博舍

让人工智能充分赋能经济社会发展 人工智能能解决的问题有哪些方面呢

让人工智能充分赋能经济社会发展

科技部等六部门发文统筹推进场景创新

让人工智能充分赋能经济社会发展

继2017年国务院印发《新一代人工智能发展规划》(以下简称《发展规划》)之后,科技部、教育部、工信部等六部门近日联合发布《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》(以下简称《指导意见》),在业界引发广泛关注。

作为深刻改变人类社会生活的革命性、战略性技术,人工智能在我国发展如何?怎样推动人工智能快速迭代升级?记者进行了采访。

从实验室走向生产生活,人工智能驶入发展快车道

如今,放眼大江南北,“人工智能”不再是一个学术名词,而是人们生产生活中的“常客”。

在旷视科技改造升级后的国药控股广州有限公司物流中心,随处可见人工智能的“身影”:智能移动机器人、智能堆垛机往来穿梭,成为搬运的主力军,智能五面扫描装置可实时读取运动中的药箱上的电子监管码,实现药品流通可追溯……智慧仓储物流不仅为该中心每年节约人力成本上百万元,更显著提高了工作效率,在疫情防控期间实现了医药物资配送的快速响应。

在位于浙江杭州滨江区的计算机视觉公司易思维的实验室,装配了高性能视觉传感器的工业机器人正在模拟汽车流水线的工位上忙碌。明察秋毫的“眼睛”和自主决策的“大脑”,助力冲压、焊接、涂装、总装四大汽车制造环节的智能化升级,既省工省时又提质增效。易思维研发的工业视觉检测成套装备体系,已在上汽大众、一汽大众、特斯拉等数十家国内外厂商的200多个整车厂落地开花,在“冲、焊、涂、总”四大环节上实现系统化应用。

在华为打造的5G智慧煤矿——晋能控股集团塔山煤矿,地下500米的矿井实现了智能互联:智能巡检机器人往来探视,工人可一键呼叫“网约车”、实时手机视频通话。依托“会说话”“能决策”的智能化综放开采设备,塔山煤矿采煤工效提升40%以上。

在日常生活中,人工智能也无处不在:对着手机眨眨眼,几秒内就可以完成身份认证;手环、手表等智能终端,及时提醒用户健康状况……

“《发展规划》实施至今,我国的人工智能已由实验室走向生产生活的方方面面,驶上了发展快车道。”科技部新一代人工智能发展研究中心主任、中国科学技术信息研究所所长赵志耘认为,“生产更高效、生活更精彩”的背后,是人工智能科技的显著进步。“我国在机器学习、计算机视觉、自然语言处理、类脑计算等领域涌现出一批重要理论成果,大规模预训练模型等前沿研究达到国际先进水平,人工智能基础软硬件快速发展,基于自主技术的人工智能产业生态已初步形成。”

科技部新一代人工智能发展研究中心提供的数据显示,5年来我国智能产业规模持续壮大,企业数量以及风险投资额居世界前列:2021年人工智能核心产业规模超过4000亿元,企业超过3000家;人工智能领域风险投资额占全球比重从2013年的不到5%增长到2021年的20%左右,跃居世界第二。

把新技术应用到实践中,通过迭代不断成熟提升

《指导意见》从打造人工智能重大场景、提升人工智能场景创新能力、加快推动人工智能场景开放等方面,统筹推进人工智能场景创新。

“这不仅是稳经济、培育新增长点的权宜之计,更是促进人工智能更高水平应用、更好支撑高质量发展的长远之策。”科技部战略规划司副司长邢怀滨说,“从全国来看,目前仍存在对场景创新认识不到位、重大场景系统设计不足、场景机会开放程度不够、场景创新生态不完善等问题,急需加强人工智能场景创新。”

邢怀滨告诉记者,场景创新是以新技术的创造性应用为导向,以供需联动为路径,实现新技术迭代升级和产业快速增长的过程。“这个‘牛鼻子’有多方面的牵引效应:直接推动人工智能技术的推广应用,加快传统产业的提质升级;在应用中发现新需求、凝练新课题,从需求侧反推人工智能技术体系的提升完善;促进人工智能相关软硬件技术及其标准的对接、贯通,进而形成全国统一的技术生态、产业生态。”

“目前人工智能正处在新的发展阶段,技术日趋成熟可用,各行业对人工智能技术需求迫切。”赵志耘说,在这个阶段,最重要的是把新技术应用到实践中,通过迭代不断成熟提升。“场景创新作为一种目标导向、应用导向的研发新机制,既有利于引导学术界更好地聚焦行业问题、优化研发方向,也有利于引导企业尽快把理论成果、技术成果快速转化为行业效果。”

