人工智能:模型与算法
人工智能(ArtificialIntelligence,简称AI)是以机器为载体所展示出来的人类智能,因此人工智能也被称为机器智能(MachineIntelligence)。对人类智能的模拟可通过以符号主义为核心的逻辑推理、以问题求解为核心的探询搜索、以数据驱动为核心的机器学习、以行为主义为核心的强化学习和以博弈对抗为核心的决策智能等方法来实现。
本课程成体系介绍人工智能的基本概念和基础算法,可帮助学习者掌握人工智能脉络体系,体会具能、使能和赋能,从算法层面对人工智能技术“知其意,悟其理,守其则,践其行”。课程内容包括如下:人工智能概述、搜索求解、逻辑与推理、监督学习、无监督学习、深度学习、强化学习、博弈对抗。
来而不可失者,时也;蹈而不可失者,机也。人工智能不单纯是一门课程、一手技术、一项产品或一个应用,而是理论博大深厚、技术生机勃勃、产品落地牵引、应用赋能社会的综合生态体(AIecosystem)。为了加强实训,课程中安排了以搜索求解为核心的黑白棋AI算法、以线性回归为核心的图像恢复、以深度学习为核心的垃圾分类等实训题目。
注:
1)课程相关资料可访问“智海(www.aiplusx.com.cn)”和“智海-Mo平台(momodel.cn)”。
2)本课程对应ppt可以如下免费下载
链接:https://pan.baidu.com/s/1gIweAOKUDAnON5SZat03Kg
提取码:ai22
高校人工智能本科专业需要怎样的课程体系——基于卡耐基梅隆大学和南洋理工大学的比较分析
一、问题提出
世界范围内新一轮科技革命和产业变革席卷而来、蓬勃发展。人工智能正是引发产业快速变革的新一代信息技术革命的重要领域之一,因其在科技发展过程中的重要作用以及为产业创新发展带来的巨大机遇,世界各国纷纷将人工智能上升至国家战略高度,以此抢抓人工智能发展的重大战略机遇,保持本国研发前沿性和独创性,培养国家急需的高端科技创新人才,加快创新型国家和世界科技强国建设。
此背景下,人工智能领域的人才培养成为高校的发展趋势和重要任务。自2018年秋季学期开始,卡耐基梅隆大学、爱丁堡大学、南洋理工大学等纷纷开始设立独立的人工智能本科专业。我国浙江大学、上海交通大学和天津大学等在内的35所高校也获批设置人工智能本科专业[1],到2019年,我国已有180所高校新增人工智能本科专业。
然而,各国脱胎于计算机专业的人工智能专业均刚刚建立,各高校对于这一新兴专业的人才培养目标、培养方式、课程体系建设等具体细节的思考尚不完善,仍面临一些问题和挑战。首先,确定什么样的人工智能本科专业人才培养目标?一方面人工智能领域涉及范围广,与其他领域交叉应用后又产生更多的人工智能应用学科,人工智能本科专业如何厘清自身内涵,强化专业特性,做到“至小有内”[2]并兼顾专业内多元化人才培养是影响专业长期发展的关键前提;另一方面,智能时代、知识经济时代到来,低端劳动力极大可能被机器替代,新时代人才需要具备更多人类所特有的、适应时代要求的素养,包括技术素养、数据素养、人文素养[3],以及批判性思维、决策能力、问题解决等高阶认知能力、沟通与协作等社会技能和伦理素养[4],人工智能本科专业如何明晰与专业相适应的人才素养目标对课程体系建设具有指导意义。其次,采取什么样的形式培养人工智能本科专业人才?人工智能学科天然具有与其他学科研究进行交叉的秉性[2],厘清相关学科在人工智能专业课程中的地位、所占比例以及协调各相关学科领域的主次关系影响着课程开展的有效性。同时,人工智能专业如何在课程组织形式上打破传统课程的学科壁垒,回归学生中心,融合案例教学、项目式教学等教学方法在微观上决定了学生如何形成并运用他们的知识体系。最后,培养人工智能本科专业人才需要什么样的课程内容?课程内容传递的知识是学生建构自身知识体系的直接材料,如何贴近学生实际、社会经验和学科发展规律,如何做到人工智能专业课程体系应有的“专(专业)、通(通识)、交(交叉)”[2],使学生具有全面扎实、易应用且适应将来工作环境的知识体系都应体现在课程内容的选择中。
基于上述问题与挑战,本文拟以卡内基梅隆大学和南洋理工大学为例,探讨其人工智能本科专业课程体系建设的共性优势和个性特征。卡耐基梅隆大学(简称CMU)在世界人工智能领域优势突出,开设了全美第一个以“人工智能”(AI)命名的本科专业,授予学士学位。新加坡南洋理工大学(简称NTU)则是世界排名顶尖的年轻大学,在新加坡政府和国家研究基金会推出的“国家人工智能核心”(AI.SG)计划引领下,设立了全新的数据科学与人工智能研究中心[5],并在此基础上开设了四年制“数据科学和人工智能”本科专业,授予荣誉学士学位。两所大学都在人工智能本科专业建设上走在前列,但它们在人工智能领域基础各有不同,人工智能专业课程体系上也各有侧重,因此对这两所大学人工智能本科专业课程体系进行深入研究和比较分析,可以发现人工智能专业课程建设的不同模式和特征,对我国人工智能本科专业课程体系建设具有一定的启示和借鉴价值。
二、卡耐基梅隆大学和南洋理工大学人工智能本科专业课程体系比较分析
课程体系是把一个专业不同课程按照一定顺序排列起来,代表了教学内容和进程的总和,是实现培养目标的重要载体,对保障和提高教育质量起着至关重要的作用。一般而言,课程体系包括特定的课程观、课程目标、课程内容和课程结构等方面。考虑到课程观涉及人们对课程各方面内容的总体认识,而本文的重点是回答人工智能本科专业培养什么样的人才、如何培养人才、培养人才哪些方面的知识和能力等问题,因此,本文将聚焦课程体系中的课程目标、课程结构和课程内容三方面内容并以此构建比较分析框架,这也是人工智能时代课程体系适应“新人才”、“新模式”、“新内容”的需要。其中,“新人才”的规定体现在课程目标(专业目标)中,“新模式”的构建体现在课程结构中,“新内容”的融合体现在课程内容中。
