人工智能时代需培养学生怎样能力
“未来人工智能环境下的课堂,可能是‘双师型’的课堂,人机交互、人机结合将成为主要形态。一堂课可能由一名教师和一个机器人共同来上,布置和批改作业、知识点训练、监督学习、学习情况的分析等工作可能由机器人来完成。”在日前召开的第四次全国数据驱动教育改进专题研讨会上,北京师范大学中国教育创新研究院院长刘坚这样描述人工智能时代的课堂。
人工智能不能代替学习
面对席卷而来、被称为人类“第二次零点革命”的人工智能浪潮,互联网时代的教育界,也不那么淡定了。“因为人工智能不是信息化的延续,技术对教育的影响,正在由‘革新’发展为‘革命’。”中关村学院学术委员会原负责人吕文清说,“高级阶段的人工智能具有类人脑的学习力和思考力,将来还能进化到自适应学习,在这个意义上,人工智能拓展了人的思维。人工智能改变的,不仅是教育的边界和方式,整个教育样态也将面临重塑。”
不过,科大讯飞教育研究院院长孙曙辉认为,人工智能不能代替人的思维,不能代替学习,技术也改变不了教育的本质。因此,在当前热炒人工智能概念的大背景下,一定要认清技术与教育的关系,搞清楚哪些是教育本身的问题,哪些是技术可以解决的问题。
高阶认知能力的重要性将更加凸显
在人工智能时代,学生应该具备怎样的能力,才能适应社会需求,在竞争中立于不败之地?
教育部副部长杜占元在去年12月召开的2017未来教育大会上提出,在机器能够思考的时代,教育应着重培养学生的5种能力,即自主学习能力、提出问题的能力、人际交往的能力、创新思维的能力及筹划未来的能力。
教育部科技发展中心原主任李志民说,今天我们说知识就是力量,讲的是如何学习、记忆和掌握更多的知识,讲究知识的系统性,而在人工智能时代,知识是开放的,随时随地可查找、可检索,因此,记忆知识以及知识的系统性不再像今天这样重要了,学生更需要学习如何从已有的知识中挖掘出新应用、新知识,通过已有知识学习新知识,与之对应的知识结构或学习过程就是思维的训练。
“低阶认知技能的重要性会下降,如记忆、复述、再现等初级信息加工任务将更多地被机器代替,而高阶认知能力的重要性会更加凸显,如识别问题、逻辑推理、意义建构、精致思考、自我指导能力等。”吕文清认为,人工智能时代应重点培养学生的终身学习素养、计算思维素养、设计思维素养和交互思维素养,培养学生5种能力——高阶认知能力、创新能力、联结能力、意义建构能力和元认知能力。终身学习素养,主要基于人工智能时代需要更强大和持续的学习力,强调学会学习和建构不断演进的知识框架;计算思维素养,主要基于学习和理解人工智能,强化思考的逻辑和精致。现在很火的编程课程,主要是培养计算思维;设计思维素养,主要基于人工智能时代学生执行困难任务,需要关注项目设计、任务设计和路径设计等高层次管理,重点引导学生学会选择、学会决策、学会判断;交互思维素养,主要基于人工智能时代学生交往方式的变化,需要高级信息素养、媒体素养、沟通交流和技术伦理,重点引导学生学会开源共享、参与协商、组建社区等,理解复杂的相互关系。高阶认知能力,强调独立思考、逻辑推理、信息加工等;创新能力,强调好奇心、想象力和创新思维、创新人格等;联结能力,强调学会统筹、组织资源、建立联系,特别是包括人工智能在内的多个空间的联结;意义建构能力,强调社会情感、责任意识和高感性、高概念等要素;元认知能力,强调学习自我认知、自我监控和自我指导。
“我认为,没有什么能力是贴有人工智能时代专属标签的。随着时代的发展,人类已有的知识和经验变得不重要,而培养学生的综合素质、高阶思维、创新能力等,这些要求无论在哪个时代都是需要的、共通的、不会过时的。”孙曙辉说。
未来的学习将更加个性化
未来的学习,在哪儿学、跟谁学、怎么学?原有的概念可能都会被颠覆。教育又该如何作出调整,以适应新的时代要求?吕文清认为,人工智能时代对学生的学习目标、学习内容、能力层级甚至心智模式,都提出了新的需求。在教学上,人工智能时代要以“思维教学”为主线,既强调基于认知能力的信息加工、分析综合、逻辑推理等高阶思维的培养,还要增加和突出计算思维、设计思维和交互思维的培养。具体落点上,要强调概念性知识、方法性知识和价值性知识的教学,要注重教原理、教统筹、教大观点、教元认知等不可替代的知识,也就是高阶认知和高阶学习。
人工智能对于当前的教育,不只是颠覆和冲击,也会带来促进和改良。李志民说,人工智能时代的教育管理,无论是宏观层面还是微观层面,都更容易做到精细化,对教师的评价会更加全面而科学;可以根据每个学生的智力程度和思维习惯以及学习方式进行教学,实现真正的个性化学习和因材施教。
据了解,目前许多中小学已开设编程、3D打印技术等与人工智能相关的课程,学生学习兴趣特别浓厚。一些学校还以社团和选修课的形式推进机器人、智能汽车、计算机编程等课程的开设与完善,提升学生信息化素养,促进学科知识融合。