易思维创始人兼CEO郭寅认为,人工智能是一门强应用相关的技术学科,从最早的雏形发展到今天,都离不开在各类应用场景中发现问题、解决难题、迭代技术,人工智能技术发展与场景应用创新是个相互促进、螺旋上升的过程。“随着《指导意见》的实施,我国人工智能技术将迎来加快迭代升级的新热潮。”

加快构建全链条、全过程的人工智能行业应用生态

8月15日,科技部启动支持建设新一代人工智能示范应用场景,发布了智慧农场、智能港口、智能矿山、智能工厂等首批支持的十大应用场景。

“人工智能的应用场景涉及生产、生活的方方面面,不能眉毛胡子一把抓。我们坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康谋篇布局,以充分挖掘人工智能的价值。”邢怀滨说,“按照提高生产能效、改善工作方式、方便群众生活等主要标准,我们希望尽快打造形成一批可复制、可推广的标杆型示范应用场景,加快构建全链条、全过程的人工智能行业应用生态,让人工智能充分赋能经济社会发展。”

“人工智能是渗透面广、带动性强、影响深刻的新生事物,政府和市场要各司其职、协同发力,真正把充分发挥市场作用和更好发挥政府作用有机结合起来。”邢怀滨强调,一方面,要坚持企业在场景创新全过程中的主体地位,鼓励企业放手去干、去闯;另一方面,政府要与学术界、企业界紧密合作,在相关社会伦理、规则制定、法制完善等方面履职尽责。

“中国拥有全球最齐全的产业体系和超大规模的消费市场,丰富繁多的应用场景为人工智能提供了巨大的用武之地。”邢怀滨表示,“经过全社会的共同努力,中国一定能在新一代人工智能这个赛道上跑出好成绩。”(记者赵永新)

【纠错】【责任编辑:吴咏玲】

人工智能的十大应用

导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。

作者:王健宗何安珣李泽远

来源:大数据DT(ID:hzdashuju)

01 无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

02 人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

03机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

04声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

05智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

06智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

07智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

08个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

09医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10 图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。

何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。

李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。

本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。

延伸阅读《金融智能》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。

划重点????

干货直达????

有了中台,那后台还剩下什么?(图解中台架构)

关于读书,我发现每一个技术大牛都有这个怪癖

2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?

34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?

更多精彩????

在公众号对话框输入以下关键词

查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作

大数据 | 云计算 | 数据库 | Python | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生

据统计,99%的大咖都完成了这个神操作

????

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

人工智能的8个有用的日常例子

如果你在谷歌上搜索“人工智能”这个词,然后不知怎的就打开了这篇文章,或者用优步(Uber)打车上班,那么你就利用了人工智能。

人工智能影响我们生活的例子不胜枚举。虽然有人将其称为“机器人以邪恶的天才统治世界”的现象,但我们无法否认人工智能通过节省时间、金钱和精力使生活变得轻松。

[[330378]]

术语

人工智能是指机器通过专门设计的算法来理解、分析和学习数据,从而充当人类思维蓝图的现象。人工智能机器能够记住人类的行为模式并根据他们的喜好进行调整。

在我们的讨论过程中,您将遇到与AI密切相关的主要概念是机器学习、深度学习和自然语言处理(NLP)。在继续之前,让我们先了解这些。

机器学习(ML)涉及通过大数据为例向机器教学有关重要概念的知识,大数据需要被构造(以机器语言)以便机器理解。这些都是通过向他们提供正确的算法来完成的。

深度学习(DeepLearning)比ML领先一步,这意味着它通过表示进行学习,但不需要对数据进行结构化以使其有意义。这是由于受人类神经结构启发的人工神经网络。

自然语言处理(NLP)是计算机科学中的一种语言工具。它使机器能够阅读和解释人类语言。NLP允许自动翻译人类语言数据,并使两个使用不同语言的实体(计算机和人类)进行交互。

现在您已经掌握了术语,让我们深入研究人工智能的示例及其工作方式。

8个人工智能的例子

以下列出了您每天可能会遇到的八个人工智能示例,但您可能没有意识到它们的AI方面。

1.谷歌地图和打车应用

地图应用程序如何知道确切的方向、最佳路线,甚至是道路障碍和交通堵塞呢?不久以前,只有GPS(基于卫星的导航系统)被用作出行的导航。但是现在,人工智能被纳入其中,让用户在特定的环境中获得更好的体验。

通过机器学习,app算法会记住建筑的边缘,在工作人员手动识别之后,这些边缘会被输入系统。这允许在地图上添加清晰的建筑视觉效果。另一个特点是识别和理解手写的门牌号的能力,这可以帮助通勤者找到他们想要的房子。没有正式街道标志的地方也可以用它们的轮廓或手写的标签来识别。

该应用程序已被教会理解和识别流量。因此,它推荐了避免路障和拥堵的最佳路线。基于AI的算法还告诉用户到达目的地的确切距离和时间,因为它被教导可以根据交通状况进行计算。用户还可以在到达目的地之前查看其位置的图片。

因此,通过采用类似的AI技术,各种乘车应用也已出现。因此,每当您通过在地图上定位您的位置来从应用程序预订出租车时,它都是这样工作的。

2.人脸检测与识别

当我们拍照时在脸上使用虚拟滤镜和使用人脸识别码解锁手机是人工智能的两个应用,现在已经成为我们日常生活的一部分。前者包含人脸检测,即识别任何人脸。后者使用人脸识别来识别特定的人脸。

这是如何运作的?

