人工智能
人工智能(英文名:ArtificialIntelligence,英文缩写:AI)。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。[1]
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能导论——人工智能学科研究的基本内容及主要研究领域
一、人工智能研究的基本内容
(1)知识表示
人工智能研究的目的是要建立一个能模拟人类智能行为的系统,但知识是一切智能行为的基础,因此首先要研究知识表示方法。只有这样才能把只是存储到计算机中去,供求解现实问题使用。知识表示方法可分为两类:符号表示法(用各种包含具体含义的符号以各种不同的方式和顺序组合起来表示知识的方法)和连接机制表示法(用神经网络表示知识)。
(2)机器感知
所谓机器感知就是使机器(计算机)具有类似于人的感知能力,其中以机器视觉和机器听觉为主。机器感知是机器获取外部信息的基本途径。
(3)机器思维
所谓机器思维是指通过感知得来的外部信息及机器内部的各种工作信息进行有目的的处理。
(4)机器学习
机器学习就是研究如何使计算机具有类似于人的学习能力,使它能通过学习自动的获取知识。
(5)机器行为
机器行为主要是指计算机的表达能力,即“说”、“写”、“画”等能力。对于智能机器人,它还应具有人的四肢功能,即能走路、能取物、能操作等。
二、人工智能的主要研究领域
目前,随着智能科学和技术的发展和计算机网络技术的广泛应用,人工智能技术应用到越来越多的领域。下面简要介绍几个主要领域:
(1)自动定理证明
自动定理证明是人工智能中最先进行研究并得到成功应用的一个研究领域,同时它也为人工智能的发展起到了重要的推动作用。实际上,除了数学定理证明以外,医疗诊断、信息检索、问题求解等许多非数学领域问题,都可以转化为定理证明问题。
(2)博弈
诸如下棋、打牌、战争等一类竞争性的智能活动称为博弈(gameplaying)。人工智能研究博弈的目的并不是为了让计算机与人进行下棋、打牌之类的游戏,而是通过对博弈的研究来检验某些人工智能技术是否能实现对人类智慧的模拟,促进人工智能技术的深入研究。
(3)模式识别
模式识别(patternrecognition)是一门研究对象描述和分类方法的学科。分析和识别的模式可以是信号、图象或者普通数据。模式是对一个物体或者某些其他感兴趣实体定量的或者结构的描述,而模式类是指具有某些共同属性的模式集合。
模式识别方法有统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等。
(4)机器视觉
机器视觉(machinevision)或者计算机视觉(computervision)是用机器代替人眼进行测量和判断,是模式识别研究的一个重要方面。计算机视觉通常分为低层视觉和高层视觉两类。
(5)自然语言理解
自然语言理解(naturallanguageunderstanding)就是研究如何让计算机理解人类自然语言,是人工智能中十分重要的一个研究领域。它是研究能够实现人与计算机之间用自然语言进行通讯的理论与方法。
(6)智能信息检索
数据库系统是存储大量信息的计算机系统。随着计算机应用的发展,存储的信息量越来越大,研究智能信息检索系统具有重要的理论意义和实际应用价值。智能信息检索系统应具有下述功能:能理解自然语言、具有推理能力、系统拥有一定的常识性知识。
(7)数据挖掘与知识发现
知识发现系统通过各种学习方法,自动处理数据库中大量的原始数据,提炼出具有必然性的、有有意义的知识,从而揭示出蕴涵在这些数据背后的内在联系和本质规律,实现知识的自动获取。知识发现是从数据库中发现知识的全过程,而数据挖掘则是这个全过程的一个特定的、关键的步骤,数据挖掘的目的是从数据库中找出有意义的模式。
(8)专家系统
专家系统是一个智能的计算机程序,运用知识和推理步骤来解决只有专家才能解决的疑难问题,是目前人工智能最活跃、最有成效的一个研究领域。可以这样定义,专家系统是一种具有特定领域内大量知识和经验的程序系统,它应用人工智能技术模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过人类专家的水平。
(9)自动程序设计
自动程序设计是将自然语言描述的程序自动转换可执行程序的技术,包括程序综合和程序正确性验证两个方面的内容。
(10)机器人
机器人是指可模拟人类行为的机器。它可分为三代:程序控制机器人(第一代)、自适应机器人(第二代)、智能机器人(第三代)。