人工智能时代,学生获得知识及能力、素养的提升途径无疑会更多元,其中互联网发挥的作用会更大。而人工智能的应用,会让教师从机械重复的工作中解放出来,去做更有价值的工作。孙曙辉认为,在中小学开设编程等人工智能相关课程,有助于训练学生的思维方式,但主要意义在于普及相关科学知识,并不能帮助学生“赢在起跑线”。目前,很多所谓人工智能的应用,包括一些针对职业人群的人工智能培训,都是炒作概念的“伪人工智能”,人工智能在短期内尚难发展到较为高级的阶段。当前市场上已经出现针对中小学生的打着“人工智能”旗号的相关培训班,家长完全没必要怕“掉队”,在现阶段,保持清醒的头脑,不盲目跟风至关重要。(本报记者汪瑞林)
人工智能赋能教师教育:基本逻辑与实践路向
近年来,自然语言处理、机器学习、人脸识别等智能技术快速发展,促使教育信息化逐渐呈现智慧特性,人工智能赋能教育创新发展已成我国教育改革的关键抓手。传统信息技术逐步实现智能升级,技术赋能教师教育的形态也实现重大变革。2018年,《教师教育振兴行动计划(2018—2022年)》推出“互联网+教师教育”创新行动,并强调应充分利用大数据、人工智能等新技术,助力教师教育理念与模式变革,推进教师教育信息化建设与应用。2022年,《教育部教师工作司2022年工作要点》指出,“推进第二批人工智能助推教师队伍建设试点工作,开发和应用教师智能助手,探索开展教师智能研修,推广完善‘双师课堂’。”基于此,本研究尝试聚焦人工智能赋能教师教育这一议题,理顺人工智能赋能教师教育的基本逻辑,并面向中小学教师群体开展问卷调研,从而进一步挖掘人工智能支持下教师教育变革所面临的现实困境,归纳提炼人工智能赋能教师教育的实践路向,以期为新技术时代教师教育变革提供有益参照。
一、信息技术赋能教师教育的历史变革
随着信息技术的不断升级与发展,一些具有“类人功能”的智能产品逐渐应用于教育教学领域,促使教育信息化样态逐渐具有智能属性。就教师教育而言,信息技术赋能教师教育的历史进程主要经历了三个发展阶段。
(一)电化教育时代:信息技术赋能教师教育的初步探索期
1978年4月,全国教育工作会议指出,应充分利用广播、电视等工具,大力培训师资。此次会议不仅有力地推动了我国电化教育的发展,也促进了广播、电视等现代化技术手段在教师教育中的应用,开启了信息技术赋能教师教育的初步探索。1981年10月,教育部颁文要求“发挥电化教育在提高师资水平中的作用”。20世纪80年代中后期,随着计算机技术和网络通信技术的不断进步,信息技术赋能教师教育的工具与方式逐步得以拓展。1996年,《中小学计算机教育五年发展纲要(1996—2000年)》指出,应面向师范生开展相关培训,提升计算机辅助教学的知识与技能,并强调教师需对计算机等电化教育教学手段予以掌握。归纳来看,在电化教育阶段,教师教育的实践理念与行动方式逐渐融入技术元素,但这一时期教师教育存在着信息共享滞后、技术应用水平低下等诸多问题,教师教育过程与投影、录音、录像、电视、计算机等传统教育技术媒体之间的融合尚处于浅层阶段。
(二)教育信息化时代:信息技术赋能教师教育的快速发展期
21世纪初,我国的教育信息化发展较为关注项目及工程建设,以远程教育、开放教育等方式为依托,致力于提供多样化的教育信息化服务。在教育信息化背景下,我国教师教育理念与方式发生重大变革,信息技术赋能教师教育也逐步从电化教育时代迈向教育信息化时代。2002年,教育部发布《关于推进教师教育信息化建设的意见》,对教师教育信息化原则、目标以及具体举措等诸多方面作了基本要求,为我国教师教育信息化快速发展奠定了行动方向。随后,我国教师教育信息化建设开始逐渐关注宏观指导与项目实践相结合的推进方式。《2009—2012年中小学教师国家级培训计划》等文件以具体的实践项目来推动教师教育信息化。随着互联网、云计算等技术的快速发展,教师教育体系也积极顺应信息技术发展趋势,致力于培养具有信息化教学技能的新型师资。但由于这一时期信息资源良莠不齐,教师教育过程的数据挖掘和分析还相对滞后,对于硬件设施投入与建设的关注高于软件设施,教师教育课程资源尚未实现有效的区域联通。
(三)“智能教育”时代:信息技术赋能教师教育的战略转型期
2017年,《新一代人工智能发展规划》中明确提出,应利用人工智能技术满足社会大众对于教育、医疗等方面的民生需求。随着机器学习、智能感知等智能技术与教育教学的整合成效逐渐凸显,2018年,《关于开展人工智能助推教师队伍建设行动试点工作的通知》中更是强调应提升教师对于人工智能的胜任力与适应力。2021年4月,教育部发布《关于开展第二批人工智能助推教师队伍建设试点推荐遴选工作的通知》,强调应通过建立师范生大数据评价管理机制、创新“人工智能+教师研修”模式等手段,促进人工智能、大数据等技术与教师队伍建设的有效整合,助推教师教育理念与模式的智能转型。此外,人工智能与教师培训的整合也逐渐得到广泛关注,2021年5月,教育部、财政部发布《关于实施中小学幼儿园教师国家级培训计划(2021—2025年)的通知》,强调应推进人工智能与教师培训融合发展,形成人工智能支持教师终身学习的新机制;《教育部教师工作司2022年工作要点》亦强调应推进人工智能助推教师队伍建设,发掘推广一批人工智能助推教师队伍建设的先进典型,推进教师资源数字化建设和教师队伍数字化治理。