智能机器经常匹配,有时甚至超越的能力。人类婴儿开始识别面部特征,如眼睛、鼻子、嘴唇和脸型。但这并不是一张脸的全部。有太多的因素使人的脸与众不同。智能机器被教导识别面部坐标(x、y、w和h,它们在面部周围形成一个正方形作为感兴趣的区域)、地标(眼睛、鼻子等)和对齐(几何结构)。

人脸识别还被政府机构或机场用于监视和安全。例如,伦敦盖特威克机场(GatwickAirport)在允许乘客登机之前使用面部识别摄像头作为ID检查。

3.文本编辑器或自动更正

当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。

在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。

语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。

下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。

4.搜索和推荐算法

当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。

这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。

同样,优化的搜索引擎体验是人工智能的另一个示例。通常,我们的热门搜索结果会找到我们想要的答案。怎么发生的?

向质量控制算法提供数据,以识别超越SEO垃圾内容的高质量内容。这有助于根据质量对搜索结果进行升序排列,以获得最佳用户体验。

由于搜索引擎由代码组成,因此自然语言处理技术可以帮助这些应用程序理解人类。实际上,他们还可以通过汇编排名靠前的搜索并预测他们开始键入的查询来预测人们要问的问题。

诸如语音搜索和图像搜索之类的新功能也不断被编程到机器中。如果要查找在商场播放的歌曲,只需将手机放在旁边,音乐识别应用程序就会在几秒钟内告诉您歌曲的内容。在丰富的歌曲数据库中进行筛选后,机器还将告诉您与该歌曲有关的所有详细信息。

5.聊天机器人

作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。

聊天机器人被教导通过自然语言处理(NLP)来模仿客户代表的对话风格。高级聊天机器人不再需要特定的输入格式(例如,是/否问题)。他们可以回答需要详细答复的复杂问题。实际上,它们只是人工智能的另一个例子,它们给人的印象是客户代表。

如果您对收到的答复的评价不佳,则机器人会识别出所犯的错误并在下次进行纠正,以确保最大的客户满意度。

6.数字助理

当我们全力以赴时,我们常常求助于数字助理来代表我们执行任务。当您单手开车喝咖啡时,您可能会要求助手给您的妈妈打电话。助理(例如Siri)将访问您的联系人,识别单词“Mom”并拨打电话。

Siri是一个较低层模型的示例,该模型只能在说话时做出响应,而不能给出复杂的答案。最新的数字助理精通人类语言,并集成了高级NLP和ML。他们了解复杂的命令输入并给出令人满意的输出。他们具有自适应能力,可以分析您的喜好、时间表和习惯。这使他们能够以提醒、提示和时间表的形式为您系统化、组织和计划事务。

7.社交媒体

社交媒体的出现为世界提供了一种新的叙事方式,提供了过度的言论自由。然而,这也带来了一些社会弊端,如网络犯罪、网络欺凌和仇恨言论。各种社交媒体应用程序都在使用人工智能的支持来控制这些问题,并为用户提供其他有趣的功能。

AI算法可以发现并迅速删除包含仇恨言论的帖子,速度远比人类快。通过他们以不同语言识别仇恨关键字,短语和符号的能力,这成为可能。这些已被输入到系统中,该系统具有向其词典添加新词的附加功能。深度学习的神经网络架构是该过程的重要组成部分。

表情符号已成为代表各种情感的最佳方式。AI技术也可以理解这种数字语言,因为它可以理解特定文本的含义并提示正确的表情符号作为预测文本的一部分。

社交媒体是人工智能的一个很好的例子,它也能够理解用户产生共鸣的内容并向他们建议相似的内容。面部识别功能还用于社交媒体帐户中,可帮助人们通过自动建议为朋友加标签。智能过滤器可以识别并自动清除垃圾邮件或不需要的邮件。智能回复是用户可以享受的另一个功能。

社交媒体行业的一些未来计划包括使用人工智能通过分析发布和消费的内容来识别心理健康问题,例如自杀倾向。这可以转发给心理健康医生。

8.电子支付

银行现在正在利用人工智能通过简化支付流程来便利客户。

通过观察用户的信用卡支出模式来检测欺诈的方式也是人工智能的一个示例。例如,算法知道用户X购买哪种产品,何时何地购买产品以及价格落在什么价格区间。当有一些不正常的活动不适合用户个人资料时,系统会立即提醒用户X。

