌,这首歌我没听过,当然不知道名字,也没法搜。但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用时,会发现机器知道我想要什么,而不是说当我想要时,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。
2、让机器学会学习怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类的推理的能力。你看人重要的是什么?人和动物的区别在什么?就是能推理。要是把我这个推理的能力告诉机器,让机器根据你的提问,推理出相应的回答,这样多好?
其实目前人们慢慢地让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但慢慢又发现其实这个结果也没有那么令人惊喜。因为大家发现了一个问题:数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器来进行表达,程序也相对容易表达。
因此,仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。
于是人们想到:机器是和人完全不一样的物种,干脆让机器自己学习好了。
机器怎么学习呢?既然机器的统计能力这么强,基于统计学习,一定能从大量的数字中发现一定的规律。
3、大数据与人工智能如果我们把人工智能看成一个嗷嗷待哺拥有无限潜力的婴儿,某一领域专业的海量的深度的数据就是喂养这个天才的奶粉。奶粉的数量决定了婴儿是否能长大,而奶粉的质量则决定了婴儿后续的智力发育水平。
人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。
人工智能是程序算法和大数据结合的产物。而云计算是程序的算法部分,物联网是收集大数据的根系的一部分。可以简单的认为:人工智能=云计算+大数据。
在云计算与大数据成熟的沃土上诞生的AI可谓是天选之子,随着新科技时代的到来,人们的生活将会更加紧密地与AI技术、大数据和云计算等新科技粘连在一起,在这种背景下三者的深度融合无疑会使AI与我们的生活之间联系的更加密切。
本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接免费体验百种AI能力以及试用热门离线SDK:【点此跳转】
云计算、大数据和人工智能的关系
1、云计算是通过互联网提供全球用户计算力、存储服务,为互联网信息处理提供硬件基础。
2、大数据运用日趋成熟的云计算技术从浩瀚的互联网信息海洋中获得有价值的信息进行信息归纳、检索、整合,为互联网信息处理提供软件基础。
3、他们的关系:
云计算是基础,没有云计算,无法实现大数据存储与计算
大数据是应用,没有大数据,云计算就缺少了目标与价值
4、两者都需要人工智能的参与,人工智能是互联网信息系统有序化后的一种商业应用。这才是:云计算与大数据真正的出口!
5、而商业智能中的智能从何而来?方法之一就是通过大数据这个工具来对大量数据进行处理,从而得出一些关联性的结论,从这些关联性中来获得答案,因此,大数据是商业智能的一种工具。而大数据要分析大量的数据,这对于系统的计算能力和处理能力要求是非常高的,传统的方式是需要一个超级计算机来进行处理,但这样就导致了计算能力空的时候闲着、忙的时候又不够的问题,而云计算的弹性扩展和水平扩展的模式很适合计算能力按需调用,因此,云计算为大数据提供了计算能力和资源等物质基础。
6、演进路径:云计算---》大数据---》人工智能
如果有人只谈人工智能,而不谈云计算与大数据,要不是技术骗子、要不是不懂装懂的傻子
不知道这三者的关系是否谈明白了。
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
1,大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
扩展资料:大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
大数据的趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
物联网、云计算、大数据、人工智能的区别以及彼此存在的联系
一、物联网
1、什么是物联网?
物联网在之前被定义为通过射频识别(RFID)、红外线感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备按约定的协议把任何物品与互联网连接起来进行信息交换,以实现智能化识别、定位、跟踪、监控和管理的一种网络,简言之物联网就是“物物相连的互联网”。
后来被重新定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及的信息技术的应用,都可以纳入物联网的范畴。
2、物联网的关键技术
传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。
嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。
现在的物联网产业以应用层、支撑层、感知层、平台层以及传输层这五个层次构成。
二、云计算
1、什么是云计算?
云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够快速提供,只需投入很少的管理工作,或与服务商进行很少的交互。
2、物联网和云计算的关系
云计算相当于人的大脑,是物联网的神经中枢。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
目前物联网的服务器部署在云端,通过云计算提供应用层的各项服务。云计算可以提供以下几个层析的服务:
IaaS:基础设施即服务
消费者通过internet可以从完善的计算机设施获得服务。例如:硬件服务器租用。
PaaS:平台即服务
PaaS实际上是指软件研发的平台作为一种服务,以SaaS的模式提交给用户。因此,PaaS也是SaaS模式的一种应用。但是PaaS的出现可以加快SaaS应用的开发速度,如:软件的个性化定制开发。
SaaS:软件即服务
它是一种通过internet提供软件的模式,用户无需购买软件,而是向提供商租用基于Web的软件,来管理企业经营活动,如:亚马逊。
三、大数据
1、什么是大数据?
大数据是一种规模大到在获取、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。如果将大数据比作一个产业,那么这种产业实现盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
2、大数据和云计算的关系
从技术上来看,大数据和云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
云时代的来临,大数据的关注度也越来越高,分析师团队认为大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模的并行处理数据库、数据挖掘、分布式文件系统、分布式数据可、云计算平台、互联网和可扩展的存储系统。
四、人工智能
什么是人工智能?
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分枝,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。它是对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
通过上述观点我们可以简单的得出一个结论:物联网的正常运行是通过大数据传输信息给云计算平台处理,然后人工智能提取云计算平台存储的数据进行活动。
物联网、云计算、大数据、人工智能的区别以及彼此存在的联系
一、物联网
1、什么是物联网?
物联网在之前被定义为通过射频识别(RFID)、红外线感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备按约定的协议把任何物品与互联网连接起来进行信息交换,以实现智能化识别、定位、跟踪、监控和管理的一种网络,简言之物联网就是“物物相连的互联网”。
后来被重新定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及的信息技术的应用,都可以纳入物联网的范畴。
2、物联网的关键技术
传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。
嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。
现在的物联网产业以应用层、支撑层、感知层、平台层以及传输层这五个层次构成。
二、云计算
1、什么是云计算?
云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够快速提供,只需投入很少的管理工作,或与服务商进行很少的交互。
2、物联网和云计算的关系
云计算相当于人的大脑,是物联网的神经中枢。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
目前物联网的服务器部署在云端,通过云计算提供应用层的各项服务。云计算可以提供以下几个层析的服务:
IaaS:基础设施即服务
消费者通过internet可以从完善的计算机设施获得服务。例如:硬件服务器租用。
PaaS:平台即服务
PaaS实际上是指软件研发的平台作为一种服务,以SaaS的模式提交给用户。因此,PaaS也是SaaS模式的一种应用。但是PaaS的出现可以加快SaaS应用的开发速度,如:软件的个性化定制开发。
SaaS:软件即服务
它是一种通过internet提供软件的模式,用户无需购买软件,而是向提供商租用基于Web的软件,来管理企业经营活动,如:亚马逊。
三、大数据
1、什么是大数据?
大数据是一种规模大到在获取、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。如果将大数据比作一个产业,那么这种产业实现盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
2、大数据和云计算的关系
从技术上来看,大数据和云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
云时代的来临,大数据的关注度也越来越高,分析师团队认为大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模的并行处理数据库、数据挖掘、分布式文件系统、分布式数据可、云计算平台、互联网和可扩展的存储系统。
四、人工智能
什么是人工智能?
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分枝,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。它是对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
通过上述观点我们可以简单的得出一个结论:物联网的正常运行是通过大数据传输信息给云计算平台处理,然后人工智能提取云计算平台存储的数据进行活动。