二、人工智能赋能教师教育的基本逻辑
在“人工智能+教师教育”生态系统中,信息技术能够对教师教育的课程设置、教育模式、评价方式、应用实践、培训和终身学习等方面产生影响,解决教师培训方式变革以及教师教育的管理问题也是推进人工智能与教师教育体系深度融合的关键。
(一)课程层面:智能资源共享赋能教师教育课程体系完善
教师教育课程是构成教师教育体系的重要内容,这也是人工智能赋能教师教育的基本着力点。人工智能在资源推荐、资源整合等方面具有智能特性,人工智能赋能教师教育的一大优势在于可通过智能资源共享推进教师教育课程体系趋向完善。首先,人工智能可为教师教育课程资源的开发与获取提供技术保障。可通过智能化资源开发平台,设计与整合海量教案、课件、课堂实录、习题等教学资源数据,且利用大数据的智能匹配与分析功能为教师筛选出最优质的课程资源并为其推荐最适切的学习资料,有助于为教师专业发展提供精准化的培训课程资源。例如,华中师范大学“现代教育技术应用”课程通过引入虚拟仿真实验和桌面VR交互一体机,促进师范生自身学科内容与新兴形式资源的融合,设计、开发和生成多种沉浸式、交互式的教学资源。其次,人工智能可助力教师教育课程管理建设。基于智慧课程管理系统为教师及教师教育者提供留言、点评、交流、反思等信息共享功能,可实现海量的教师学习行为数据的精准采集与分类,并利用数据分析与共享技术为教师教育者改进课堂教学方式与内容设计提供证据支持。归纳来看,智能资源共享本身是一种信息共享,有助于拓展教师教育课程学习的资源内容与空间场域,此为人工智能赋能教师教育的课程逻辑。
(二)评价层面:机器学习赋能教师教育质量精准改进
机器学习赋能教师教育质量精准改进可被视为人工智能赋能教师教育评价的重要环节。首先,机器学习有助于实现教师教育过程性数据的精准挖掘。长期以来,教师教育质量缺乏相对全面的评价标准,教师教育质量评估往往侧重于结业考评、期末考评等总结性评价方式,较为忽视教师教育过程的数据记录与信息采集,教师教育者可能对于自身教学过程中的潜在问题也难以发觉。其次,机器学习立足于对海量数据全生命周期的伴随式采集、深度挖掘与分析,其能够通过挖掘数据背后的潜在关系,不仅能够实现基于理性证据的科学决策,也能够为教师教育质量的精准监测与改进提供实践路径。机器学习可通过智能传感、人脸识别、图像识别等技术实现在线教师教育数据、线下教师教育数据的有效采集与智能分析,有助于以大数据分析方式来可视化呈现教师教育质量分析结果。基于质量分析结果,教师教育者能够迅速识别其教育教学的缺点,并能够有针对性地予以改进,进一步掌握当前教师教育课程、管理、实践等方面存在的实质性不足,这为教师教育质量的精准改进提供了诸多便利。例如,黄慕雄等人以广东省教师教育大数据智慧系统为例,构建了一种多源多层的教师专业发展分析模型,采用较为成熟稳定的协同过滤推荐算法综合分析并精准制订培训发展方案,是满足教师培训机构为教师智能化制订培养方案需求的部分体现,为精准评估与改进教师教育质量提供了有效支持。
(三)管理层面:智能决策助力教师教育治理机制重塑
人工智能拥有规模化数据、深度学习算法以及高度计算力,其通过科学规范的数据聚类、数据认知、决策优化等过程,挖掘数据的复杂性关联和潜在价值,使智能决策得以实现。首先,智能决策为以单向性、强制性及刚性为核心特征的传统教师教育管理模式走向科学民主式的教师教育治理模式提供了重要支撑。基于智能决策理念的教师教育治理将由经验走向循证,经由“提出问题—获取证据—评价证据—应用实践—效果评估”科学流程,自始至终指向准确和明智的最佳教育证据筛选与应用,保障教师教育决策有据可循。其次,智能决策本身体现了一种数据治理的理念,其以规模化数据和智能算法为中介,促进教师教育决策过程由单一主体决策走向基于数据智能的多主体协作,有利于教育行政部门、教师培训机构、学校等决策主体构建基于证据的教师职前职后一体化协同机制,教师教育的决策者、参与者可通过协同完成数据收集、表征、组织、分析、交流等环节,精准定位并预测教师培训的需求与供给状况,尤其是应真正关照乡村学校在职教师专业发展的个性化需求,最终生成兼具技术理性与人文关怀的教师培训与研修方案。
(四)培训层面:智能互联助力教师培训空间极速拓展