(一)课程(专业)目标比较
课程目标是指课程本身要实现的具体目标和意图,规定了某一教育阶段的学生通过课程学习以后,在发展德智体美劳等方面期望实现的程度。人工智能本科专业的设立使其必然有不同于其他计算机相关专业的课程目标,以培养具有人工智能领域所需知识和技能的人才。
卡耐基梅隆大学于2018年秋季设立“人工智能科学(scienceinartificialintelligence)”专业,授予学士学位,旨在培养能够建设未来人工智能的人才,通过课程学习引导学生建构将大量数据转换为可执行决策所需的知识体系,使学生获得基础的计算机科学知识和技能以及在机器学习和自动化推理方面的额外专业知识[6],其课程重点在于教会学生利用复杂的输入(如视觉、语言和庞大的数据库)来做出决策或增强人类能力。沿袭卡耐基梅隆大学致力于人工智能服务于社会公益的传统,学生还会学习到伦理和社会责任方面的课程,并可以选择参加一些使世界变得更加美好的独立研究项目,覆盖医疗、交通和教育等领域,培养拥有职业伦理道德和社会责任感的人工智能人才。同时,为回应历届美国政府维护其在人工智能领域全球领导地位的战略要求,使人工智能成为金融、医疗、教育、工业甚至军事领域的重要技术支撑,卡内基梅隆大学将其自20世纪50年代人工智能发端以来,继承创新的各领域人工智能知识与技术划分为多个专业领域,通过必修模块或选修课等形式,供学生个性化学习并可以持续深入研究,以培养专深的人工智能人才。
南洋理工大学设置了“数据科学与人工智能(ScienceinDataScienceandArtificialIntelligence)”专业,是专门针对数据科学和人工智能领域的快速发展而设计的为期四年的全日制荣誉学士学位课程项目,旨在培养下一代高技能毕业生,使学生利用自己在数据科学和人工智能方面的知识,为社会面临的紧迫挑战找到创新解决方案,以继续推动新加坡高价值经济增长[7]。在新加坡政府紧抓人工智能和大数据等新兴技术带来的数字经济机遇的引导政策下,为促进新加坡支柱产业——服务业在服务前积极使用新兴技术预测客户需求,弥补其在开发先进人工智能系统时面临的缺乏足够数据来训练智能系统的最大缺点[8],南洋理工大学的课程注重在计算机科学和数据科学之间取得平衡,使学生能够在数据科学计算方面得到更全面的培训,在计算机科学、统计学和数学方面拥有较强基础。除了专业相关知识技能外,其课程体系也注重通过选修、实习、重大应用研究项目、行业系列讲座和小型项目等形式将知识应用于金融服务、政府服务、医疗保健、生物技术和制造业等重点行业,培养学生解决问题的能力以及口头和书面沟通技巧,发展学生知识的广度、创造力和社会适应性。
就培养“新人才”的要求而言,可以发现两校的一些相似之处:其一,专业的建立源于对国家发展和科学进步的回应,以培养具有深厚知识基础,能够为人工智能学科、社会、国家和世界科技发展做出贡献的高技能人才;其二,专业课程仍要建立在数学和计算机知识和技能的培养之上,进一步与人工智能知识融合,明确“人工智能”特征;其三,注重实践、面向应用,通过研究项目、实习实践将知识整合应用于不同行业领域,培养学生解决问题能力、伦理道德和其他核心素养,促进学生全面发展。同时,在专业要求的知识和能力方面,两校也存在差异:卡耐基梅隆大学更偏重人工智能领域知识的系统构建和深入学习,南洋理工大学则更注重大数据统计、处理和分析领域的知识学习,在之后的课程内容分析中将进一步详细阐述。
(二)课程结构比较
课程设置离不开合理的课程结构和课程内容。课程结构是把学生的在校学习时间分成各部分,在不同的学习时间安排不同的课程类型,以此形成一个课程的组织体系,主要规定了组成课程体系的学科门类以及各学科内容的比例关系等,主要的分类有学科课程与综合实践课程、必修课与选修课等。
南洋理工大学将课程划分成核心课程、专业规定选修、通识教育部分(包括核心通识课程、规定选修的商业与管理类和人文与艺术类通识课程)和非限制选修[9],并规定了相应学分(见表1)。其人工智能专业本科课程的核心课程部分,包含数学基础、计算机、数据统计与分析和人工智能四个方面;专业规定选修课程部分,包括大数据统计分析和人工智能两个重要方面。同时,课程表中还详细标注了学习该课程前的准备课程,如数据科学导论和数据结构课程要以计算机思维课程为前提,人工智能课程要以计算机思维和算法课程为前提等,课程之间紧密联系并按照学科的逻辑顺序精心安排。
卡耐基梅隆大学的人工智能专业课程则被划分为数学与统计学核心课程(6门课程)、计算机科学核心课程(6门课程)、人工智能核心课程(4门课程)、人工智能模块选修(4门课程)、伦理学选修(1门课程)、人文与艺术通识选修(7门课程,必须包括一门认知科学或认知心理学)、科学与工程通识选修(4门课程)七大模块[10](见图1)。这七大模块清晰而明确地规定了人工智能本科专业课程所涉及的知识领域以及人工智能领域人才所应具有的能力模块。
两所大学的课程结构都或隐含或清晰地表现出了模块化特征,将人工智能专业所需掌握的知识和技能划分成几大能力或技能模块,规定在以计算机和数学为基础、以人工智能(和大数据统计分析)为核心,以伦理学选修和通识教育为拓展的结构框架内,突出课程主次关系,形成了知识能力构成清晰、主次分明的课程结构。此外,两所大学均重视通识教育,卡内基梅隆大学的通识选修课程数量更是占到了专业所有课程的三分之一,开设了商业与管理、人文与艺术、科学与工程等不同方面的选修课程,通过其他领域知识的学习和涉猎,拓宽人工智能人才的知识面,提升学生综合素质,增强学生将人工智能与其他学科领域和实际应用结合的能力。
(三)课程内容比较
人工智能领域发展迅速,其专业内部发展出越来越多的分支,相应的课程内容也逐步增多。在课程内容广度方面,人工智能本科专业如何筛选和整合人工智能不同领域的课程内容是决定人才培养质量的重要一环;在课程内容深度方面,人工智能本科专业的课程内容要建立在学生知识的准备水平上,考虑多数本科层次学生的学习情况。
