取代医生人工智能医疗领域的最佳使用方式
从1956年达特茅斯会议至今,人工智能经过60余年的历练,,一步一步走过来,人工智能已经到了足够改变我们固有认知的时候,从象棋到围棋,人工智能从某些方面已经全面超过人类大脑。这也让很大一部分人产生了恐慌,中国科学院院士、中国人工智能大会主席谭铁牛曾表示方向把握的好人工智能是人类的天使,谭铁牛认为人工智能将成为智能化时代的关键使能技术,人工智能将对社会结构产生重大影响。
现在的人工智能正如谭铁牛院士所说即将腾飞,并且社会结构将会产生重大的影像,医疗和我们生活息息相关的领域,同时也是同样被人工智能所注视的领域,如今已经有越来越多的科研工作者和企业大力开展人工智能医疗领域的应用。
人工智能能(深度学习)否取代医生?
人工智能(深度学习)的核心不仅仅是算法,更是学习。在今天的大数据环境下,可以把程序放到数据里,让程序围着数据转,形成数据驱动的人工智能。借助大量医学数据和医学知识,人工智能已经学习到了医生的工作方式,这也给很多人带来了一个疑问,人工智能到底能不能取代医生呢?
对于患者来说,医生是几千年来流传下来的一个职业,我们身体出现问题第一件事情便会想到医生,医疗并不是冷冰冰的,不仅仅是生理上的需求,同样有情感上的寄托,从情感上说我们很难愿意相信。此外尽管人工智能准确率在某些领域已经能够媲美甚至超越人类医生,可是依然处于比较浅显的诊断阶段,面对癌症(肿瘤),外伤等情况,并不能进行更一步的治疗阶段,目前的人工智能仅仅可以看做是辅助医生的工具,可以提高医生的工作效率,并不能替代医生。
对于医院来说,人工智能(深度学习)可以提高工作效率,比如放射科,医学影像的识别,目前完全人工识别,拥有准确率,效率上的隐患,人工智能的特点是快速和准确,比如通过国内人工智能领先企业Airdoc的辅助诊断模型可以识别百万级甚至更高数量级的医学影像,但是因为医疗的严谨,依然需要医生给下达最后的诊断结果,医生同样不能被取代。
人工智能医疗从业同样不相信人工智能可以取代医生,国内人工智能领先企业Airdoc团队创始人张大磊曾表示:“Airdoc已经是临床医生做判断的有力助手,但疾病诊断还有很多社会人文因素。我们对自己的定位就是人工智能时代的听诊器、显微镜、血压计,只是医生的好工具,并不能替代医生,最终的诊断决策还是需要医生做出。医生诊疗病人已经几千年,不会因为一两个技术出现而变化”。
人工智能(深度学习)早期筛查疾病
对于医院和患者来说,医生都是至关重要的存在,国内的人工智能医疗团队Airdoc已经在在医学影像和多维数据分析(病历和社会关系等)两个领域展开了深入的研究。
多维度数据分析辅助诊断及疾病预测:通过对文本、影像等多模态海量数据的综合挖掘,发掘病人检查信息、既往病历和社会(自然)环境之间的联系,发现群体中的疾病模型及隐藏信息模型,建立预测分析模型,进一步探索疾病分布演化规律,确定危险因素,并对疾病流行趋势进行预测,为决策者实现疾病监测、制定卫生政策提供可续而依据。
医学影像识别:在过去几年,随着算法和硬件的升级和完善,人工智能在图像识别领域取得了巨大的突破,具备了医学影像精准识别的能力,比如在和人类最强大脑的跨年龄识别人脸PK,战胜了人类。病理切片图像里包含大量的信息,要在有限时间内看完任务内的所有片子,据悉,普通三甲医院的病理医生每天要看100到200张片子。Airdoc对大脑、心血管、肺部、肝脏和骨骼健康领域的研究和深度开发,已经研发出多个模型,通过Airdoc可以快速准确的识别医学影像。
人工智能(深度学习)在早期诊断的应用
人工智能在不知不觉中已经来到我们的生活当中。当你起床,浏览手机头条新闻,回复博文,为老妈订购毛衫,锁门,开车上班,一路听着收音机里的美妙音乐,都离不开人工智能,那么在医疗领域会在哪个领域展开呢?肿瘤和癌症困扰众多的人,人工智能的出现可能会改变目前的局面,通过人工智能辅助诊断模型,可以在早期筛查和诊断出肿瘤和癌症。