自20世纪末《中小学教师继续教育规定》颁布以来,我国教师培训的规模、经费投入、相关制度和体系建设等飞速发展。然而,不少地区的教师培训工作也暴露出一些现实难题,如对教师培训的需求分析不够细致与准确、培训内容重复与泛化、培训空间满意度不高等。随着深度学习等智能技术的发展,教师教育空间将逐步实现虚拟空间与物理空间的无缝衔接,智能互联助力教师培训空间极速拓展成为现实。首先,基于智能互联理念的教师研修平台进一步提升了教师培训的针对性与有效性,有助于创设沉浸性更强的线上虚拟研修空间与“双师课堂”教学空间,可实现对教师认知结构、教学行为、教学风格与专业能力的智能监测与精准诊断,并实现精准化的课程推送、个性化的助学支持。其次,基于智能互联的教师培训助手系统为教师培训目标的实现释放了工作空间。AI教师能够将教师培训者从琐碎的机械性行为中解放出来,教师培训者将拥有更多的“自由时间”,这使其可以在更充分的自我认知基础上,更多反思教师教育课程设计、实践应用、沟通协作等方面的教师培训问题。再者,基于智能互联的跨区域培训云平台有助于拓展教师专业学习空间。“智能+教育”模式打破了教师培训的时空局限,进一步增强了教师培训的灵活性,有助于实现跨区域的教师培训新机制,有助于打造线上线下一体化的教师培训新机制,这对于实现偏远、贫困、落后地区教师教育与发达地区协同发展具有重大意义。例如,依托统一的宁夏教育云在线互动课堂平台,宁夏尝试推进名校名师与普通教师开展线上师徒结对,组建专业成长共同体,利用在线互动课堂、名师网络工作室等,实现城乡教师“智能手拉手”。
三、人工智能赋能教师教育的现实困境
遵循前文所述的人工智能赋能教师教育的基本逻辑,本研究基于教师教育体系构建的实际现状,从课程层面、评价层面、管理层面、培训层面出发,结合对10位区域教师进修学校管理人员、教师教育领域学者、中小学校长的访谈结果,编制了“人工智能支持下的教师教育改革调查问卷”。除基本信息题项、多选题“您认为人工智能支持下的教师教育可能存在哪些问题?”之外,问卷中各题项均采用李克特五点量表形式(从非常不符合到非常符合)予以呈现。首先,选择江苏省W市90位中小学教师进行预调研施测,基于预调研样本数据,对问卷进行信效度检验。数据分析结果显示,整体量表的KMO统计值为0.95,Bartlett球形检验结果的p值<0.001,表明问卷适合进行因子分析。对整体问卷进行探索性因子分析,抽取出4个公因子,累计方差解释率达到86.26%,表明因子结构较为可靠。依据因子载荷图可知,题项A1到A4构成课程维度,题项B1到B3构成评价维度,题项C1到C4构成管理维度,题项D1到D3构成培训维度,与本研究对人工智能赋能教师教育的基本逻辑的分析框架相一致,表明问卷具有较好的结构效度,可作为正式调研问卷。
之后,基于正式调查问卷,本研究选取浙江、江苏、上海等教育与经济发达地区的中小学作为调研学校,面向中小学教师投递电子问卷,调研结束后,回收有效问卷527份。本研究利用Cronbachsalpha、CR、AVE值检验问卷信效度。整体量表的Cronbachsalpha值为0.966,各分量表的Cronbachsalpha值在0.89与0.97之间,证明问卷具有较好的内在一致性信度;验证性因子分析结果显示,各分量表的CR(组合信度)取值范围在0.79与0.86之间,表明量表的组合信度较好。各分量表的AVE值均大于0.5,表明量表的收敛效度较好。此外,验证性因子分析结果显示,模型拟合较好,RMSEA、CFI、SRMR指标均达到测量学标准(RMSEA<0.08;CFI≥0.90;SRMR<0.06)。综合上述分析结果,可知问卷通过了信效度检验。
人工智能支持下的教师教育现状的描述性分析结果如下。总体而言,人工智能支持下的教师教育现状的均值水平为3.85,除评价层面以外,各子维度(课程层面、管理层面、培训层面)的均值水平均在4以下,由此可见,当前教师对于融入人工智能的教师教育、职后培训的感知情况并未达到理想程度,人工智能在推进教师教育改进方面尚存较大空间,因此,仍需进一步探索如何利用人工智能优化区域教师教育体系,提升教师教育的有效性、针对性、科学性、智慧性。在此诉求背景下,精准分析人工智能赋能教师教育变革所面临的现实困境,则成为归纳和提炼人工智能赋能教师教育实践路向的关键之举。具体而言,本研究将进一步结合调查分析结果,围绕课程、评价、管理、培训四个方面剖析人工智能赋能教师教育的现实困境(见图1)。
图1人工智能赋能教师教育的现实困境
(一)教师教育课程体系难以适应智能时代教师专业发展