(11)组合优化问题
组合优化问题一般是NP完全问题。NP完全问题是指:用目前知道的最好的方法求解,问题求解需要花费的时间(称为问题求解的复杂性)是随问题规模增大以指数关系增长。组合优化问题的求解方法已经应用于生产计划与调度、通信路由调度、交通运输调度等。
(12)人工神经网络
人工神经网络是一个用大量简单处理但愿经广泛连接而组成的人工网络,用来模拟大脑神经系统的结构与功能。
(13)分布式人工智能与多智能体
分布式人工智能(DAI)是分布式计算与人工智能结合的结果。分布式人工智能的研究目标是要建立一种描述自然系统和社会系统的模型。
(14)智能控制
智能控制就是把人工智能技术引入控制领域,建立智能控制系统。
(15)智能仿真
智能仿真就是将人工智能技术引入仿真领域,建立智能仿真系统。
(16)智能CAD
智能CAD就是将人工智能技术引入计算机辅助设计领域,建立智能CAD系统。
(17)智能CAI
智能CAI就是将人工智能技术引入计算机辅助教学领域,简历智能CAI系统即ICAI。
(18)智能管理与智能决策
智能管理就是将人工智能技术引入管理领域,建立智能管理系统,研究如何提高计算机管理系统的智能水平,以及智能管理系统的设计理论、方法和实现方法。智能决策就是将人工智能技术引入决策过程,建立智能决策支持系统。
(19)智能多媒体系统
智能多媒体实际上是人工智能与多媒体技术的有机结合。
(20)智能操作系统
智能操作系统就是将人工智能技术引入计算机的操作系统之中,从质上提高操作系统的性能和效率。
(21)智能计算机系统
智能计算机系统就是人们正在研制的新一代计算机系统,它将全面支持智能应用开发,且自身就具有智能。
(22)智能通信
智能通信就是将人工智能技术引入通信领域,建立智能通信系统,在通信系统的各个层次和环节上实现智能化。
(23)智能网络系统
智能网络系统就是将人工智能技术引入计算机网络系统。
(24)人工生命
人工生命是以计算机为研究工具,模拟自然界的生命现象,生成表现自然生命系统行为特点的仿真系统。
----内容来自于《人工智能导论(第四版)》
新一代人工智能具有五大特点
科学技术部副部长李萌(刘健摄)
7月21日,国务院新闻办公室举行国务院政策例行吹风会,重点介绍《新一代人工智能发展规划》(以下简称《规划》)的编制情况。科技部副部长李萌在回答记者提问时表示,经过60多年的演进,人工智能出现了一些新特点,包括《规划》当中讲到“它呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点”。新一代的人工智能主要是大数据基础上的人工智能。
李萌指出,人工智能具有以下五个特点:一是从人工知识表达到大数据驱动的知识学习技术。二是从分类型处理的多媒体数据转向跨媒体的认知、学习、推理,这里讲的“媒体”不是新闻媒体,而是界面或者环境。三是从追求智能机器到高水平的人机、脑机相互协同和融合。四是从聚焦个体智能到基于互联网和大数据的群体智能,它可以把很多人的智能集聚融合起来变成群体智能。五是从拟人化的机器人转向更加广阔的智能自主系统,比如智能工厂、智能无人机系统等。
据了解,国际普遍认为人工智能有三类“弱人工智能、强人工智能还有超级人工智能”。弱人工智能就是利用现有智能化技术,来改善我们经济社会发展所需要的一些技术条件和发展功能。强人工智能阶段非常接近于人的智能,这需要脑科学的突破,国际上普遍认为这个阶段要到2050年前后才能实现。超级人工智能是脑科学和类脑智能有极大发展后,人工智能就成为一个超强的智能系统。从技术发展看,从脑科学突破角度发展人工智能,现在还有局限性。《规划》中的新一代人工智能,是建立在大数据基础上的,受脑科学启发的类脑智能机理综合起来的理论、技术、方法形成的智能系统。
跟以往相比,新一代人工智能不但以更高水平接近人的智能形态存在,而且以提高人的智力能力为主要目标来融入人们的日常生活。比如跨媒体智能、大数据智能、自主智能系统等。在越来越多的一些专门领域,人工智能的博弈、识别、控制、预测甚至超过人脑的能力,比如人脸识别技术。新一代人工智能技术正在引发链式突破,推动经济社会从数字化、网络化向智能化加速跃进。
版权所有,转载请注明出处。
十分钟了解人工智能AI的基础运作原理
人工智能是如何运作的收听音频课程
人工智能企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以预见未来几年将会进入“人工智能时代”。