肺癌:肺癌是发病率和死亡率增长最快,对人群健康和生命威胁最大的恶性肿瘤之一。近50年来许多国家都报道肺癌的发病率和死亡率均明显增高,男性肺癌发病率和死亡率均占所有恶性肿瘤的第一位,女性发病率占第二位,死亡率占第二位。周围型肺癌症状出现晚且较轻,甚至无症状,常在体检时被发现。因此在早期发现肺癌的关乎一个患者的生命,人工智能辅助诊断系统可以通过分析胸部CT,研究、检测肺气肿的区域,从而发现早期筛查肺癌。
乳腺癌:女性乳腺是由皮肤、纤维组织、乳腺腺体和脂肪组成的,乳腺癌是发生在乳腺腺上皮组织的恶性肿瘤。乳腺癌中99%发生在女性,男性仅占1%。全球乳腺癌发病率自20世纪70年代末开始一直呈上升趋势。美国8名妇女一生中就会有1人患乳腺癌。中国不是乳腺癌的高发国家,但不宜乐观,自20世纪90年代全球乳腺癌死亡率呈现出下降趋势,主要因为在早期筛查方面的进展,人工智能超强的识别图像和筛查能力,可以更快更高效的在早期识别乳腺癌。
人工智能(深度学习)还可以在早期诊断出更多的癌症,比如恶性黑色素瘤,肺结节,动脉瘤等疾病,在不远的将来必定可以辅助医生诊断疾病,提高工作效率。
蔡江南:人工智能能否代替医生
搜狐健康文/中欧卫生管理与政策研究中心主任蔡江南来源/江南微微语
医疗数据推动医学进步
最近一段时间,医疗大数据和人工智能成为非常热门的话题和领域。人类基因组、微生物组、互联网、物联网、IBM的人工智能等新的科技进展,都推动了医疗领域围绕信息化的技术创新热潮。
信息数据一直是医疗领域的最重要的短板和核心。信息难以获得、信息不确定、信息不对称,都给医疗领域带来了很大的影响。医学从一个主要依靠直觉、经验、症状来治疗的领域,随着数据的积累、扩大,慢慢发现了一些模式,从直觉医学转化为实证医学。当大数据开始出现后,当我们可以精确诊断疾病的原因,从而真正做到对症下药后,我们便达到了精准医学的阶段。因此,信息化和数据的规模和质量,是推动医学进步的重要力量。
大数据首先是指数据的数量巨大,而且甚至是研究某个问题所涉及到的整个数据集群,而不只是其中的一个样本。我们知道,当数据样本足够大时,数据本身的一些误差变得不那么重要。当然,这并不意味着数据本身的质量不再重要。如果数据本身的质量很差,大数据同样无法让我们接近事实的真相。
医疗信息的电子化有助于将不规范、非结构化的数据,转为规范和结构化的数据,从而提高医疗数据的质量。由于医生工作繁忙,医疗数据编码应用的不普及,缺乏医疗数据统一的标准和规范,这些问题对于提高我国医疗数据的质量都是很大的挑战。
推动我国医疗数据在各个部门和机构之间的连通,是提高医疗数据质量的突破点。连通需要数据标准的统一、数据的公开、以及保证数据的安全,这些都需要政府、行业协会、社会第三方机构的参与。
人工智能在辅助诊断上大有用武之地
诊断和治疗是医学的两个重要环节,而诊断又是治疗的基础和前提。诊断的本质就是区分,区别不同的疾病是认识疾病原因的基础。当我们拥有足够有质量的医疗数据后,就具备了做出正确诊断的条件,而人工智能的深度学习就可以发挥作用。所谓深度学习就是从大数据中发现规律,归纳总结出带有规律性的差异,从而进行诊断。
人工智能与人脑相比的优越性在于,可以更高效地处理海量数据,迅速找到一些特征和规律。在图像识别上,人工智能的优越性表现的特别突出。
最典型的例子是,美国斯坦福兼职教授Thrun从皮肤癌入手,用一个庞大的图像库来训练机器识别恶性肿瘤。2015年6月开始测试这个深度学习系统。使用经皮肤病专家诊断的14000张图像,来看这个深度学习系统是否能够准确地将图像分为3个诊断类别:良性病变、恶性病变和非癌生长。结果这个系统的正确率为70%,而两位皮肤病学家的正确率为66%。人工智能在影像、病理的诊断上将有很大的用武之地。