在智能时代,教师教育的内容正发生重大变革,人工智能已成为教师教育工作的得力助手,开设一系列面向教师的人工智能课程具有一定的必要性。但就我国教师教育课程体系而言,其目前尚难以适应智能时代教师专业发展。首先,在课程层面,区域教师教育课程建设缺乏较为统一且清晰的课程标准,区域教师教育的课程科目、结构和类型较为单一的现象时常出现。而且,本研究调查结果显示,55.79%的教师认为,教师教育课程内容与教师所需的智能教育素养脱节;题项“教师教育的课程内容能够满足您的实际需求”均值为3.91。由于受人、财、物等多方面资源的影响,教师教育课程理念的变革难度相对较大,即使是面对人工智能等新技术的冲击,教师教育课程建设也具有滞后性与保守性,融入人工智能教育内容的教师教育课程特色难以有效凸显。其次,在教学内容方面,目前不少地区的教师教育教材体系陈旧,教学内容未能结合智能时代所需做到有效更新。数据分析结果显示,题项“当前的教师教育课程关注如何让教师有效应用人工智能产品”及“学习教师教育课程能够提升您的智能教育胜任力”的均值水平分别为3.95与3.94,这表明教师教育课程体系与人工智能等技术知识的融合力度与成效不足。再者,在教学方面,受困于不少教师教育者、受训在职教师及师范生的技术接受与整合能力存在欠缺,教师教育课程教学缺乏具有足够信息化胜任力的教师教育师资,导致智能技术赋能教师教育课程教学的过程受到教师能力的严重制约。
(二)基于证据的教师教育质量评价有待优化
在5G、人工智能、大数据等技术的支撑下,如何构建基于证据的教师教育质量评价体系是推动人工智能时代教师教育发展的一大难题。为尽可能地减少评价过程中的标准不一与价值冲突等问题,在从事教师教育评价活动之前,需要确立相应的指导标准和价值准则。对于我国教师教育评价实践而言,基于证据的教师教育质量评价亟待进行优化,教师教育质量评价体系尚待建立健全。综合来看,我国不少地区至今仍未形成循证式的教师教育质量评价标准体系,导致我国教师教育评价活动在实践中缺乏必要的规范性与科学性,48.39%的教师认为,对于教师教育效果的多维评价有待加强。此外,我国教师教育评价普遍存在着重视运用分数、成绩等量化指标评价的倾向,仍然留有“头痛医头、脚痛医脚”碎片化的评价方式,且数据分析结果显示,题项“培训专家能够利用人工智能对您的学习效果进行分析与评价”均值为3.96,这表明人工智能尚未全方位融入循证式教师教育质量评价体系,未能充分借助人工智能等新技术立体化地搜集教师教育活动的信息从而科学全面地评价教师教育效果,进而导致教师教育评价新格局尚未完全形成。
(三)大数据赋能教师教育管理存在决策偏差
人工智能浪潮风起云涌,其与大数据之间的关系相伴而行,人工智能功能的发挥离不开数据处理与运算的支持。决策者依托人工智能的分析及预测功能,可从“基于经验的分析”转向“数据驱动决策”,这在一定程度上有助于教育管理者系统把握教师的个体诉求与行为轨迹,并据此进行信息反馈和教学激励。但需要注意的是,智能技术是一把双刃剑,在帮助实现教师教育决策科学化的同时,其也会因人技关系异化而产生一系列问题。数据分析结果显示,人工智能赋能教师教育的管理层面均值水平为3.73,表明当前人工智能在优化教师教育管理方面尚存在一定的问题及弊病。首先,人工智能算法、决策使用的数据及数据处理方式均是由“人”来创建的,不可避免带有个体主观隐含的偏见。当主观的算法设计偏见或数据处理偏见渗透到教师教育管理过程中,将会给教师教育决策带来一定的偏差与错误。其次,人工智能算法具有自主决策、学习的能力,它的设计者难以预测最终的结果,也无法完全解读它是如何得出现有结论的。因此,教师教育决策的相关主体一定程度上将会陷入算法分析结果难以解读的困境,这将削弱决策者的公信力与可信度。再者,根据数据分析结果可知,45.92%的教师认为人工智能可能无法十分准确地量化教师教育成效。处于不断完善与发展阶段的人工智能算法及其所依赖的数据很有可能具有一定的局限性,这将导致一些非数据化或难以数据化的教师教育问题被排除在决策过程之外,进而给以数据作为决策基础的教师教育决策者带来一定的决策盲区,产生大数据赋能教师教育的信息偏差现象。
(四)教师培训与智能技术的整合存在效度困境
数据质量、算法功能对人工智能应用成效影响较大,无论是数据挖掘,还是智能算法设计,均无法做到尽善尽美,数据分析结果显示,人工智能赋能教师教育的培训层面均值水平为3.64,表明人工智能在教师培训实践中的应用依然存在效度困境。首先,使用算法和预测模型对教育现象进行度量将会造成一定风险,这主要取决于计算模型和算法是否符合教育逻辑、教育过程和教育中的人是否可以被量化和计算、对教育过程的量化是否能够反映教育本真,这需要进一步反思智能技术应用于教师培训的合理性与规范性,将其应用范围限定在可控风险领域之内。其次,智能技术在教师培训中的使用效能相对较低,其在培训资源建设、助学辅导、培训成效评价等方面的应用程度受人力、物力、财力等多方面制约。调查结果显示,59.20%的教师认为,人工智能技术与教师教育的融合性不强;41.18%的教师认为,学区或学校难以投入大量资源以支持智能化教师教育体系构建;另外,42.88%的教师认为,目前人工智能支持下的教师教育指导性政策与规章尚需完善。这表明不少地区不仅缺乏具有较高智能教育素养的教师教育专家以及足够的经费支持、资源保障,而且,也缺乏人工智能赋能教师培训的指导性政策与规章,进而导致区域教师教育部门在利用智能工具开展教师培训活动时易陷入“仅加大软硬件投入”的战略误区,忽视对教师教育者技术接受与整合能力的有效训练,进而削弱了智能技术在教师培训需求满足与资源建设方面的应用空间。
