博舍

新一代人工智能的发展与展望 人工智能发展论文摘要怎么写

新一代人工智能的发展与展望

    随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

    人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

    当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

    事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

    未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

人工智能发展论文

人工智能发展论文

随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。以下是小编精心准备的人工智能发展论文,大家可以参考以下内容哦!

摘要:人工智能属于一门综合性的边缘学科。诞生时间为20世纪50年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。

关键词:人工智能发展;识别率;人脸识别;遗传算法

1智能计算机的发展

1.1人工智能简述

人工智能[1](ArtificialIntelligence,简称AI)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速,在很多的地方都得到了应用,尤其是在科学领域。

人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。

1.2人工智能研究的发展概况

未来,随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。在我们的日常生活中,人们对人工智能技术的期望一直都拥有着很高的热情和期盼,但是,在客观事实上,人工智能技术进步不但要考虑软件、硬件技术的限制,也还要考虑人们对自身能力理解程度的制约,因此未来人工智能技术将在不断限制的过程中不断突破不断成长,从而保持着逐步的发展。比如人脸识别技术,当该技术以一次问世时,人们对人工智能充满了信心,但当大多数人亲自使用时,却发现它对人脸的识别率还是不够高;

近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,OCR、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。

人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。

人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的.变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。

2人工智能的前沿

2.1智能信息检索技术

现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。

2.2遗传算法

遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。

3结束语

人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008(9).

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2013(9).

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2013(7).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2014(7).

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2011(5).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2015(7).

[7]曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009(8).

[8]王梓坤.论混沌与随机.北京师范大学学报,1994,30(2):199-202.

[9]陈明.基于进化遗传算法的优化计算[J].软件学报,2008,9(11):876-879.

[10]陈火旺.遗传程序设计(之一)[J].计算机科学,2005.22(6):12-15.

【人工智能发展论文】相关文章:

人工智能学术论文范文10-03

人工智能专家系统论文09-30

可持续性发展合作医疗论文08-09

人工智能时代作文(6篇)09-26

人工智能时代作文6篇09-25

【实用】人工智能作文五篇08-29

人工智能作文(集锦15篇)08-22

人工智能作文(合集15篇)08-22

人工智能作文(通用15篇)08-21

【推荐】人工智能作文10篇08-11

2023年人工智能领域发展七大趋势

2022年人工智能领域发展七大趋势

有望在网络安全和智能驾驶等领域“大显身手”

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。

增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。

更大更好的语言建模

语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。

2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。

众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。

网络安全领域的人工智能

今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。

随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。

人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。

人工智能与元宇宙

元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。

人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。

低代码和无代码人工智能

2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。

美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。

自动驾驶交通工具

数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。

特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。

此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。

创造性人工智能

在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。

2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)

【纠错】【责任编辑:吴咏玲】

人工智能的现状及今后发展趋势展望

论文导读:介绍了人工智能的概念及其目前发展概况,对人工智能的几种类型及应用,如:模式识别、专家系统作了简要的介绍。并对人工智能今后的发展前景进行了分析。关键词:人工智能 

1引言

人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。

2目前人工智能技术的研究和发展状况

目前,人工智能技术在美国、欧洲和日本依然飞速发展。在AI技术领域十分活跃的IBM公司,已经为加州劳伦斯·利佛摩尔国家实验室制造了ASCIWhite电脑,号称具有人脑的千分之一的智力能力,而正在开发的更为强大的新超级电脑——“蓝色牛仔”(BlueJean),据其研究主任保罗·霍恩称,“蓝色牛仔”的智力水平将大致与人脑相当。

3技术应用

随着AI的技术的发展,现代几乎各种技术的发展都涉及到了人工智能技术,可以说人工智能已经广泛应用到许多领域,其典型的应用包括:

3.1符号计算

计算机最主要的用途之一就是科学计算,科学计算可分为两类:一类是纯数值的计算,例如求函数的值;另一类是符号计算,又称代数运算,这是一种智能化的计算,处理的是符号。符号可以代表整数、有理数、实数和复数,也可以代表多项式,函数,集合等。随着计算机的普及和人工智能的发展,相继出现了多种功能齐全的计算机代数系统软件,其中Mathematic和Maple是它们的代表,由于它们都是用C语言写成的,所以可以在绝大多数计算机上使用。

3.2模式识别

模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,我们把环境与客体统称为“模式”。论文参考网。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个关键的突破口,也为人类认识自身智能提供线索。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似。以“语音识别”为例:语音识别就是让计算机能听懂人说的话,一个重要的例子就是七国语言(英、日、意、韩、法、德、中)口语自动翻译系统。该系统实现后,人们出国预定旅馆、购买机票、在餐馆对话和兑换外币时,只要利用电话网络和国际互联网,就可用手机、电话等与“老外”通话。

3.3机器翻译

机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻译类。词典类翻译软件代表是“金山词霸”了,堪称是多快好省的电子词典,它可以迅速查询英文单词或词组的词义,并提供单词的发音,为用户了解单词或词组含义提供了极大的便利。汉化翻译软件的典型代表是“东方快车2000”,它首先提出了“智能汉化”的概念,使翻译软件的辅助翻译作用更加明显。

3.4机器学习

机器学习是机器具有智能的重要标志,同时也是机器获取知识的根本途径。有人认为,一个计算机系统如果不具备学习功能,就不能称其为智能系统。机器学习主要研究如何使计算机能够模拟或实现人类的学习功能。机器学习是一个难度较大的研究领域,它与认知科学、神经心理学、逻辑学等学科都有着密切的联系,并对人工智能的其他分支,如专家系统、自然语言理解、自动推理、智能机器人、计算机视觉、计算机听觉等方面,也会起到重要的推动作用。

3.5问题求解

人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。论文参考网。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。

3.6逻辑推理与定理证明

逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。医疗诊断和信息检索都可以和定理证明问题一样加以形式化。因此,在人工智能方法的研究中定理证明是一个极其重要的论题。

3.7自然语言处理

自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。

3.8分布式人工智能

分布式人工智能在20世纪70年代后期出现,是人工智能研究的一个重要分支。分布式人工智能系统一般由多个Agent(智能体)组成,每一个Agent又是一个半自治系统,Agent之间以及Agent与环境之间进行并发活动,并通过交互来完成问题求解。

3.9计算机视觉

计算机视觉是一门用计算机实现或模拟人类视觉功能的新兴学科。其主要研究目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力不仅包括对三维环境中物体形状、位置、姿态、运动等几何信息的感知,而且还包括对这些信息的描述、存储、识别与理解。

目前,计算机视觉已在人类社会的许多领域得到成功应用。例如,在图像、图形识别方面有指纹识别、染色体识字符识别等;在航天与军事方面有卫星图像处理、飞行器跟踪、成像精确制导、景物识别、目标检测等;在医学方面有图像的脏器重建、医学图像分析等;在工业方面有各种监测系统和生产过程监控系统等。

 

 1/2   1 2 下一页 尾页

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