人工智能还可以利用庞大的医学知识库和数据库,建立医生的临床辅助决策系统,帮助医生进行诊断。
例如,广州市妇女儿童医疗中心,自主开发了一款儿科发热相关的疾病智能诊疗助手。利用大量高质量病历数据的优势,以真实的海量临床电子病历大数据为基础,融合临床指南、专家共识和医学文献,结合分析和深度学习技术建立多维度诊疗模型,对病历进行大量标注工作,通过人工智能提供初步的诊断提示,提高患者和医生的寻医问诊效率。项目自去年8月份上线以来,随着逐渐融入医生的工作流程,其准确率也在逐渐提高。对200份病历的数据分析显示,这个系统目前大约可以达到中级医生的水平。
分级诊疗是一种“搅局式创新”
哈佛商学院著名的创新理论教授克里斯坦,建立了一套医疗创新的理论,我们通常将DisruptiveInnovation翻译成“颠覆式创新”。但是这与作者的原意不尽相同,在中文里“颠覆”有两层含义,一是“取代”和“推翻”的意思,二是“突破性”或“天翻地覆”的变化。
其实,英文中的Disruptive并没有这两层含义。不是推翻或取代,而是一种“并存”和“共生”,只是用一种更加“简单”和“便宜”的创新,与原来复杂和昂贵的技术或商业模式来较量。这种创新不一定是一种突破性的改变,只要更简单更便宜即可。这种创新是用简易的技术和商业模式,来挑战原来高大上的技术和商业模式。因此,我觉得使用“搅局”这个词更接近英文的意思。对于原来持有高大上的那一方来说,不那么高大上的创新就是一种搅局。
大家会顾虑“搅局”这个词的贬义。与英文相比,中文的用词往往有褒义和贬义的区分,英文用词比较中性。但是,一个词的意义也会随着时代和环境发生变化,一些原来贬义的词可以变得褒义。例如,“颠覆”这个词在政治语境里往往是贬义的,用于敌对势力的活动。“革命”这个词,也曾经有杀头、推翻政权的贬义。这两个词都变成了褒义用词。所以,搅局这个词,如果我们在一定场合下使用,只要定义清楚,也可以避免误解。
分级诊断就是将大量常见病、多发病、慢性病的病人,从三级医疗机构中、从专家手中,转移到基层医疗机构的全科医生手中。相对于大医院和专家来说,基层全科医疗就是一种更为简单和便宜的“搅局式创新”,分级诊疗就是鼓励搅局式创新。
而大数据和人工智能的推广和普及,本身就是一种搅局式创新,这些技术创新将有助于推动原来需要专家才能做到的诊断,让基层医生借助于智能辅助系统,就能进行初步的诊断工作。因此,大数据和人工智能将会推动分级诊疗的进行。
分级诊断的推进主要还需要依靠基层医生水平的提高,以及医生收入、就业制度的改革。但是,新的医疗技术创新可以在一定程度上促进分级诊疗的进行。因此,在我国医改深化的过程中,创新和政策的变化可以互相促进。
AI时代,医生会被人工智能算法取代吗
来源:药明康德AI
我们正在经历新技术快速扩张的时代,它在融合信息世界和实体生物世界。AI、电子健康记录和大数据、远程医疗、家用监控的“可穿戴设备”和虚拟/增强现实这些新科技正在塑造着未来,让医疗保健服务变得更有效、更准确、且更具可持续性。来自DeepMind和IBM Watson等行业领导者已经在英美的医疗保健领域进行AI测试。机器在很多方面都具有优势,让一些临床医生担心AI会取代医生的角色,但这种想法低估了医生对于病人和社会的作用和价值。AI的确可能给医疗行业带来巨变,但让一名医生成为好医生的核心价值观是不会改变的。
在人工智能时代,医生将需要放弃旧角色,并找到最适合他们的地方,发挥最重要的影响。AI的中心是它的算法,大家关注的是新算法在哪些地方超越了人类,但是我们也应该同时关注另外一个方面:人类医生在人工智能的时代扮演了哪些新角色呢?