首先,在专业基础课程开设方面,表2展示了卡耐基梅隆大学和南洋理工大学的课程开设情况,两所学校在课程难度和不同模块课程比例方面有所不同。南洋理工大学专业基础课程覆盖面广且偏向基础,更有利于与高中阶段知识衔接,打牢学生基础;在高年级阶段,才开设人机交互、人工智能基础两门人工智能课程,并且学生在一定程度上可以依据个人学习兴趣和知识储备选择与专业相关的限选课程,继续发展不同分支的大数据统计分析与人工智能能力。但课程多为大数据分析与处理这一人工智能前提和支持类学科的选修课程(例如时间序列分析、生存数据分析、拓扑数据分析、大数据管理等),较少有深入人工智能领域的选修课程(仅有自然语言处理一门)。
而卡耐基梅隆大学更注重“人工智能”的专业特征,从表2展示的专业基础课程中就可以看出,数学和计算机基础课程较之南洋理工大学更为高阶且与专业更加贴合(如计算机科学的数学基础)。同时,依托其在人工智能领域的深厚积淀,设置了决策与机器人集群、机器学习集群、感知与语言集群和人机交互集群四个集群的选修课程,更能使学生从基础概念和理论出发,全面了解人工智能领域的各方面知识,以便自主选择自己感兴趣的领域持续深入学习和钻研。课程内容的差异由两所大学的人工智能人才培养目标的差异决定,南洋理工大学倾向于培养“人工智能+大数据统计与分析”方面的人才,而卡耐基梅隆大学更专注于在“人工智能”领域内培养人才。
其次,两所大学的课程内容存在许多相同之处。针对人工智能面向技术应用的天然特点,两所大学均十分注重知识应用和学科交叉,例如南洋理工大学的“应用分类数据分析”课程用统计工具分析分类数据并将其应用于医学和生物科学,“时间序列分析”课程则探讨时间序列模型在经济学、工程学和金融学中的应用,还有“拓扑数据分析”课程讨论其在自然科学中的应用等等,使学生在具体课程中体验和学习如何将知识运用到涉及其他学科的实际问题中,培养学生解决问题和跨学科学习能力。除了显性教学课程外,两所大学也积极与政府(南洋理工大学与新加坡资讯通讯媒体发展署)、其他高校(卡耐基梅隆大学与匹兹堡大学医学院)、研究所(南洋理工大学与日本理化学研究所)和企业(卡耐基梅隆大学与美国自动驾驶汽车创业公司ArgoAI)合作,通过学科背景多样化的教学人员和组织形式多样化的研究项目让学生在跨学科、跨院系、跨组织的氛围中开展知识应用和基础研究,培养其从多学科视角解决问题能力和创新能力,保证其参与人工智能学习的前沿性和创新性。
最后,在注重知识学习和应用的同时,南洋理工大学和卡耐基梅隆大学同样关注到了人工智能伦理问题,探索性地开设人工智能与人文、计算机领域的伦理和政策问题以及人工智能、社会与人类等课程,邀请不同学科学者就人工智能与人文历史、与社会、与环境等相关问题进行跨学科对话和讨论,学生可以由此关注人工智能领域人-机、机-机以及人-机共融所形成的社会形态及需要遵守的道德准则,同时课程以研讨的形式进行,给予学生充分地思考、讨论和验证的空间,有利于对伦理道德问题的学习。
(四)两所大学人工智能专业课程体系综合比较
综合以上分析,卡耐基梅隆大学和南洋理工大学的人工智能专业课程体系呈现出三方面共同优势。在课程目标方面,回应国家需求、明确而有一定特色。在课程结构方面,将人工智能核心课程设置为数学、计算机基础模块和人工智能相关专业核心模块,并辅以人文与艺术、科学与工程和商业与管理等通识选修课程,通过模块化课程避免割裂学科之间的逻辑联系,同时个性化培养学生综合素质。在课程内容方面,注重扎实的数理和计算机基础;通过设置跨学科课程和配备不同学科教学人员、使用项目式教学方法、融合科研实习项目等促进课程学科交叉、面向应用;突出人工智能伦理思考,为支持人工智能与工业、人类生活深度融合提供伦理观。
其不同之处在于形成了两种人工智能本科专业课程建设模式:跨学科建设模式和专深的建设模式。南洋理工大学倾向于培养“人工智能+大数据统计与分析”的跨学科人才,在课程内容上更偏向数学和计算机基础知识的传授以及大数据科学类的人工智能基础课程,人工智能领域涉及不深;卡耐基梅隆大学依托其在人工智能领域多年深耕取得的科研成果,强调“人工智能”特征,开设了人工智能基础课程以及四个不同集群选修课,给予学生宽厚的人工智能基础和视野。(见表3)
三、我国人工智能本科专业课程体系建设的思考
为应对智能时代的人才缺口,我国学者对人工智能专业和其相关专业的人才培养方向、模式和方法同样提出了一些新理念和新建议:在人才培养目标方面,致力于培养宽口径复合型人才、高水平专业人才和拔尖创新人才,并对人才素质做了多维度要求,促进学生全面发展[11];在人才培养模式方面,总结出浙江大学以跨学科实践平台为支撑,整合学科知识、重构课程模块[12]的课程体系建设方式,人工智能专业学生可在基础和专业核心课程外,根据自身的兴趣选择性地学习智能决策与机器人、机器学习、智能感知与语言以及可视交互与设计四个方向的模块课程[13];在人才培养内容方面,反复强调人工智能专业知识体系中“交叉”、“应用”以及“通识(人文)教育”几个关键词,清华大学更是在人工智能学科领域创办智班践行了“广基础重交叉”的培养模式,注重学科基础教育并设置覆盖前沿领域的全英文教学专业核心课程,前两年以“通才教育”为主,实施基础知识强化训练,后两年以“专才教育”为主,加强人工智能专业教育[14]。