目前AI已经遍布我们的世界并且在日常生活中产生了巨大的变化。这些AI并不是科幻电影中的那些有自我意识,计划毁灭世界邪恶的机器人。而是像我们的智能手机、智能家居、银行信用卡管家和智能汽车这些围绕我们每天生活的产品和服务都在使用AI。
AI将通过推动自动驾驶汽车的发展、改善医学图像分析、促进更好的医疗诊断和个性化医疗,从而带来社会的重大转变。AI 也将是支撑未来技术发展的基础资源,就像电力和网络一样。但对大部分人来说,AI 还是很诡异而且充满神秘感。
那么我们今天就来聊一聊AI最重要的功能——模式识别的工作原理。希望通过简明扼要的介绍帮助大家了解这个领域。
AI是一门严谨科学而不是无所不能神话故事,媒体过分夸大报道AI的功能,鼓吹威胁论都是不负责任的。AI目标是设计具有智能的机器,其中的算法和技术部分借鉴了当下对人脑的研究成果。今天许多流行的AI系统使用人工神经网络来模拟由非常简单的互相连接单元组成的网络,有点像大脑中的神经元。这些网络可以通过调整单元之间的连接来学习经验,这个过程类似人类和动物的大脑通过修改神经元之间的连接来进行学习。神经网络可以学习模式识别、翻译语言、学习简单的逻辑推理,甚至创建图像或者形成新设计。其中,模式识别是一项特别重要的功能,因为AI十分擅于识别海量数据中的隐藏的模式,而这对于依赖经验和知识的人类来说就没有那么容易。这些程序运行的神经网络具有数百万单位和数十亿的连接。我们现在所能创造出来的“智能”就是由这些电子神经元网络组成的。
机器不像人类具有感知器官和大脑,并且能够很好地协调工作,比如当我们看到一只狗的时候,就会很快的判断出来这是什么动物,并且具体什么种类。这个看似简单的过程对于机器来说都是十分困难的。而人类获得这样的能力,也是源自于生物上亿年的进化过程。而机器认识世界的方式是通过模型,需要通过复杂的算法和数据来构建模型,从而使机器获得很简单的感知和判断的能力。
下面介绍一下深度学习系统中一个最重要算法——卷积神经网络。如果你之前对AI相关知识有所了解的话,那你一定听说这个概念。这种算法参考了生物学研究人类和其他动物大脑视觉皮层的结构。简单介绍一下这种特定类型的人工神经网络,它使用感知器、机器学习单元算法,用于监督学习分析数据。适用于图像处理、自然语言处理和其他类型的认知任务。与其他类型的人工神经网络一样,卷积神经网络具有输入层、输出层和各种隐藏层。其中一些层是卷积的,使用数学模型将结果传递给连续的层。这过程模拟了人类视觉皮层中的一些动作,所以称为卷积神经网路,也就是CNN。
举例子来看,当我们人类看到一只猫和一只狗时,尽管它们的体型很类似,但我们还是马上能够区分它们分别是猫和狗。对计算机而言,图像仅 仅只是一串数据。在神经网络的第一层会通过特征检测物体的轮廓。神经网络的下一层将检测这些简单图案的组合所形成的简单形状,比如动物眼睛和耳朵。再下一层将检测这些形状组合所构成的物体的某些部分,例如猫和狗的头或者腿。神经网络的最后一层将检测刚才那些部分的组合:一只完整的猫、一只完整的狗等等。每一层的神经网络都会目标进行图像组合分析和特征检测,从而进行判断和组合,并将结果传递给下一层神经网络。实际使用的神经网络的层次深度会比这个例子多很多,所以神经网络能够以这种分层的方式进行复杂的模式识别。
只要有大量被标记的样本数据库,就可以对神经网络进行特征训练。它对于识别图像、视频、语音、音乐甚至文本等信息特别有用。为了很好地训练AI的机器视觉,我们需要提供给这些神经网络被人标记的大量图像数据。神经网络会学习将每个图像与其相应的标签并相互关联起来。还能将以前从未见过的图像及其相应的标签配对。这样的系统可以梳理各种各样的图像,并且识别照片中的元素。同时神经网络在语音识别和文本识别中也非常有用,自动驾驶汽车和最新医学图像分析系统中也是关键组成部分,所以你可以看到神经网络的运用是非常广泛而且有效的。原来需要依赖人工标记大量有效数据来完成知识的输入,现在通过运行海量数据,让神经网络进行自我学习。大大提升的人工智能的应用范围,降低了使用的门槛。
人类大脑与动物远远不同,在进化过程中高度特化并且具有明显的适应性。而当前的AI系统远远不具有人类拥有的看似一般的智能。人工智能更高级的发展将会在后面进行讨论,我们这里还是关注现在实现的AI的基本原理。