总结

人工智能算法超越了人类的能力,可以节省时间,从而使科学家们可以将精力投入到其他更重要的发现中。

我们已经讨论过的人工智能示例不仅可以作为娱乐的来源,而且还提供了我们已变得如此依赖的无数实用程序。人工智能领域仍处于新生阶段,还有更多的发明将更精确地复制人类的能力。

 

 

人工智能在医疗健康领域的应用及挑战

一、人工智能概述

1.人工智能发展历程

人工智能(ArtificialIntelligence,AI)是对人的意识和思维过程进行模拟并系统应用的一门新兴科学,其发展经历了三次浪潮。1956年,美国Dartmouth大学举行的聚会是人工智能正式诞生的标志,这一时期使用机械化思考方式和逻辑学知识来解决问题,但对复杂的问题束手无策;20世纪80年代,Hopfield神经网络和BT训练算法的提出,使AI再次兴起,出现了语音识别、翻译等计划,但迟迟未进入人们的生活之中;2006年,Hinton提出深度学习技术,并随着互联网的普及和应用,AI在各个领域迅速得到发展和应用。

2.人工智能的基础和要求

人工智能的核心是算法,基础条件是数据及计算能力。因此,可以认为医疗与人工智能结合的关键要素是“算法+有效数据+计算能力”。先进算法能提升数据使用效率。在医疗领域,有效的医疗大数据是人工智能应用的基础,医疗数据的有效性包括三个方面:电子化程度、标准化程度以及共享机制。电子化程度强调数据和病历的供给量;标准化程度强调数据之间的可比性和通用型;共享机制强调数据获取渠道的便利性和合法性。随着互联网的普及,我国各级医疗机构、健康管理机构、行政机构、居民都已普遍了解互联网并链接互联网,给大数据的实现奠定了基础。

3.医疗健康领域对人工智能的需求

近年来,借助人工智能技术,开展智慧医疗成为医疗领域的热点。2017年7月,国务院印发的《新一代人工智能发展规划》提出,要建立新一代人工智能基础理论体系和关键共性技术体系,加快培养聚集人工智能高端人才。同年12月,工信部印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》,对医疗人工智能的发展做出了详细的规划,提出要着重在医疗影像辅助诊断系统等领域率先取得突破。2018年,国务院办公厅印发《关于促进“互联网+医疗健康”发展的意见》,明确支持“互联网+医疗保健”的发展,允许依托医疗机构发展互联网医院。事实上,除了医疗影像辅助诊断对AI具有巨大的需求外,辅助诊断、辅助手术、辅助护理、辅助检查、辅助医院管理、辅助挂号、辅助减少计量误差、健康管理、药品研发等医疗健康领域对AI技术都有强大需求。

随着我国人口老龄化程度不断加深,慢性病、癌症发病率逐年上升,以人力为主的各类卫生资源配置不足、分布不均的困境越发突显,AI作为一门综合性极强的交叉学科,将在医疗领域内得到越来越多的应用,并将成为影响医疗行业发展的重要科技手段。

二、医疗人工智能应用现状

目前,人工智能在医疗健康领域已得到了初步的应用,主要集中在辅助影像和病理诊断、辅助护理、辅助随访、基层医生助手、医院智能管理及辅助健康管理等方面。

1.辅助影像和病理诊断

医学影像及病理切片作为结构化数据,是AI应用的绝佳场所。2015年起举办的CAMELYON16挑战赛,比较AI和病理医生在检测乳腺癌患者淋巴结转移病理切片中转移灶的潜力,结果显示AI在诊断模拟中的表现优于病理医师。目前,人工智能辅助影像和病理诊断在国内发展迅速,2006年我国首家独立临床病理诊断专业机构——上海复旦临床病理诊断中心成立,启用数字病理远程会诊平台,免去患者来回奔波。2015年沸腾医疗有限公司以“E诊断医学影像服务平台”为核心,通过“E诊断”医学影像技术专业输出及专业精准的远程医学影像诊疗合作,实现了远程医学影像信息交互的目标。

2.辅助护理

我国台湾医院应用AI产生护理诊断,AI建议的诊断与护士建议的诊断一致百分比高达87%。国外AI已普遍运用于人们的日常生活护理中,日本研究机构Riken开发的机器人Robear,能将病人从床上抬起,帮助行动不便的病人行走、站立等;应用AI开发的机器人能为老年及瘫痪患者提供喂饭、日常照护等服务。澳大利亚养老院用机器人做护工,通过给机器人输入程序,使其可以与老年人一对一交流,消减老年人的苦闷。AI在护理领域的应用,极大减轻了护理人员负担,为患者提供了温暖且有力的服务,是应对老龄化社会的有力帮助。