图片来源:123RF医生作为人类-AI诊断过程的一部分
进行临床诊断时,需要医生来判断并分析患者的症状、体征和体检结果。这种判断容易受到医生的模糊记忆,知识缺口和认知偏见的影响。而AI则有潜力对最新最全的数据和医学证据进行客观评估,并且基于这些数据来提供高度准确的诊断结果和推荐疗法。
但是,AI需要先接受准确的数据输入才能产生正确的诊断,而患者的症状体验并不是总能用完美的医学术语来描述,并且,了解患者的完整病史仍然是完成临床诊断的关键技能。那些善于倾听,能让患者信任的医生更有可能发觉患者的言外之音,获取更多的数据,并采取正确的措施来帮助患者。
患者也有可能报告不准确或不相关的信息,包括夸张甚至谎言。人类医生比AI更容易识别这些内容。在人类-AI诊断界面里,人类医生将有一个重要的角色,即作为“人类”来理解患者的疾病,并将准确数据输入计算机。
但对于患者而言,面对诊断界面的根本问题可能不是“这台机器能够理解我吗”,而是“我想要一台机器来了解我吗”。在将来,AI几乎肯定能够模拟移情并评估患者叙述的真实性。聊天机器人正在兴起,而且AI解释肢体语言的技术正在进步。但患者是否会愿意分享信息给机器?他们是否愿意让一台机器来告诉他们患上了癌症,不管此时机器的情绪模拟的多么恰当?
有效沟通需要医生仔细评估患者的希望、恐惧和期待值。其中大部分都是非言语的。一个熟练的医生能读出患者未诉诸于口的信息,这些沟通的渠道是种本能,并会影响医生的诊治行为,而医生甚至通常没有意识到。这种人类互动非常复杂,无法通过算法复制。
图片来源:123RF有时AI算法可能会由于缺乏适当的数据而失败。比如对于罕见病,可能用于训练的数据不足以支持人工智能。这个时代新医生的重要技能之一,将是了解AI的极限以及如何在这些情况下做出诊断决定。同样,在患者身具多种疾病,需要多种治疗的情况下,决策会变得更加复杂微妙,因为一些医疗决定可能会影响另一个病情,AI在这方面的取舍可能会不如人类医生。另一个挑战将是等效诊断的情况,即AI提出多个诊断都具有相似的可能性。人类医生需要对这种不确定性加以判断,并与病人沟通。
急诊室中的团队领导者
目前的卫生系统分诊还依赖于人类判断,有时根据规则,有时根据知识和经验。规则通常是基于少数变量,所以会比较生硬。
采用AI进行分诊,可以基于更多的变量,从而达到更快、更准确、更敏感的效果。变量包括临床测量结果和通过可穿戴仪器或植入技术获得的实时跟踪。分诊不再需要简单地划分为粗疏的类别(比如表示病情危险级的红色,琥珀色和绿色),而是可以根据患者风险和对于快速干预的需求进行不断调整。连续数据流可以早期触发紧急服务,让无人驾驶的救护车装载着人类急救员,在患者意识到之前就达到现场。
医生在急诊室的作用是团队领导者、知识处理者和传播者。协调迅速发展的诊断、治疗途径,并在可能的情况下与患者讨论治疗的潜在利益和风险,这将成为治疗的关键。这些行为不一定必须是医生来完成,但确实需要一个人类。
让医生去处理复杂和异常情况
许多温和的疾病几乎完全可以由AI接手处理。在诊断确定,并且有完善、有效和安全的治疗方法时,可能不必有人类医生的参与。
图片来源:123RF如果AI能处理大多数的常规低风险疾病,那么医生将有更多的时间专注于那些需要丰富经验应对的复杂患者。这些患者可能具有更复杂的情况(比如罕见疾病或多发病),或病情诊断的不确定性较大。
复杂的也可能是患者的实际情况,而不是病情。对于那些有学习困难、痴呆症,成瘾等情况的患者,可能需要比其他病人更多的人力支持,因此,AI能为医生省下时间来帮助这些患者。
医生作为患者的教育者和顾问
长久以来,医生一直是医疗知识的看门人,为患者做出医疗决定。在AI时代,患者和医生都能接触到医学知识。但人类非常不擅长理解概率和评估风险,特别是当它与自己或亲友的健康有关时。因此,对大多数患者而言,医生有个非常重要的任务是了解风险,并与患者交流沟通,内容包括诊断可靠程度,干预的安全性或疗效等等。医生也需要能够解释AI制定的治疗计划。这并不要求医生深入了解机器学习,正如使用磁共振成像扫描不需要详尽了解机械知识那样。让医生解释AI的治疗计划,能够结合AI深厚的计算能力,和医生对医学的理解和跟患者交流的技能,将信息有效地传递给患者。