AI最常见的三种学习方式强化学习 这是关于机器应该如何行动以获得最大化奖励的问题,它受行为心理学理论的启发。在特定场景下,机器挑选一个动作或一系列动作并获得奖励。机器行为每一步骤都会被标记,并且记录结果和赋予权重。强化学习通常用于教机器玩游戏和赢得比赛,比如国际象棋、围棋或简单的视频游戏。强化学习的问题是,单纯地强化学习需要海量的试错,才能学会简单的任务。好处是只要你提出一个有价值的问题,提供足够的数据输入,理论上来说强化学习最终会找到那个最优解。
监督学习就是需要我们告诉机器特定输入的正确答案:这是一幅汽车的图像,正确答案是“汽车”。它之所以被称为监督学习,是因为算法是从带标签数据学习的。这个过程类似于向年幼的孩子展示图画书。成年人预先知道正确的答案,孩子根据前面的例子做出推测。这也是训练神经网络和其他机器学习体系结构最常用的技术。
无监督学习 人类和大多数其他动物的学习过程,特别是刚生下来的时候,是以没有人监督的方式来进行学习的:我们通过观察和认知我们行动的结果来了解世界如何运作。没有人告诉我们刚开始所看到的每一个物体的名称和功能。但我们仍然学会非常基本的概念,当前我们还不知道如何在机器身上实现这一点,至少无法达到人类和其他动物的水平。缺乏用于无监督学习的AI技术,也是当前AI发展问题之一。
概括来说当前AI技术原理是:将大量数据与超强的运算处理能力和智能算法三者相结合起来,建立一个解决特定问题的模型,使程序能够自动地从数据中学习潜在的模式或特征,从而实现接近人类的思考方式。下面补充介绍三个AI研究领域重要的理论方法和技术以便理解:
一、机器学习自动化分析建模。它使用来自神经网络、统计、数学和物理学的方法来发现数据中的隐藏模型,并且无需明确编程查找具体目标和范围。理论基础是这样的:假如我们为了研究某个复杂的科学问题,需要创建海量的机器学习模型、使用大量的算法、使用不同的参数配置,在这种情况下,我们就可以使用自动化的方式进行建模。发展自动化机器学习是为了向科学家提供帮助,而不是代替他们。这些方法使数据科学家摆脱了令人厌烦和复杂耗时的任务(比如详细的参数优化和调试),机器可以更好地解决这些任务。而后面的数据分析与结论的工作仍然需要人类专家来完成。在未来,理解行业应用领域的数据科学家,也就是数据业务架构师,仍然极其的重要。而这一项人工智能技术,将会辅助数据科学家建立模型并且加速验证的速度,从而减轻科学家的压力,让他们将精力放在那些机器无法完成的任务上面,通过更加合理的分工协作,大大加快科学技术研发速度。
二、深度学习领域这是应用非常广的技术,它使用具有多层处理单元的巨大神经网络,利用强大计算能力和改进的训练技术来学习大量数据中的复杂模式。原理是计算机在学习特定问题时,需要大量输入这个问题相关的学习材料也就是数据,然后在计算机通过算法和模型来构建对这个具体问题的认知,也就是总结出一个规律,那么在以后遇到相似问题时,计算机会把收集的数据转成特征值,如果这个特征值符合这前面规律里面的特征值,那么这个事物、行为或者模式,就可以被识别出来。常见的应用太多了,这里大概举一些例子:
计算机视觉,这就像是机器的“眼睛”。依赖于模式识别和深度学习来识别图片或视频中的内容。当机器可以分析和理解图像时,他们可以实时捕捉图像或视频并解读周围环境。感知周围环境、识别可行驶区域以及识别行驶路径,这也是无人驾驶的基础技术。其中图像识别原理是通过识别图片中的对象,然后建立标签,实现对海量图片进行分类,也可以对图像中的人脸或者其他目标进行识别,运用在安防监控等领域;
自然语言处理中语音识别技术就像是机器的“耳朵”:这是计算机分析、理解和生成人类语言和语音的能力。运用语音采集的技术和方法,对音频中的语言内容进行提取和识别,实现语音实时转文字的功能;下一阶段将会是自然语言交互,人们将可以使用普通的日常语言与计算机进行交流和执行任务。这也是AI语音助手和语音控制交互技术的基础。
机器翻译:模仿人脑理解语言的过程,形成更加符合语法规则同时更加容易被人理解的翻译,谷歌在线翻译功能就是运用了深度学习技术,让机器的翻译水平大大提升;
情感识别:通过识别新闻、社交媒体、论坛等文本内容中所包含的情感因素,及时了解网络舆论对新闻事件的反应情况;
医疗诊断:比如通过对各个阶段的肿瘤诊断这类医疗图像数据进行学习,总结出恶性肿瘤形状、纹理、结构等“特征”模型,从而使机器可以进行判断。
可以看到深度学习在神经元网络的基础上,发展出了非常多的应用案例,并且当下各个行业的人工智能辅助工具和软件都在大力开发中,各种数据都在被大量采集、清洗、输入模型训练,一旦训练成功就可以大规模部署,带来巨大的商业价值。具体有多大呢?参考一下人脸识别领域的独角企业估值和号称千亿的市场规模就知道了。如果这样的市场再乘以百倍、千倍呢,这里面的蕴含商业机会有多少呢?