四、人工智能赋能教师教育的实践路向
随着人工智能与教师教育领域的不断融合,人工智能赋能教师教育也面临着如教师教育课程体系难以适应智能时代教师专业发展、基于证据的教师教育质量评价有待优化、大数据赋能教师教育管理存在决策偏差、教师培训与智能技术的整合存在效度困境等问题。综上,为推动人工智能在教师教育领域的合理应用,人工智能赋能教师教育体系构建应关注以下实践路向。
(一)加强数字化课程建设,推进教师教育资源智能化开放共享
以往教师教育资源虽然也包括微课、短视频、精品课等信息化形式,但随着新课标的颁布与新教材的逐步使用,教师教育数字化资源动态性缺位、资源建设质量不高、资源建设区域协同性差、资源建设针对性不强等问题逐渐凸显。在人工智能时代,教师培训课程、教师研修资料等均可被表征为较易传播与计算的数字形态,教师教育资源建设应加强数字化课程建设,推进教师教育资源智能化开放共享。首先,区域教育行政管理部门、各级各类教师培训机构及中小学校应携手打造智能化区域教师教育课程资源库,立足教师群体的数字画像以及教师培训专业标准,积极利用虚拟现实、增强现实、智能云等智能技术,关注教师教学技能网络模拟实训与教育理论在线学习,充分整合微课、慕课、直播课、公开课等数字化课程资源,推动数字化教师教育课程资源系统化建设。例如,首都师范大学聚焦于人工智能时代下的教师发展,由高校导师团队设计面向教师专业发展的在线课程,师范生制作开发课程,并且在课程开设期间与在职教师开展全程陪伴式的互助共学,师范生为在职教师解答与技术应用有关的困惑,而在职教师可以为师范生在教学方面提供经验分享。其次,构建数字化教师教育课程资源监管体系。地方教育行政管理部门、学科教研员、教育督学及督导专家等多方人员应组建数字化教师教育课程资源审查小组,确保数字化教师教育课程资源开发经过开发测试、内部评价、外部评价等严格流程,应利用机器学习、数据挖掘等智能技术,及时对参训在职教师或师范生的课程资源使用记录、共享渠道与心得体会予以电子存档。再者,应创设数字化教师教育课程资源的智能推送与共享机制。地方教育行政管理部门可依托“国培计划”“区域教师发展计划”等各级各类教师教育项目,着手建立优质数字化课程资源开发与遴选机制,遴选优质数字化资源,明确数字化教师教育资源流通标准与准入门槛,利用大数据分析与智能画像技术,通过智能筛选、提取和整合教师专业学习需求信息,基于在职教师专业学习的数字画像,有针对性地为教师推送定制化课程资源。
(二)立足评价改进,构建基于证据的教师教育质量监测体系
如前文所述,在评价层面,基于证据的教师教育质量评价机制还有待完善。评价对于教师教育质量的提升来说具有导向与指引作用,随着数据智能理念的不断深化,教师教育评价愈发关注数据式证据,如何利用数据信息呈现教师教育评价证据成为热点议题。因此,有必要立足于当前教师教育评价存在的现实问题,构建基于证据的教师教育质量监测体系。一方面,应基于智能数据挖掘,构建教师教育质量监测方案。从教师教育评价主体来看,教师教育质量评价受其主观判断影响,若教师教育评价所依赖的数据信息不够客观,将导致教师教育的评价结果有失公允。因此,应基于教师教育评价的实际诉求,智能挖掘与提取师范生、职后教师、教师教育者等评价利益相关者的数据信息,建立教师管理信息化系统,构建教师学分管理机制,建立教师数据的“驾驶舱”,对教师教育过程进行精准预警与监测。另一方面,创设基于证据可视化的教师教育质量分析机制。基于大数据分析、生物信息识别、图像识别、视频分析等技术,可从教师教育投入、过程、产出、背景等方面进行教育质量观测,动态采集教师教育行为和环境信息,严格落实数据筛选、数据比较、数据整合、数据呈现等一系列证据可视化流程,及时向主管部门、教育工作者、师范生、教师公开教师教育质量观测结果,注重教师教育质量评价结果与改进方案的可视化呈现,以便进一步明确教师教育质量的改进方向与提升路径。例如,宁夏充分利用大数据支撑教师智能研修行动并建设教师教育质量监测体系,为提升教师在教学设计、课堂组织、班级管理、教育研究等方面的综合能力,将教师管理信息系统、教师继续教育网络研修等平台整合融入宁夏教育云,基于教育云平台实现对教师专业发展状态的监管、测评与干预。
(三)聚焦数智融合,优化教师教育决策偏差调节机制