3.辅助随访

随访是医院常规工作的重要组成部分,然而目前的卫生人力无法满足所有患者的随访需求。AI的发展打破了长期随访在时间和空间上的限制。2017年,海宁市中心医院首次应用AI智能随访助手,采用声纹预测思维算法,语言识别准确率高达97.5%。2018年,上海交通大学医学院附属仁济医院东院日间手术病房正式上线AI随访助手,随访助手可以根据问题模板模拟医生进行电话随访,主要询问患者出院后是否发生呕吐、疼痛、发热、伤口渗血感染等不良情况。随访助手的上线不仅大大提高了随访效率,还确保了随访信息采集的全覆盖及准确性。同时,随访助手可以根据不同的手术种类,制订个性化随访计划,通过终端自动拨打患者电话,模拟人声与患者进行术后随访沟通,并有效采集患者回答的信息。随访结束后,医务人员能清楚地了解每位患者的术后情况。

4.基层医生助手

基层医院在实现“健康中国”战略中有着举足轻重的作用,但目前其服务能力难以满足广大群众的基本需求。AI通过学习海量的专家经验和医学知识,建立深度神经网络,并在临床中不断完善,协助基层医生给群众提供高质量的服务。2017年,科大讯飞和清华大学联合研发的“智医助理”以超过合格线96分的成绩成为全球第一个通过国家执业医师资格考试综合笔试测评的AI机器人,可以辅助基层医生提升诊疗质量和效率。2017年9月,国家在安徽省旌德县首次开展全科医生机器人辅助基层医疗试点,深受基层群众欢迎。

5.医院智能管理

人工智能技术在医院的应用,能提高医院为患者提供正确治疗方案的精准性,减少了患者的不必要支出,并且能合理地为患者安排治疗计划。澳门仁伯爵综合医院应用AI技术,在电子处方系统内设置安全警示,确保用药规范,防止滥用抗生素等药物。美国IBM公司应用机器学习方法,自动读取患者电子病历相关信息,得出辅助诊断信息,实现医疗辅助诊断。

6.辅助健康管理

传统的健康管理技术在信息的获取、处理和应用上相对落后,将AI应用于健康管理,通过对健康数据实时采集、分析和处理,评估疾病风险,给出个性化、精准化的基本管理方案和后续治疗方案,能有效降低疾病发病率和患病率。健康管理机构可以通过手机APP或智能可穿戴设备,检测用户的血压、血糖、心率等指标,进行慢性病管理。国外Welltok公司利用“CaféWell健康优化平台”,管理用户健康,包括压力管理、营养控制以及糖尿病护理等,并在用户保持健康生活习惯时给予奖励。同时,为用户提供更灵活、全方位的健康促进方案,包括阶段性临床护理、长期保持最佳健康状态等多个方面。

三、人工智能存在的问题和挑战

目前,人工智能+健康医疗正在起步阶段,要保证AI在医疗健康领域应用的深入发展,仍有许多亟需解决的问题和挑战。

1.监管缺失

目前,国内尚未出台相关法律法规对AI进行监管,而作为AI的基础医疗大数据也没有完善的法律条文来规范,对数据的隐私保护、责任规范、安全性等没有明确的法律指示。AI在医疗健康领域应用的质量标准、准入体系、评估体系尚是空白,无法对AI数据和算法进行有效验证和评价,不利于监管,阻碍了AI产品在医疗健康领域的应用和发展。

2.数据质量

高质量的医疗数据对提升AI在医疗健康领域应用的准确性有着至关重要的作用,尽管我国医院的数据庞大,但大部分是非结构化数据,不能发挥出“大数据”挖掘的价值。由于疾病的复杂性,数据维度、特性各不相同,质量参差不齐,如将数据细分到每种疾病,可利用的样本量很少。同时, AI的深度学习需要使用大规模规范化数据进行训练,细微的数据误差会对AI发展产生负面影响。我国当前医院与医院、院内科系互不相连,没有统一标准的临床结构化病历报告,医生手写病历不规范,临床用药、检查等细节缺失,患者离开医院后失访率较高等各种原因,造成医疗数据错漏、数据质量低下。

3.伦理问题

AI产品做出的医疗决策是通过机器学习大量的医疗数据模拟医生做出的,大规模医疗数据在使用过程中会有泄露的风险,对个人隐私造成影响。决策是基于算法,而算法在分析数据过程中也会获得类似于人类偏见的思想,导致出现算法歧视的不良后果。算法歧视将带来一系列伦理问题,是AI不可回避的挑战。