三、认知计算这也是人工智能的子领域,目标是与机器进行自然的、类似人类的交互。使用人工智能和认知计算,最终目标是让机器获得理解图像和语音的能力,模拟人类交流过程,从而实现与人类的自然对话。也是根据神经网络和深度学习来构建的,应用来自认知科学的知识来构建模拟人类思维过程的系统。它涵盖多个学科,包括机器学习、自然语言处理、视觉和人机交互。IBMWatson 就是认知计算的一个例子,在美国答题竞赛节目上Watson 展现了它先进的问答交互能力,并且打败了人类。与此,同时Watson这些服务应用接口也进行了开放,可提供其他组织用于视觉识别、语音识别、语言翻译以及对话引擎等等。
就像AI的产生是多学科发展的综合成果一样,当下AI的快速发展也是多方面技术进步综合起来取得的成果,总结里面重要的三个方面:
1.硬件方面:直到本世纪初研究人员才意识到,为视频游戏设计的GPU(图形处理单元)可以被用作硬件加速器,以运行比以前更大的神经网络。这要归功于这些芯片能够进行大量并行计算,而不是像传统CPU那样按顺序处理它们。这对于同时计算构成深度学习神经网络的数百个神经元的权重特别有用。
2.通用算法:AI这么快就流行起来,在很大程度上是因为开放的软件工具(也称为框架),使得构建和训练一个神经网络实现目标应用程序变得容易起来,即使是使用各种不同的编程语言。对于已知的识别目标,可以离线定义和训练一个神经网络。一旦训练完成,神经网络可以很容易地部署到嵌入式平台上,也可以迁移到各种软件程序和硬件平台中。这是一个聪明的架构,允许借助PC或云的能力训练神经网络,而低功耗的嵌入式处理器只需使用训练好的数据来进行识别。人体和物体的能力与流行的应用密切相关,比如工业机器人和自动驾驶汽车。
3.其他技术支持: 图形处理单元是AI的关键,因为它们提供了迭代处理所需的大量计算能力。训练神经网络需要大数据和计算能力。而物联网从连接的设备生成大量数据,其中大部分未经分析。 使用AI自动化模型将允许我们使用更多的物联网数据进行分析,将物流和信息流更好的结合起来。还有就是AI应用程序接口,可以将AI功能添加到现有产品和软件中。比如它们可以为安防视频系统中添加图像识别功能;也可以在我们观看网络视频时,自动创建翻译和字幕;或者是在拍照程序中自动识别人物性别和年龄甚至是表情和情绪等等,应用将会非常广泛。
总之,这都是 AI 经常使用的方法,即使我们创造了单个项目拥有超越人类智慧的机器,这些机器仍然能力有限。短期来看,人工智能将提供接近人类交互体验,并为特定任务提供辅助支持,但它还不能成为人类的替代品,有自我意识的AI还不会很快出现。
本篇是老张创作的课程《人工智能进化论课程》基础篇内容,转载需授权。
读完了觉得有帮助请转发和评论~
想要了解全部课程内容,加入圈子和老张讨论的请点击下面“加入圈子”,订阅“人工智能进化论”课程。或者加wx:AI61825
加入圈子