如前文所述,在管理层面,大数据赋能教师教育管理存在决策偏差。以往的教师教育决策存在主观判断、决策流程过于僵直与落后、决策技术过于单一等问题,人工智能时代教师教育决策虽可实现基于证据的教师教育决策,但其并不意味着教师教育决策绝对的合理化与准确化,教师教育决策仍有可能存在偏差问题(如决策偏见、决策失误等)。因此,应聚焦数智融合,优化教师教育决策偏差调节机制。首先,应构建基于数智融合的教师教育决策咨询服务体系。以师范教育、在职培训等多种形态为主体的教师教育体系涉及多个决策主体,且以往区域层面教师教育决策可能在师范教育与在职培训对接层面存在信息鸿沟,而且区域层面可能在城乡教师发展规划方面存在决策偏差。为此,可通过创设区域教师管理与发展服务平台,动态汇聚不同决策主体的建议与反馈意见,为地方教师教育管理者改进教师发展计划、教师研修项目管理服务、教师专业发展学分银行服务等提供信息支持与路向导引。其次,应关注教师教育决策偏差诊断与调节机制的创设。人工智能时代教师教育决策不仅应体现智慧化特性,而且应秉承基于证据的科学主义取向。应提升教师教育决策者的智能教育素养与数据素养,打通教师教育利益相关者间的决策信息共享通道,及时诊断区域教师培训与研修实践的主要问题与产生根源,智能分享与整合来自地方教师发展学院或中心、教育行政管理部门及高校教师教育基地的反馈信息,构建协同化地方教师教育决策咨询服务体系,有效提升区域教师教育决策的科学化和民主化。
(四)关注智能研修,创设基于分层分类的精准化教师培训体系
如前文所述,在培训层面,教师培训与智能技术的整合存在效度困境。以往师资培训一般采用讲座、讨论、观摩、进修、线上刷课等多种方式,但大多数培训方式属于短期行为,难以长期针对特定教师群体(如位处偏远的农村地区教师)开展教师专业培训。人工智能赋能教师网络研修平台与模式创建为教师终身学习与持续发展提供了重要支持。由此,为进一步推进人工智能赋能教师教育,满足不同类型教师群体的学习诉求,加快教师队伍数字化建设进程,推动教师数字化发展,有必要关注智能研修,创设基于分层分类的精准化教师培训体系。首先,教师培训部门或机构应着手建立研修专区,组建区域智能研修共同体,对参与在线研修的教师群体进行合理分类,以研修问题与实践案例为抓手,满足不同类别、层次、岗位的教师需求。教师教育者应基于教师研修数据进行智能追踪,尝试捕捉不同类型(如农村教师、城镇教师)、不同层次(如教学新秀、教学骨干、教学专家)教师参与智能研修的学习需求,以便构建线上与线下、必修与选修相融通的精准化教师研修模式。其次,应注重探索建立基于分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。最后,应基于大数据融合,探索建立分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。具体而言,应关注教师在学科、年龄、教龄等方面的实质性发展差异,评价方案的设计与实施应关注教师发展的过程性与阶段性数据的提取与筛选。也应着重提升教师教育者的信息化评价素养与智能技术胜任力,尝试通过教师个体发展画像的智能分析与评价,为受训教师后续的专业学习以及教师教育者的教学实践提供改进方向。
五、结语与展望
关于华南师范大学|统一认证|移动平台
Copyright©2023SouthChinaNormalUniversity.AllRightsReserved|华南师范大学版权所有
华南师范大学chatgpt人工智能技术在教育领域应用有哪些
原标题:chatgpt人工智能技术在教育领域应用有哪些?1.人工智能在教育领域有哪些应用?
人工智能在教育领域可以应用于智能教学、个性化教育、在线学习等方面。
2.人工智能对教育行业的影响是什么?
人工智能可以提高教育效率和质量,促进教育创新和变革,为学生提供更好的学习体验和服务。
3.人工智能如何促进教育个性化?
人工智能可以根据学生的学习情况和特点,为其提供个性化的学习内容、学习方式和学习支持。
4.人工智能会取代教师吗?
人工智能不能完全取代教师,但可以辅助教师进行教学,提高教学效率和质量。
5.人工智能技术需要哪些基础知识?
人工智能技术需要掌握数学、计算机科学、统计学等相关基础知识。
6.如何将人工智能技术应用于教育领域?
将人工智能技术应用于教育领域需要深入了解教育需求和教学场景,结合教育实践进行创新和应用。
7.人工智能如何帮助学生提高学习成绩?
人工智能可以根据学生的学习情况和特点,为其提供个性化的学习内容、学习方式和学习支持,从而帮助学生提高学习成绩。
8.人工智能如何应用于在线学习?
人工智能可以通过智能推荐、自适应学习、智能评估等技术手段,为在线学习提供更好的用户体验和服务。
9.人工智能在学校管理方面有哪些应用?
人工智能可以应用于学校的招生、选课、考试、评价等方面,提高学校管理效率和质量。
10.如何保障人工智能技术的安全和可靠性?