图片来源:Pixabay医生作为患者的代言人
医生都在医疗保健的前线身经百战,每天都听取患者的意见,经年累月地照顾同一位患者,并深刻了解医学的可能性和局限性。从这个角度来看,医生能够倾听并回应个别患者以及患者整体的需求。当有利益冲突时——比如说要在患者之间分配有限的医疗资源——这种代言作用尤为重要。这些问题可能很复杂,而且很易引发激动情绪,但至少是合理透明的。不一定每个人都会同意最终决定,但通往该决定的过程经得起仔细审查。
图片来源:123RF在AI时代,有种风险是利益相关者可以在算法中嵌入“隐藏”值,达到影响患者护理的目的。正如PaulHodgkin博士所说:“发生价值冲突时会如何?一家资助机器学习系统的医药公司可能希望增加销售额,而医疗保健系统可能希望降低成本,同时患者可能优先考虑安全性。”所有人——包括患者、公众和医生——都需要参与这个过程并让“规则”算法负责。医生所能做出的关键贡献将是他们对两个领域的理解:“现实世界”中患者的经历,以及医生对于医学的能力和风险的理解。
医生在临终护理的场合
科幻大师阿西莫夫提出的机器人/AI守则中,最基本的原则是“不伤害人类或通过不作为让人类受到伤害。”这个原则在大多数情况下有效,但在临终决定的情况下可能会失败。人类医生能够理解,一些决定不仅仅是基于生存的逻辑问题。尽管阿西莫夫定律与希波克拉底誓言有相似性,但人类能够对其进行更复杂的解读,包括生命不仅仅在于长短,还应该考虑生活质量。AI在这方面的局限很难通过简单地插入一个“生活质量变化-剩余生命”的阈值来克服。一名患有晚期疾病的患者可能选择姑息治疗,而另一个可能会选择进一步化疗。患者做出的决定可以基于许多因素,这些因素可以提供给AI算法来分析,但最终决定仍需要患者独自完成。这类决策必须始终处于算法之外。
总结
AI的出现将是医疗保健的一场革命,因此医生的角色也需要发展。本文突出了特别的机遇或挑战。在AI时代成为一名优秀的医生,需要重新思考技能组合以及更大的心态转变。医学院和研究生培训也要计划参与这场革命。新医生要有能力处理AI构建的新世界。在这个新世界中,AI会无缝记录每个患者情况和每个临床报道,将其呈现为输入数据,并产生疾病的诊断、治疗功效、不良事件和死亡的概率。在大多数情况下,AI将比人类更快、更可靠、更便宜地做到这一点。有些人会将此视为威胁,其他人则视其为机会。
这篇文章不是关于AI,而是关于新医生以及他们如何在支持AI的医疗保健系统中找到自己的位置。这个时代需要的医生是人类与AI相结合后的知识处理者和共情传播者。现在是时候开始为此准备了。
人工智能会取代医生吗
从目前的应用来看,人工智能应用比较好的领域是皮肤科、病理科和影像科。
上海市第一妇婴保健院院长
这个问题有两种答案:
看好人工智能的人会说YES,因为用不了几年人工智能真的会取代那些平庸的医生,取代那些Belowaverage(低于平均水平)的医生,但是暂时不会取代那些Aboveaverage(高于平均水平)的医生。
不看好人工智能的保守医生会说NO,TA真的是发自内心的、天真地以为人工智能不会取代任何医生。其实未来最需要AI的是Belowaverage的医生,也是最不理解和最不接受人工智能的人。
最近,人工智能很火,不仅仅是在投资界很火,在学术界也很火。
好的人工智能公司很容易融到钱,连不咋地的人工智能公司也拿到钱了,这也难怪一些临床医生说有些AI项目纯粹是圈钱和烧钱,将来肯定进不了临床。
但是,好的AI项目还是挺靠谱的,最近《自然》杂志连续发了好几篇人工智能完胜各个学科医生的文章。
看看这些夺人眼球的文章题目,你就会明白了。
近日,来自谷歌、谷歌大脑与Verily公司的科学家,开发出了一款能用来诊断乳腺癌的人工智能,它的表现甚至超过了专业的病理学家。