4.医保支付

AI应用于医疗健康领域,最核心的问题是谁来买单,因此医保覆盖是一个绕不开的话题。如果由患者自费,那么市场就会缩小,AI产业无法向前发展,也很难证明AI在医疗领域的有效价值。目前,公立医院医保报销压力较大,将AI产品纳入医保,医保报销的资金压力将会激增。同时,互联网医疗由于其特殊的属性,还面临异地结算的难题。

5.人才匮乏

目前,既懂医疗又懂AI技术的复合型、战略型人才极其短缺,其中10年以上资深人才尤为缺乏。同时,医务人员对AI的接纳度不足,部分医务人员甚至对AI抱有抵触心理。AI技术的使用需要对医务人员进行专业化规范培训,在此背景下,建立完善的人才培养和人才引进机制是重中之重。

四、讨论与建议

1.加强行业指导和监管

政府部门应尽快出台人工智能相关法律法规,加强对人工智能的监管,通过强化监管,加强对数据的保护,防止数据泄露导致居民隐私受损,甚至危害国家安全。同时,还应建立AI在医疗健康领域应用的标准规范,保障AI产品的质量。此外,政府部门应明确AI在医疗健康领域的定位,明确医生不会被AI取代,AI只是帮助医生进行临床诊疗,方便患者获得高质量的医疗服务,医生仍对诊断结果负主要责任。政府部门应理性看待新一轮的AI浪潮,提升居民对AI的接纳度,积极引导居民、资本和相关机构按更加合理的速度和方向发展医疗AI。

2.加强核心技术人才培养

面对AI人才匮乏的严峻形势,政府要加强人工智能领域专业建设,培养AI算法和技术方面的优秀人才。推进“新工科”建设,形成“人工智能+X”复合专业培养新模式,推动AI领域国家级精品在线课程建设。同时,建立人工智能学院、研究院或交叉研究中心,引导高校通过增量支持和存量调整,加大对人工智能领域核心人才的培养力度。在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术人才。另外,要加强对医务人员使用AI的技能培训,保证AI产品能更好地服务于临床实践。

3.夯实数据基础

IBM公司用于辅助医生设计癌症治疗方案的AI产品沃森,由于使用的不是真实患者的数据训练沃森,沃森开出了不合适且危险的治疗方案。可见,数据的质量和数量是AI竞争的核心所在,目前互联网的基础体系已初步健全,但仍存在许多虚假数据,这与脱离统计模型的桎梏、用全数据即真实数据直接分析的大数据初衷相悖。因此,应打破医疗机构、政府部门的数据壁垒,建立数据共享机制,促进不同机构之间、地区之间的数据联网,形成真正的大数据。由于医疗健康数据种类繁多、标准不统一,应加快医疗数据电子化、标准化的进程,形成规范化AI数据集,夯实AI应用的数据基础。同时,加强信息隐私保护建设,研究数据脱敏技术,保障医疗数据可以实时、准确地进行流通,避免数据泄露的风险。

4.深度推进互联网应用

目前,我国东部地区医疗健康机构已具备互联网基础,但部分中西部地区尚有欠缺,而这些地区由于经济水平较低、医疗水平较差,对远程医疗、人工诊疗助手等AI需求强烈,建议国家有侧重地对中西部地区互联网建设给予政策倾斜,促进互联网应用的全面发展。加强基层医疗机构互联网应用,引导优质的医疗资源下沉至基层,实现资源共享,提高医疗服务水平,推动分级诊疗制度。

五、小结

人工智能的记忆力和计算能力远优于人脑,且可扩充脑容量、延伸脑功能、增强脑负荷,能够成为基层医生的智囊、三甲医院医生的秘书,弥补卫生人力资源不足。目前,我国人工智能尚处于起步阶段,仅具有计算智能,“人工智能+医疗健康”应用的领域将会越来越广,尤其适合社区,通过早发现、早诊断、早治疗,有针对性地进行人群健康干预,降低后续的医疗成本。在医院管理方面,AI可简化行政管理和临床医疗管理流程;在影像诊断领域,AI可快速阅读成像,进行分析和诊断;在医疗资源方面,AI能解决昂贵的剂量误差问题;在诊疗方面,AI可为特定病种初诊,进行辅助手术。总之,AI将在人类生命健康全周期中发挥更大的作用,但真正用于卫生健康的核心领域可能还需一个漫长的过程。

作者:金春林、何达,上海市卫生和健康发展研究中心(上海市医学科学技术情报研究所)。

有关人工智能的10个常见问题的答案

 人工智能是本世纪的主要话题之一。人工智能的功能和无限的潜力导致了许多有趣的对话和辩论。

[[380760]]

人工智能的兴起引起了AI的许多新关注。从热情高涨的爱好者开始学习有关AI的更多信息,到渴望探索该领域的有抱负的人,或者只是想批评它的其他人。但是,无论您所处的频谱是什么,您都会想到几个问题。

在本文中,我们期待回答有关人工智能的一些最常见问题。目的是回答这两个方面,包括所有实际问题,并阐明个人对此主题可能有的疑问。让我们简要地看一下今天我们将尝试解决的各种问题。 

[[380761]]

 

什么是人工智能?AI有多强大?人工智能会偷你的工作吗?人工智能可以接管世界吗?人工智能的优点是什么?人工智能的弊端是什么?我们离AGI有多近?人工智能有哪些应用?您需要成为天才才能开始学习AI吗?如何开始使用AI?