然而,在我国高校面向人工智能领域人才培养做出快速反应的同时,我国高等教育在人工智能人才培养方面仍存在一些需要长期实践改革的问题。其一,针对本科层次,人工智能专业人才培养目标过于粗糙单一,需要有针对性地加以细化,包括与其他专业相区分、不同层次类型高校相区分、与高中和研究生阶段相衔接等,并亟待形成面向信息能力、创造能力、社交能力、人文情怀、国际化能力、问题解决能力等的人工智能人才培养能力体系[15]。其二,就人才培养模式而言,我国高等教育中的学科壁垒、学院划分、教职人员流动限制和跨学科教育实践的落后性都在很大程度上阻碍了人工智能专业相关平台和模块化课程的有效实施,如何使新人才培养模式落地成为重要的前提性问题。其三,在人才培养内容方面,课程内容繁杂、与科研实践关系不紧密等问题同样可能出现在人工智能专业培养过程中,导致学生在基础研究和面向应用方面都“力不从心”,同时除通识教育课程选课范围外,缺乏对人工智能与人文、伦理、艺术等领域进行融合的中国化探索与尝试[16]。
因此,借鉴国外两所案例大学人工智能专业课程体系建设的实践经验,未来我国人工智能专业课程体系建设应借新兴专业新生之势,破除高等教育旧有弊病,建设满足“三新”要求的课程体系,即新的特色复合型、跨学科人才培养目标,新的多维度模块化课程结构,新的厚基础、多学科交叉融合、面向应用的课程内容。
(一)新人才:回应国家需求,增强专业特色
人工智能本科专业的课程目标代表着一个学校乃至一个国家对“培养什么样的人工智能人才”这一根本问题的回答,在宏观上要回应国家对人工智能学科发展及其相关领域人才素质的要求和期待;在微观层次要明确其存在的必要性和独特性,表现在与其他相似专业的区分以及突出不同学校相同专业的特色。
首先,在回应国家需求方面,我国人工智能本科专业在课程体系建设中首先要回应国家如下要求:“瞄准世界科技前沿,强化基础研究,实现前瞻性基础研究和引领性原创成果的重大突破,进一步提升高校人工智能领域科技创新、人才培养和服务国家需求,推动人工智能与实体经济深度融合、与人民需求深度融合、与教育深度融合”[17],对学生的人工智能基础知识与研究能力、技术设计与应用能力、跨学科(多学科)知识与能力、工程伦理、家国情怀、创新创业能力和终身学习能力等在培养目标上进行顶层设计,培养服务人民、服务国家的人才。
其次,在专业设置的必要性和独特性方面,人工智能专业虽脱胎于计算机专业,曾是计算机专业中的一个分支,但人工智能专业课程的知识体系绝对不是计算机专业的知识体系,人工智能人才具有的知识能力也不同于计算机专业人才。人工智能专业在设置之初,就要有清晰的人才培养目标和就业导向,各院校也要有不同侧重,避免各高校人才培养的同质化以及自身目标模糊化的问题。
通过对两所案例学校的比较分析,本文提出两种不同的课程建设模式:一是以卡耐基梅隆大学为代表的专一且深入的人工智能专业课程模式,二是以南洋理工大学为代表的“人工智能+X”的跨学科课程模式。与卡耐基梅隆大学相似的在人工智能领域有深厚积淀的、处于领先地位的高校或在人工智能领域研究覆盖面广、有一定实力的高校可以开设专一且深入的人工智能课程体系,以培养有大量知识能力储备的人工智能专攻型、研究型人才,人工智能的发展也离不开领域内基础研究的支持。而一些在人工智能某一方面有所专长且在其他相关学科也有所特色的大学可以开设“人工智能+X”的跨学科课程体系,培养能够在相关领域开展研究并将人工智能应用到实际问题中的人工智能复合型人才(如人工智能+医疗、人工智能+地球科学、人工智能+金融),或是注重应用的人工智能某一领域的技能型人才(如机器学习、人机交互、自然语言处理等)。各大学分别培养不同类型人工智能人才,各专业各具特色,有利于形成多元化人才培养结构,丰富人工智能领域市场的人才供给。在此基础上,各大学依据培养目标的具体特征,明晰其应具有的知识和能力,进一步规定专业课程体系。
(二)新模式:创新课程结构,明确能力模块
根据新人才培养目标的要求,突破单一学科思维和院系设置物理壁垒的跨学科平台建设以及课程体系重构成为许多专业改革的方向,例如天津大学建构的面向未来科技和产业发展的多学院和多学科合作跨学科人才培养平台(未来智能机器和系统培养平台、未来智能医疗与健康教育平台等)[18]。本文受两所案例大学,特别是卡耐基梅隆大学的启发,提出在重视人工智能专业课程的基础上,依托跨学科平台提供不同领域教学人员和项目资源,构建人工智能模块化课程的设想,明确学生应获得的知识能力模块,分清不同模块衔接关系。
模块化课程的模块设计分为狭义模块和广义模块,狭义模块是通过对具体岗位的职业分析,将每一个岗位所需的能力或技能层层划分,每一个二级能力或每一个技能所需的工作步骤、工具、知识、态度、标准等内容就称之为一个模块。广义模块是模块概念引入我国以后的一种延伸,包含内容大于狭义模块,是多个狭义模块的组合,不单纯包括一项技能、知识或能力,并且在模块中能力性教学内容与学科性教学内容相结合[19]。一个专业的规划则需要广义和狭义模块相配合,卡耐基梅隆大学的人工智能专业课程划分七大模块即可认为是广义模块,而一门课程中包含的使学生掌握一个具体技能或能力的所有内容就是一个狭义模块。模块化的课程结构有以下优势:(1)明确专业培养的能力,既强调继承学科课程的优势,又重视以职业分析为基础进行课程开发,重视能力和技能培养的渗透,使学生真正掌握有专业特色的可以解决实际问题的能力;(2)数学、计算机和通识教育等模块与人工智能基础和选修模块组成了一个循序渐进的宽基础课程结构,同时这些模块易于灵活组合,学生可以自由选择某些模块,利于培养个性化“人工智能+X”人才。
人工智能本科专业进行课程设计时,应将总体课程结构和每一门课程进行模块化设计,尽可能地丰富课程模块,宏观上建立“基础知识模块+人工智能专业模块+跨学科特色模块+综合素质选修模块”等课程模块(见图2),微观上合理安排、明确设置一门专业课程的能力模块,依此有针对性地授课,突出课程特色,避免课程冗余。同时,结合基础核心课程、专业核心课程以及专业选修课程和通识选修课程等课程类型规定,明确专业核心和特色,并在不同学科交叉中分清不同类型课程的作用、地位和主次关系,避免课程数量过多、知识重复率高、难以有效融合、学生忽视专业知识等问题。在之后的专业课程设计中,也要将教材模块化、课程内容模块化等细节落到实处。