内行人都知道,病理诊断的准确性严重依赖于病理医生的水平,即便是对于同一名病人,不同病理学家给出的诊断也往往会有很大不同:一篇2015年的论文发现,不同病理学家对乳腺癌诊断的一致率只有75.3%。在某些不典型的乳腺癌中,诊断的一致率竟下降到了48%,不足一半。
看了这种现状你害怕不?而且在中国我们还缺很多很多的病理科医生。
病理科医生必须经过数年甚至十几年的训练才能掌握足够的经验,成为一名合格的病理学家,要成为优秀的病理学家更是难上加难,在医疗资源不足的地区,想要得到诊断,都是一种奢望。
为了解决病理诊断的瓶颈,谷歌和Verily的科学家们做了一个尝试。他们将单张病理切片的图像分割成了数万至数十万个128x128像素的小区域,每个小区域内可能含有数个肿瘤细胞。随后,他们提供了许多肿瘤组织与正常组织的病理切片,供人工智能学习。最终,这款人工智能掌握了一项像素级的技巧——它能分辨出单个小区域内被标注为“肿瘤”的像素,从而将整个小区域标注为“肿瘤区”,从而有效地将肿瘤组织与健康组织区分开来。
学习完毕后,这款人工智能迎来了实战。科学家们邀请了一位病理学家,并让他与人工智能进行一场比赛。这名病理学家花了整整30个小时,仔细分析了130张切片,并给出了他的诊断结果。在随后基于灵敏度(找到了多少正确的肿瘤)和假阳性(将多少正常组织诊断为肿瘤)的评分中,这名病理学家的准确率为73.3%。人工智能交出的答卷是88.5%,完胜人类。
2017年1月10日,美国FDA首次批准了一款心脏核磁共振影像人工智能分析软件CardioDL,这款软件将深度学习用于医学图像分析,并为传统的心脏MRI扫描影像数据,提供自动心室分割分析,这一步骤与传统上放射科医生需要手动完成的结果一样精准。
这一基于深度学习的人工智能医学影像分析系统,已经进行了数以千计的心脏案例的数据验证,该算法产生的结果与经验丰富的临床医生分析结果不相上下。
据悉,这款人工智能心脏MRI医学影像分析系统,不但得到了FDA510(k)的批准,还得到了欧洲的CE认证和批准,这标志着该软件将被允许应用于临床。
近期,在北卡罗来纳大学(UNC)教堂山分校精神病学家HeatherHazlett的带领下,人工智能在疾病诊断领域又下一城。她们开发的深度学习算法,在预测2岁前的自闭症高危儿童(有个自闭症哥哥或者姐姐)是否会在2岁之后被诊断为自闭症上,以88%的准确度远超准确度只有50%的传统行为问卷调查法(Charman,2014)。
人工智能在疾病诊断领域再次战胜人类。
2016年8月16日,《自然·通讯》发表了一份斯坦福大学医学院研究人员的研究:计算机可被培训在评估肺癌组织切片时,比病理学家更精确。
研究人员使用了从腺癌、鳞状细胞癌患者获得肺癌基因图谱的2186张图像。数据库还包含了每例肿瘤的级别、期别以及每例患者在诊断后的存活时间信息。
然后,研究人员使用这些图像来训练计算机软件程序,以确定更多肉眼所不能观察到的癌症特异性特征——近10000种个性特质vs几百种病理学家通常使用的评估特征。这些特征不仅包括了肿瘤细胞的大小及形状,也包括了细胞核的形状与质地以及与相邻肿瘤细胞的空间关系。
斯坦福大学遗传学教授Snyder博士说:“事后看来,一切都在情理之中。计算机能够比人类更加准确、快速地在数以千计的样本中,多次评估甚至是微小的差异。”
2月2日,斯坦福大学研究人员采用深度卷积神经网络,通过大量训练发展出模式识别的AI系统,使计算机学会分析图片并诊断疾病。
训练计算机的数据库由129450张皮肤病变图片和对应的文字描述组成,涵盖了2032种皮肤病。而诊断的“参考答案”则由皮肤病专家提供,他们依靠的是非侵入性图像分析和组织活检。
之后,计算机迎来了“毕业考试”。研究者向受训的计算机和21名执业医师分别提供了一批训练数据集中,没有出现过皮肤病变的图片,这些图片都由组织活检确定了对应的病症。诊断比赛的结果是计算机的准确率和人类医生差不多,有时候还胜过人类医生。
人工智能会如何取代医生?