您可以随时跳过最想要回答的问题。但是,如果您不想错过任何特定要点,强烈建议您阅读整篇文章。现在,让我们期待回答有关AI的十个最常见的问题。

1.什么是人工智能?

人工智能是指开发的软件或特定模型可以自己执行复杂的任务而无需任何人的帮助。AI的更正式定义可以描述如下:

“能够执行通常需要人类智力的任务的计算机系统的理论和开发,例如视觉感知,语音识别,决策和语言之间的翻译。”

人工智能是一个庞大的研究领域,由多个子领域组成,包括机器学习,深度学习,神经网络,计算机视觉,自然语言处理等等。

人工智能被认为是未来的技术,它可以解决机器人,医学,物流和运输,金融等众多领域的众多问题,并提供更多的工业公用服务。

我强烈建议您从下面提供的链接中查看以下有关使人工智能神秘化的文章,以更好地了解这一领域。

2.AI有多强大?

为了回答这个问题,让我们简要地看一下人工智能的复杂历史,尤其是神经网络领域。人工智能的概念及其无限的能力在几十年前就已经确定。预计AI将是为现有问题提供解决方案的下一件大事。

随着时间的流逝,人们意识到人工智能并没有想象中那么简单。而且执行复杂的活动几乎是不可能的,尤其是在那段时期内的现有技术下。

最初,AI并没有像人们认为的那样成功,原因是缺少数据以及能够执行复杂排列和组合的能力的技术资源。

但是,在当前时代,我们得出的结论是,人工智能是创造革命性世界的潜在未来。人工智能甚至可以解决某些复杂的任务,相对而言,这可能会花费更多的时间。

这个问题的简单答案-“人工智能有多强大?”在现代时代,取决于研究人员从事程序计算的能力。开发人员的技能使AI模型足够好,可以尽快解决特别复杂的任务。

随着图形处理单元(GPU)的兴起,您可以帮助更快地计算AI模型并开发创新的东西。截至目前,人工智能已经非常强大,可以高效地解决分配给它的一系列任务。但是,它还没有达到顶峰,距离这一点还差几年。

3.人工智能会取代你的工作吗?

人工智能是当今增长最快的领域。据《财富》杂志统计,人工智能专家的招聘在过去四年中增长了74%。人工智能被视为当代最“热门”的工作。

对熟练的AI专家的需求以前所未有的速度增长。人工智能子领域(如机器学习,深度学习,计算机视觉,统计和自然语言处理)的专家的要求和职位空缺每天都在增加。

自然产生的问题是,人工智能最终会变得如此强大,以至于它有能力窃取我们所有的工作吗?

我认为,关于AI将来会窃取您的工作的说法几乎可以视为神话。在这种假设情况下,人工智能将取代所有人类活动并接管现代世界的大部分任务,因为它们不易出现人为错误,并且可以更高效地执行特定任务。

在引入机器的工业革命时期,也发生了类似的事情。显然,它没有窃取工作机会。相反,它为人类控制工作铺平了道路。人类是知识分子。因此,人工智能将简化人工工作的复杂性,但实际上并不会夺走您的工作!

4.人工智能可以接管世界吗?

科幻电影改变了一些人对人工智能的认识。他们用AI编程的图像机器人将变得如此强大,以至于他们最终将摧毁他们的创造者并摧毁整个世界,从而导致新的AI控制物种的发展。

一个引人入胜的故事情节,但在不久的将来随时发生,这是不真实的!

不可否认,人工智能已经走了很长一段路,并发展成为现代世界的独特功能。尽管AI取得了进步,但是大多数任务仍然是在工作或开发阶段的人工监督下完成的。

人工智能也仅限于编程完成的特定任务。一个有趣的例子是自动驾驶汽车,其中AI负责控制汽车并将其驾驶到用户选择的所需目的地。但是,AI仅限于精确地驾驶汽车,而没有其他外部任务。

因此,对于科幻电影中所显示的AI占领世界来说,距离这样的结果至少还有几十年的时间。但是,只是为了保持对此猜测的好奇心,将来最终有可能!尽管目前,这只是虚构的。

5.人工智能的优点是什么?