(三)新知识:优化课程内容,聚焦人工智能
课程内容的选择是根据特定的教育价值观及相应的课程目标,从学科知识、当代社会生活经验或学习者的经验中选择课程要素的过程,其要符合学生基础和认知发展的规律、贴近和适应社会发展以及符合学科发展规律和要求。因此,在确定人工智能本科专业课程内容时,要把握本科阶段学生知识基础和认知特点,在避免人工智能知识体系空心化、碎片化、浅显化的基础上,重点突出其与自然科学、社会科学与人文艺术科学交叉的新兴学科特点,构建“厚基础、强专业、宽领域、重应用”的人工智能知识体系。
首先,在“厚基础”方面,借鉴南洋理工大学和卡耐基梅隆大学的课程构成,需在数学和计算机两个核心课程模块开设更系统更全面的基础课程。首先,从学生基础和认知发展情况出发,本科阶段教师应充分了解高中学生对于人工智能这一“高深”领域的知识准备水平和认知水平,更好地与高中阶段课程衔接,在低年级阶段开展螺旋式上升的数学和计算机知识学习,做好课程内容铺垫,使学生更顺利地进入专业学习。另一方面,从学科知识发展角度来看,因人工智能专业的发展立足于数学和计算机科学的基础之上,教师要巧妙筛选与人工智能相关的数学和计算机知识,避免“大水漫灌”和“学用不衔接”的问题,并在课程中点明这些基础知识的人工智能应用范围,例如,概率论中的贝叶斯思维可以应用到利用人工智能过滤垃圾邮件的问题中、随机过程中的隐马尔科夫模型可以支持语音识别等[20]。总之,人工智能本科专业要重视并开足支持学生在人工智能领域深入学习、研究的基础课程,保证课程质量,使学生积累深厚的知识基础,打牢学生学习的“地基”。
其次,聚焦专业,学科交叉,面向应用。课程内容方面要突出人工智能专业特色,聚焦专业内涵,把握学科发展规律,将人工智能基础、机器学习、决策与机器人、感知与自然语言处理和人机交互等专业课程做精做细,将理论知识、研究前沿和应用问题有机结合融入课堂知识学习,并在课堂组织方式上多采用研讨式、问题式和项目式等学习方式,打造精品课程,避免对传统课堂的沿袭。另一方面,正是技术孕育的多学科基础和产业应用的多样化趋势要求不同学科的交叉融合,直接催生了独立、交叉的人工智能专业[21]。为坚持人工智能专业初始的交叉性特点,课程内容要结合学校专业布局特点和专业建设优势,依托选修课程、科研项目和跨学科平台促进多学科交叉融合。专业课程中要涉及与人工智能研究息息相关的认知科学、脑科学、心理学等领域,初步探讨人工智能与金融、商业、医疗等其他学科交叉融合的相关问题,再借助科研合作项目,为学生提供宽领域的研究机会和接触实际问题解决过程的机会。在面向应用方面,为避免人工智能成为一个培养专门人才的专业后,学科逻辑替代问题逻辑[22],人才培养过于理论化和专业化,脱离问题实际,落入传统人才培养的窠臼,学校要重视与政府、科研机构和企业的协同合作,多听取相关利益者的意见以确定课程内容,并建设实训基地和科研创新平台,建设起“场景驱动”的应用型模块课程,将课堂移到真实场景中,通过课上基础知识和技能工具的学习和小范围模拟运用、科研项目和实习实践中的实际问题解决和经验积累以及与企业和政府项目合作过程中的综合能力锻炼与知识创新等一系列的培养活动实现全过程协同育人,完善“人工智能+X”的复合型人才培养体系。
最后,课程内容具有知识性与价值性相统一的特点,人工智能专业要通过人文、社会、艺术和伦理等方面的通识教育课程对学生进行人文关照,提升学生的生态意识、法律意识、审美能力和伦理道德水平,特别是引发学生对人工智能伦理和社会价值的思考。人工智能在无生命的机器上对人类智能的模拟必然会产生伦理问题,包括表层的隐私泄露、工人失业风险增加、教育领域应用的两面性、军事领域应用带来的安全性问题等,更隐藏着“机器是否会统治人、奴役人”以及人与人工智能的关系等哲学问题[23]。虽然人工智能从数据智能到类脑(生物)智能还有很长的路要走,但在实现这些技术之前,这些伦理道德问题都是人类需要思考的。学校教育要肩负起对学生社会责任感和伦理道德的涵养,德育、智育和美育课程三育并举,专业课程和通识课程相辅相成,结合工程实例和文艺创作,引发学生对伦理问题的注意和思考,引导学生正确平衡工具理性和价值理性,培育正确社会价值观和对全人类的关怀之心。
四、结语
人工智能本科专业作为高校本科层次的一个新兴专业,应时代和国家需求而生,肩负着培养人工智能领域高端技能人才,并以高端人才和科研成果占领全球科技创新制高点的重要任务。为建设好这一专业,各高校必须立足课程体系建设这一提高人才培养质量的关键环节,从认识层面,对“确定什么样的人工智能本科专业人才培养目标”、“采取什么样的形式培养人工智能本科专业人才”以及“用什么样的课程内容培养人工智能本科专业人才”等根本问题进行宏观把握和总体设计;从实践层面,对人才培养目标模糊、跨学科平台和模块课程建设落后、课程内容脱离科研和应用等高等教育实践中的固有问题进行有效探索和改革。因此,我国人工智能本科专业课程体系建设应打破传统桎梏,借新兴之势全面创新课程体系:厘清课程目标,回应国家需要,发挥各校优势特色;创新课程结构,明确能力模块,合理安排不同模块关系;优化课程内容,打牢基础、聚焦专业、学科交叉、面向应用,构建“厚基础、强专业、宽领域、重应用”的人工智能知识体系。
参考文献:
[1]中华人民共和国教育部.教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知[EB/OL].[2019-10-15].http://www.moe.gov.cn/srcsite/A08/moe_1034/
s4930/201903/t20190329_376012.html.
[2]吴飞,杨洋,何钦铭.人工智能本科专业课程设置思考:厘清内涵、促进交叉、赋能应用[J].中国大学教学,2019(02):14-19.