保障人工智能技术的安全和可靠性需要加强数据保护、算法透明度和伦理规范等方面的建设和监管。返回搜狐,查看更多
责任编辑:教学方法有哪些基本类型(教学方法的种类及其特征)
一、以语言传递为主的教学方法(1)讲授法。这种教学方法是教师通过语言系统连贯地向学生传授知识的方法。它包括讲述、讲解、讲读、讲演等具体形式。讲授法是一种最常见的教学方法。讲授法具有传递知识信息和控制学生的认识活动两方面作用,通过这些作用可以发展学生的智力,激发学生的学习动机,培养学生的学习兴趣,使学生的思维活动处于积极的状态中。他们一边在紧张的思考,一边又在感受求知的乐趣。教师在讲授中既可通过分析和比较、归纳和演绎、综合和概括,又可通过讲重点、讲关键、讲难点、讲思路、讲规律、讲方法等多种形式来促进学生掌握知识、认识知识的价值,并将其内化为一种学习的动力。
(2)谈话法。又称问答法,是教师根据一定的教学目的要求和学生已有的知识和经验,通过师生间的问答对话而使学生获得新知识或巩固知识、发展智力的教学方法。谈话法分为复习谈话和启发谈话两种形式。谈话法可使教师直接了解学生的学习状况,有利于学生独立思考,并培养学生的表达能力。一般来说谈话法花费的教学时间较长,对学生知识准备情况要求较高,所以,在一堂课中,谈话法一般与其它的教学方法配合使用。
(3)读书指导法。这种方法是是教师指导学生通过阅读教科书和参考书以及课外读物,使学生获知识、发展能力的一种方法。它包括指导学生预习、复习、阅读参考书、自学教材等形式。读书指导法是加深理解和牢固掌握知识,扩大学生的知识领域,培养学生自学能力的一种很好的方法。在使用此方法的时候,教师要明确教学目标,同时教给读书的方法。当学生读书完毕后,教师还要根据实际情况组织学生相互交流,加深对学习内容的理解。
二、以直接感知为主的教学方法(1)演示法。这种教学方法是教师通过展示各种实物、直观教具或作示范性实验和动作,使学生通过观察获得感性知识或印证所学书本知识的方法。演示法分为三种形式。第一,为了使学生获得对事物的感性认识,主要通过实物、挂图、模型等演示。第二,为了使学生了解事物发展变化的过程,主要使用幻灯片、投影仪、多媒体等现代化的教学媒体。第三,教师身体力行的示范性动作,例如体育课中的示范性动作。演示法是通过视觉刺激完成的,所以要养成学生有目的的知觉习惯,促进学生的思维能力的发展。使用演示法,要依赖一定的物质条件,同时作为一种辅助性的教学方法,要与讲授法、谈话法等方法结合使用。
newS.KEMAOwanG.orG。cN(2)参观法。这种教学方法是教师根据教学内容的需要,组织学生去实地观察学习,从而获得知识或巩固、验证已学知识的方法。参观法有准备性参观、并行性参观、总结性参观三种形式。参观法可使课堂教学与实际生活紧密联系起来,有利于学生更好地理解所学知识,丰富感性经验,开阔视野,又可以在实际中受到生动的思想品德教育。在参观过程中,为了防止学生偏离参观目的,教师要在参观过程中对学生加强指导,参观结束后要安排学生讨论参观心得,或布置与参观相关的作业。
三、以实际训练为主的教学方法(1)实验法。这种教学方法是指学生在教师指导下,利用一定的仪器设备,进行独立操作,通过观察研究获取知识,培养技能、技巧的方法。实验法可分为感知性实验和验证性实验两种形式,被广泛应用于中学理科教学,如:物理、化学、生物等自然学科的教学中。实验法不仅可以培养学生的动手操作能力、观察能力,而且有助于培养学生热爱科学的情感和实事求是的科学态度。
(2)实习作业法。这种教学方法是学生在教师的组织和指导下,在校内外的一定场所,综合运用所学的理论知识进行实际操作或其他实践活动,以掌握知识,形成技能技巧的方法。实习法的特点是感性、综合性、独立性和独创性,在自然科学和技术学科中占有重要地位,如数学的测量实习,物理、化学的生产技术实习,生物课的植物载培和动物饲养实习,地理课的地形测绘实习,劳动技术课的生产技术实习等。实习法有利于贯彻理论联系实际原则,培养学生独立工作能力和工作技能。
(3)练习法。这种教学方法是学生在教师指导下进行巩固知识、运用知识,形成技能技巧的教学方法。练习法分为各种口头练习、书面练习、实际操作练习、模仿性练习、独立性练习、创造性练习等形式。练习法以一定的知识为基础,具有重复性特点,在各科教学中被广泛使用。它不仅能使学生巩固和运用所学的知识,形成一定的技能、技巧,而且还有利于培养学生克服困难的毅力、一丝不苟的工作态度等优良品质。
四、以引导探究为主的教学方法(1)讨论法。这种教学方法是教师指导学生以小组或班级的形式,围绕某一中心议题发表自己的看法,相互交流、相互学习,从而获得知识的方法。通过讨论可以使学生们集思广义,取长补短,加深对所学知识的理解和增长新知识,有利于活跃课堂气氛,发挥学生的主动性、积极性,发展学生的思维能力和口头表达能力。同时,也有利于培养学生民主协商的人际关系技能及合作解决问题的能力。
(2)研究法。这种教学方法是在教师指导下学生通过独立地探索、创造性地分析问题和解决问题,以获取知识和发展能力的方法。使用研究法时,教师要为学生独立思考提供必要的条件,选择正确的研究课题,让学生可以独立思考与探索问题。