由于现代对人工智能的炒作是巨大的,因此它具有许多优点。

除了先前讨论的由AI创造的大量工作机会外,它还具有其他优点,例如完成循环或人类需要执行的重复性任务,而不会出现容易发生人为错误的缺点。

人工智能类似于计算机程序,不会疲倦,因此具有在特定任务上全天工作的能力,直到实现期望的结果。

与人类的速度相比,他们能够对各种问题进行更快的计算,并获得精确的结果。他们还拥有大量现实生活中的应用程序,以使我们的日常生活更简单。人工智能的优点是不言而喻的。

6.AI的弊端是什么?

从头开始构建人工智能模型有时可能很耗时且需要大量资源。如果您希望在没有GPU的普通计算机上开发深度学习模型,则替代方法是切换到云平台,因为该模型的构建过程在您的PC上不可持续。

除了消耗大量时间和资源外,在某些情况下,人工智能模型的部署也可能非常昂贵。而且,在特殊情况下AI模型发生故障的情况下的维护成本可能很烦人。

人工智能要考虑的另一个重大缺点是缺乏使用人工智能来完成更高级的知识任务。我们仅限于人工智能。ANI对于执行许多任务是有益且必不可少的,但它并不像AGI那样有效。这一点使我们想到了下一个问题。

7.我们离AGI有多近?

人工智能是一个有趣的概念。AGI是人工智能程序可以人类水平的完整性和智能性来计算,评估和处理多个任务的时候。

尽管进行了不断的研究和技术进步,人工智能领域仍未取得丰硕成果。有关此概念的实验和研究正在不断地进行评估,以期在不久的将来获得更好的结果。

根据专家的说法,人工智能尚未实现的主要原因是由于几乎不可能复制人脑。

尽管神经网络在执行分配给它们的特定复杂任务时表现出色,但不幸的是,它们并不能替代人脑。

8.人工智能有哪些应用?

自然界中的人工智能具有广泛的应用。这些包括您从一天开始到一天结束的旅程。通常,当您使用智能手机开始新的一天时,您会利用智能面部锁定或其他指纹AI措施的AI功能来解锁手机。

然后,您决定使用Google进行搜索,就会遇到自动完成和自动更正的AI功能,该功能利用序列技术进行序列建模。除智能手机外,人工智能还有大量其他应用程序,包括电子邮件垃圾邮件检测,聊天机器人,对象字符识别等。

人工智能还可以在许多其他领域中找到其应用,例如机器人技术,医学,物流与运输,金融等主题,以及行业中更多的公用事业服务。

9.您需要成为天才才能开始学习AI吗?

这个问题有一个简单的答案-“不,你不!”

人工智能是一个神话般的领域,包含许多壮观的子领域。如果您对以下主题提供的各种有趣概念特别感兴趣,那么完全值得投资您的宝贵时间来获得有关AI主题的更多知识。

虽然从头开始学习AI有时有时会很困难,但随着您继续投入更多时间学习与AI相关的众多概念,它会变得更加有趣和酷。您将接触到数学,编程,机器学习等方面的知识,这将扩展您的大量知识。

即使您发现人工智能领域不适合您的特定兴趣,只要您学习了有关AI众多主题的知识,这还是完全可以的。

使用人工智能弄湿手最好的部分是,您从以下学科获得的知识也可以部分或全部用于各种软件应用程序和工作。

10.如何开始使用AI?

好的!因此,到这一点,希望您对人工智能的各种功能着迷,并为寻找人工智能的理想起点感到兴奋。

人工智能是一个广阔而渺小的领域。但是,不用担心!您可以利用大量宝贵的资源和生产资料来产生最佳结果。仅通过分析和研究Internet上的资料,您就可以获得广泛的知识领域。

诸如StackOverflow,DataStackExchange和GitHub之类的网站是一些最受欢迎的网站,它们可提供深入的解决方案以及对您在运行或安装程序或相应代码块时遇到的问题或错误的解答。

我建议您查看本文结论部分提供的第一个链接,以详细了解“10个最好的免费网站,以了解有关数据科学和机器学习的更多信息。”在从资源中获得大量知识的同时,这应该是分析各种观点的一个很好的起点。

结论: 

在本文中,我们涵盖了有关人工智能的大多数常见问题,同时试图为众多AI主题提供可持续的信息和解决方案。我们还旨在澄清误解,并讨论有关AI的各种概念。

阅读本文之后,我希望所有的观众都能清楚地看到人工智能以及有关AI的众多主题。对AI的现实认识对于理解世界革命性未来将发生的变化具有重要意义。

因此,必不可少的是要了解复杂的细节并在人工智能方面具有丰富的知识,以避免错误的观念和其他误解。同样,了解AI并致力于确保AI的未来是一种令人愉快的经历。这是一个充满新机遇和发现的崭新领域。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