[3]武建鑫.重塑自身以塑造未来:人工智能时代的“MIT方案”[J].比较教育研究,
2020,42(02):24-31.
[4]张炜,王良,钱鹤伊.智能化社会工程科技人才核心素养:要素识别与培养策略[J].高等工程教育研究,2020(04):94-98+106.
[5]新加坡南洋理工大学数据科学和人工智能研究中心.VisionandMission[EB/OL].[2019-10-15].https://dsair.ntu.edu.sg/aboutus/Pages/VisionMission.aspx.
[6]卡耐基梅隆大学计算机科学学院.IntroductionofBachelorofScienceinArtificialIntelligence[EB/OL].[2019-10-16].https://www.cs.cmu.edu/bs-in-artificial-intelligence.
[7]新加坡南洋理工大学计算机与工程学院.BachelorofScienceinDataScienceandArtificialIntelligence(NewprogrammefromAY18/19onward)[EB/OL].[2019-10-16].http://scse.ntu.edu.sg/Programmes/CurrentStudents/Undergraduate/Pages/DSAI.aspx.
[8]新加坡信息通信媒体发展管理局.新加坡技术转型路线图报告[EB/OL].[2019-10-26].https://www2.imda.gov.sg/programme-listing/technology-roadmap.
[9]新加坡南洋理工大学计算机与工程学院.OverviewofAUsrequirement[EB/OL].[2019-10-16].http://scse.ntu.edu.sg/Programmes/CurrentStudents/Undergraduate/Documents/2018/AY1819%20SCSE%20DSAI%20%2813%20Sep%202018%29.pdf.
[10]卡耐基梅隆大学计算机科学学院.Curriculum[EB/OL].[2019-10-16].https://www.cs.cmu.edu/bs-in-artificial-intelligence/curriculum.
[11]黄河燕.新工科背景下人工智能专业人才培养的认识与思考[J].中国大学教学,2019(02):20-25.
[12]吴婧姗,王雨洁,朱凌.学科交叉:未来工程师培养的必由之路——以机器人工程专业为例[J].高等工程教育研究,2020(02):68-75+98.
[13]浙江大学求是新闻网.浙大招收首批人工智能专业本科生:学什么,怎么教[EB/OL].[2019-10-18].http://www.news.zju.edu.cn/2019/0415/c23245a1172087/pagem.htm.
[14]清华大学交叉信息研究院.智班概况[EB/OL].[2019-10-18].http://iiis.tsinghua.
edu.cn/list-127-1.html#class25
[15]刘进,吕文晶.人工智能创新与中国高等教育应对(下)[J].高等工程教育研究,
2019(02):62-72.
[16]王雪,何海燕,栗苹,张磊.人工智能人才培养研究:回顾、比较与展望[J].高等工程教育研究,2020(01):42-51.
[17]中华人民共和国教育部.高等学校人工智能创新行动计划[EB/OL].[2019-10-15].http://www.moe.gov.cn/srcsite/A16/s7062/201804/t20180410_332722.html.
[18]顾佩华.新工科与新范式:实践探索和思考[J].高等工程教育研究,2020(04):1-19.
[19]蒋乃平.模块化课程建设[J].职业技术教育,2001,22(28):16-19.
[20]张雨萌,人工智能头条.人工智能必备的数学基础有哪些[EB/OL].[2019-10-18].
https://mp.weixin.qq.com/s/nWC-9UDozFXCKpCe4OqPIA.
[21]林健,郑丽娜.美国人工智能专业发展分析及对新兴工科专业建设的启示[J].高等工程教育研究,2020(04):20-33.
[22]陈涛,韩茜.四螺旋创新集群:研究型大学人工智能发展生态重构与路向探究——以加拿大多伦多大学为例[J].重庆高教研究,2020,8(2):48-61.
[23]王治东.人工智能研究路径的四重哲学维度[J].南京社会科学,2019(9):39-47.
《重庆高教研究》2020年10月作者:陶泓杉郄海霞
(来源:中国社会科学网)
《人工智能导论》教学大纲(含课程思政内容)
05
教学内容和课时安排(含课程思政内容)
(一)课程学时分配
(二)课程思政参考内容
(三)课程教学内容与重点难点
第1章人工智能导引
教学目的:了解人工智能的概念、学习人工智能的目的和意义、应用;了解人工智能的分支。
教学内容:人工智能的概念、应用场合;人工智能的分支。
重点难点:重点是了解人工智能的分支,难点是人工智能各个分支之间的关系。
第2章Python基础知识
教学目的:了解Python在不同环境下的安装;熟练使用python的基本编程,包括各种数据结构;掌握第三方模块的安装和使用,文件的读写;掌握NumPy包的熟练使用;掌握Python的绘图基础。
教学内容:编程基础(列表、元组及字典、基本语句;函数);模块的安装与使用;文件的读写;NumPy的使用;Python的绘图基础。
重点难点:重点是使用Python进行相关的编程,如NumPy的编程,绘图基础等。难点是使用NumPy进行较为复杂的开发与绘图。
第3章机器学习初步
教学目的:了解机器学习的概念、其与人工智能的关系、机器学习的分类;了解数据预处理与特征工程,包括数据清洗、数据变化、过滤、特征工程;熟练使用Sklearn包;熟练使用回归分析。掌握聚类的基本原理与常见的聚类算法。
教学内容:机器学习及其工作流程;机器学习的分类;数据预处理与特征工程;Sklearn库的使用;逻辑回归分类和线性回归预测;聚类的原理与K-Means聚类算法。
重点难点:重点是机器学习的流程与Sklearn的实践。难点是聚类算法及其调优。
第4章自然语言处理
教学目的:了解自然语言处理的概念;掌握文本分词与词汇还原的方法;掌握文本分块与词袋模型;熟练使用TF-IDF算法,并据此构建文档类别预测器。
教学内容:自然语言处理的概念;文本分词与词汇还原;文本分块与词袋模型;文档类别预测;语义分析器;主题模型。
重点难点:重点是文本分词及其文档类别判断的方法。难点是语义分析器的理解与实现。
教学目的:了解处理语音信号的方式,可视化处理的过程;掌握处理语音信号的的相关技术;能够独立建立一个英文的语音识别系统。
教学内容:处理语音信号;可视化音频信号;音频信号从时域转换到频域;生成音频信号的方法;提取语音特征;构建语音识别系统。
重点难点:重点是语音特征的提取策略和方法;难点是构建语音识别系统,尤其是适当结合深度学习机制进行语音信号的识别。
第6章计算机视觉
教学目的:了解什么是计算机视觉,掌握安装流行的计算机视觉库—OpenCV。了解利用帧间差分法检测视频中的移动部分。掌握使用色彩空间和背景差分法来跟踪对象,使用CAMShift算法来构建一个目标跟踪器,并学习光流的基本知识。熟悉人脸检测的相关概念,构造一个人脸检测和跟踪器。
教学内容:计算机视觉的概念;OpenCV介绍;视频中移动物体检测方法;目标跟踪器的构建;基于光流的跟踪;Harr级联和积分图;人脸检测与跟踪。
重点难点:重点是熟悉基于OpenCV进行的各种视觉处理方法,为进一步深入视觉学习奠定基础。难点是人脸检测和跟踪,尤其是复杂的场景,如戴口罩情况下。
第7章人工神经网络
教学目的:了解什么是人工神经网络,熟悉如何建立人工神经网络;了解感知器,掌握基于感知器构建一个分类器;掌握单层和多层神经网络;掌握循环神经网路。
教学内容:神经网络的概念;建立和训练人工神经网络;感知器;构建单层人工神经网络和多层人工神经网络;循环人工神经网络;构建光学字符识别引擎。
重点难点:重点是熟悉构建单层、多层以及循环神经网络;难点是神经网络的使用,如利用神经网络来构建一个光学自负识别引擎。
第8章强化学习与深度学习
教学目的:掌握强化学习的概念及其表现;了解深度学习以及卷积神经网络;熟练使用卷积神经网络构建简单的应用。
教学内容:强化学习的概念;深度学习的概念;卷积神经网络;利用卷积神经网络建立图像分类器。
重点难点:重点是深度学习及其使用;难点是利用卷积神经网络进行实际的应用开发,尤其是其可解释性问题是需要学生简单了解的。
第9章区块链
教学目的:了解区块链的基本概念;掌握区块链和人工智能的关系;了解如何利用人工智能技术对区块链进一步优化。
教学内容:区块链概念;人工智能与区块链;在区块链中使用朴素贝叶斯;优化区块链。
重点难点:重点是区块链概念的理解,产生的原因的深入分析;难点是如何充分的利用区块链技术进行多方向(领域)融合的设计与开发,包括在教育领域、知识产权保护等等。
第10章人工智能算法
教学目的:了解人工智能常用的启发式算法;掌握其基本的思想方法;掌握遗传算法、模拟退火算法、蚁群算法等。
教学内容:启发式搜索算法;遗传算法;模拟退火算法;蚁群算法。
重点难点:重点是掌握典型的启发式算法,如遗传算法、模拟退火等;难点是这些算法优化的特定目标和适用的场景;同时,也希望同学能够探索一些其它的启发式算法,并进一步比较分析,这也是本章的另一个难点。
06
课程教学方法
本课程教学采用以多媒体教学为主,以板书为辅的教学方式,并加强图示教学和实例教学以增强学生的学习兴趣并加深学生对重点知识以及理论与实际工程问题相结合的理解。
1、教师课堂讲授:基本概念和核心知识内容的传授,由主讲教师完成。
2、课堂讨论:要求学生以小组的形式对所学的知识点进行现场讨论。
3、MOOC:对课程的一些知识点采用国内外知名专家学者的视频公开课进行知识的传授。
4、SPOC:对于授课难点问题尤其是实际运用的问题时,采用翻转课堂的形式积极引导学生的参与意识,提高学生的创新能力。
5、学生/项目组讲授/表达:学生小组讨论,对于常识性的知识点的表达,提高学生的沟通和表达能力。
07
课程学习资源
1.教材
《人工智能导论(Python版)微课视频版》
ISBN:978-7-302-57239-8
作者:姜春茂
定价:49元
|学习资源|
500分钟视频、PPT课件、示例源码、习题答案。返回搜狐,查看更多
中小学人工智能课程内容设计及实施案例分析
我国中小学人工智能教育取得飞速发展与瞩目成绩的同时,也存在以下几点主要问题。
其一,缺乏完善的课程体系,无论是国家课程还是校本课程,人工智能教育都是依托其他课程开展的,这导致了人工智能教育内容分量难以确定,目标难以明晰。横向来看,教学内容过于碎片化,学生难以构建相关知识体系;纵向来看,学段间的人工智能教育内容联系不够紧密,这既不利于学生循序渐进的知识与技能学习,也使得教师难以把握学情从而导致教学目标与教学效果之间的落差。此外,现阶段中小学人工智能教育的教材大多属于产品说明书或用户指南[4]。
二、中小学人工智能课程设计
表1中小学人工智能课程目标及内容架构
人工智能技术虽然复杂深奥,但是其应用广泛且贴近生活,知识内容间紧密联系,对学生而言并非是不可感知、无法构建的。以人工智能为依托培养学生的计算思维、智能素养也并非是难以实现的。教师如何设计人工智能课程内容以及课程间以何种方式组织就显得尤为重要。
(一)中小学人工智能课程内容设计案例
下面,以初中年级人工智能课程中的“智能灯”为例对中小学人工智能的课程内容设计做详细阐述。“智能灯”一课意在通过学生对于生活中常见情境下智能灯的设计了解其背后设计原理,能够通过模块化程序设计和python代码编写出智能灯的程序,激发学生对于人工智能在生活中应用的兴趣。“智能灯”课的具体课程内容设计如图1所示:
图1以“智能灯”为例的人工智能课程内容设计
1.问题提出,明确任务
问题提出:绿色、环保、节能、和谐是当今生活的主旋律,智能灯的出现深化了人类与灯光之间的关系。请同学们结合生活实际谈一谈你所了解的智能灯!
明确任务:明确智能灯的设计要求——内置监测外界光线强度传感器,当光敏值大于700时,灯自动打开,当光敏值小于700时,灯自动熄灭。
2.深入探究,设计展示
深入探究:请学生利用可视化工具,例如思维导图,深入理解智能灯的设计要求,分析其所需要的元器件并搭建其真实应用的简易场景。
设计展示:小组通过分工利用模块化程序语言和python语言对智能灯进行设计,调试形成小组作品,并对本组作品进行演示和分享,讨论这两种不同的计算机语言在应用时的异同之处。
3.总结反思,拓展提高
以思维导图的形式回顾智能灯设计的全过程。在实际生活中往往面临着更为复杂的情境,当外界光线昏暗,智能灯会自动给打开且不能自动关闭,这也造成了一种资源浪费。进而引发学生对智能灯更深入的思考,完善、改进作品设计,为之后的课程内容做好准备。
本案例从生活实际出发引发学生的学习兴趣,在内容设计过程中通过对可视化工具的利用帮助学生理清思维脉络,不仅重视学生对模块程序和计算机语言的学习利用,更是通过比较二者的语言风格加强学生对编程的深入理解,进而培养学生的计算思维。
(二)中小学人工智能课程组织案例
人工智能虽然是一个知识体系丰富的新兴技术领域,其内容架构设计包含人工智能基础、算法与编程、机器人与智能系统等多个模块。表面看起来是彼此独立、互不关联的内容,但实际上,无论是技术特点还是知识内容都是可联系、可互通的。忽视了课程内容间的联系、放弃将内容整合成为模块是无法将人工智能的原理与技术讲解透彻的,也无法将计算思维和智能的培养渗入课堂。因而,以综合任务为导向的模块化组织中小学人工智能课程不仅能够有效帮助学生构建人工智能知识体系,更有助于教师组织形式丰富、内容多样的系统课程,增加课堂趣味性、有效性。
以“模拟城市交通系统”为例组织相关课程内容。如图2所示,智能路灯、自动道闸、智能信号灯、环线巴士、无人加油站原本都是独立的课程内容,根据课程与生活实际的联系整合成模拟城市交通系统为主题的模块。教师利用5-10个课时实践此模块,引导学生设计完成模拟城市交通系统这个综合任务实践每课内容,帮助学生在体验人工智能的同时,创造性地应用人工智能解决实际问题。
图2“模拟城市交通系统”课程模块
三、中小学人工智能课程实施策略
(一)跨学科整合式教学
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它的涉及领域除了计算机科学外,更包括了生物学、心理学等。跨学科的整合能够将数学、生物、神经科学等多学科知识与人工智能知识相融合、渗透。在这个过程中,教师不仅能够利用其他学科知识帮助学生理解人工智能知识内容,更利用其他学科思维帮助学生培养计算思维的核心素养。跨学科整合式的教学是将人工智能学科与其他相关学科进行融合,以项目形式实践课程内容,利用人工智能技术创造性地解决实际生活问题。以“机器视觉”一课为例设计如下,这一课中,教师将人工智能中机器视觉的知识与神经科学相结合(如图3),以人是如何看到事物的为导入,进而类比解释机器是如何“看到”事物的。该教学设计在渗透了脑科学知识的基础上,帮助学生联系生活实际体验人工智能的应用与价值。
图3“机器视觉”与神经科学知识融合
(二)情境游戏化教学
由于中小学学生的认知水平存在局限性和差异性,以及人工智能领域知识特性,学生难以通过讲授和演示直接理解课程内容。人工智能技术的发展也为创设情境提供了条件,教师完全可以利用人工智能技术的应用反哺课堂教学,帮助学生增强学习的体验感,对人工智能技术形成直观、形象的理解。借助游戏化的角色、模式以及元素,为学生提供丰富、有趣的学习内容;通过机制、增益等策略,能够丰富学习者的经历和体验,同时提高学习者在活动中的参与率和巩固率[9]。因而,将情境的创设与游戏化学习相结合,有利于增强人工智能教学课堂的趣味性、个性化。例如东南大学举办的人工智能为主题的夏令活动中实施的“火灾演练”,要求学生扮演消防员在模拟灭火行动中完成救援。创设的火灾情境融合机器人小车巡线、FPV第一视角等教学内容。氛围营造、综合竞赛及消防员的角色扮演都极大激发了学生的课堂兴趣及参与感。该项目在实践中得到了学生与教师的一致肯定。该设计能够帮助学生将人工智能知识与生活实际相联系,建构开源硬件的知识体系。鼓励学生在游戏化式轻松的教学环境中大胆创新。从而达到培养学生核心素养与创新能力的目标。
表2“火灾演练”项目内容
面向中小学开展人工智能课程有利于学生了解现代科技发展、适应未来生活有着重要的意义。目前,我国中小学人工智能教育尚在探索发展阶段,无论是课程内容的设计还是其组织方式、或是教学策略均未成型,本研究希望借以案例的分析,促进研究者对中小学人工智能课程设计广泛、深入的思考。
参考文献
[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL].
[2]教育部关于印发《教育信息化2.0行动计划》的通知
[3][7]谢忠新,曹杨璐,李盈.中小学人工智能课程内容设计探究[J].中国电化教育,2019(4):17-22.
[4]徐多,胡卫星,赵苗苗.困境与破局:我国机器人教育的研究与发展[J].现代教育技术,2017,27(10):94-99.
[5]周邵锦,王帆.K-12人工智能教育的逻辑思考:学生智慧生成之路——兼论K-12人工智能教材[J].现代教育技
术,2019,29(4):12-18.
[6]解月光,杨鑫,付海东.高中学生信息技术学科核心素养的描述与分级[J].中国电化教育,2017(5):8-14.
[8]李德毅.AI——人类社会发展的加速器[J].智能系统学报,2017,(5):583-589.
[9]祝智庭,魏非.教育信息化2.0:智能教育启程,智慧教育领航[J].电化教育研究,2018,39(9):5-16.
东南大学百研工坊:21世纪是我国创新型人才培养的关键期。东南大学百研工坊(儿童发展与教育研究所)结合信息技术、生物医学工程、脑科学技术,进行青少年科学素养的国际比较研究和学生核心概念掌握水平的评测系统的研究与开发,我们的目标是:(1)面向中小学学生综合能力发展的steam研究;(2)通过实证教育研究,探究科学素养的本质及有效的培养途径;(3)将科学素养的传统评测方法与现代信息技术相结合,探究基于ECD模型的学生科学素养评测方法研究;(4)运用ERP、EEG和眼动等脑科学技术,开展对学生核心概念熟练掌握程度的评测研究。
责编:罗培
推荐关注:韦钰院士公众号
可鑫的科学漫步
介绍有关神经教育学、神经信息工程和科学教育的相关信息
推荐书籍
滑动查看更多>>>返回搜狐,查看更多