人工智能不是万能的,但是它的确会在某些学科和领域超过人类的能力,取代医生的工作甚至是完全取代医生。
如果用于诊断疾病,判断预后的数据或图像可标准化、量化、结构化的话,基本上可用人工智能来完成。在确立算法后,可让机器不断地学习和积累,逐步完善,最终战胜人类。
从目前的应用来看,人工智能应用比较好的领域是皮肤科、病理科和影像科。
皮肤科在台湾和一些欧美国家,都是医学院学生在毕业的时候最喜欢选择的科室,因为工作相对轻松,收入颇丰,而且还不用值夜班。它也是在线问诊收入最高的科室。
很遗憾,人工智能要来了,而且很有可能会取代很多人的工作,假以时日,皮肤科的人工智能医生将会取代很多人的工作。
目前,中国最缺的医生是病理科,很遗憾,届时病理科和影像科医生的工作也有可能被人工智能抢走,而且它们的水平将会高于大多数普通医生。
再看看我从事的妇产科,有很多常规工作将来都可以用人工智能来完成,根本不需要那么多的医生了。
宫颈癌的筛查:医生收集宫颈脱落细胞以后,机器可以自动制片,自动判别是否有癌细胞。在宫颈细胞良恶性方面,至少80-90%的病理医生的工作可以被人工智能取代。
产科超声:在胎儿畸形的筛查与诊断方面,北美的普遍做法是由一般的Sonographer超声技师来按照标准的切面截图保留,然后由MFM母胎医学专家审读、写报告。理论上讲,这些超声截面图的审读是可以由人工智能来完成的,原理类似于人工智能对CT和MRI片子的解读和判断。
胎心监护:胎心监护结果的解读和判断也完全可以由人工智能完成。
机器比人可靠,更精准,而且它还不会疲劳,随着算法的不断进步和数据的不断积累,人工智能的水平会越来越高,会从现在的帮助人类做判断,演变到代替人类做判断。
这个趋势是不可逆的,也不可抵挡,FDA也挡不住。将来会有一个BreakingPoint引爆点,过了这个引爆点以后,会出现医生常规工作量断崖式的下跌。
未来的情景将会是:Aboveaverage的医生由AI做助理,Belowaverage的医生是做AI的助理。
当然,那些非标准化、充满不确定性以及人工操作的临床工作,还是人工智能无法替代的。
《知识分子》是由饶毅、鲁白、谢宇三位学者创办的移动新媒体平台,致力于关注科学、人文、思想
[责任编辑:宋雅娟]
为什么人工智能还不能取代医生这里有 5 个理由
选择合适的数据是正确诊断的第一步,AI输在了起跑线上。
2
AI无法诊断「没见过」的疾病
AI的诊断效果除了算法的影响,很大程度上还取决于用于training的数据。
我们暂且抛开大量training素材的可及性和伦理问题,相信这些问题的解决只是时间问题。
最重要的一点是AI无法诊断training中不包含的疾病类型,或者新的关联类型。
比如,发病率比较低的疾病,这些疾病的档案本来就很少,training素材中可能没有包含或者只有少数几例。那么,AI在实际诊断中就会发生误判。
再比如,有些病征可能过去一直只跟疾病A相关,但最近出现这些病征跟疾病B相关的情况越来越多。这时,目前的AI依然只会按照过去学习到的规则来诊断。
AI也许速度很快效率很高,但她非常死板,这绝不是一名优秀的医生应该具备的素质。
不过,随着技术发展和资本推动,中国的医疗AI研究必然会打破目前各种疾病诊断领域独自开发的现状,这也让AI识别和选择正确的数据成为可能。
3
停留在表面的AI诊断
AI的诊断原理跟医生有本质区别,AI经常只是停留在表面,而医生能够深入本质。
医生的诊断并不是基于表面的图形,图形只是疾病的一种表象。但是,图像识别AI是完完全全地基于这些表象,因为她没有办法理性思考。
真实的医疗过程中存在大量表面上很相似,但实质上大相径庭的案例,这就超出了AI的能力范围。但可怕的是AI并不知道自己的能力边界,她还是会机械地按照程序员写好的代码进行计算,并给出错误的结果。
在Bejnordietal.的研究中我们看到,人类医生只要给予合理的时间,诊断的准确率和AI不相上下,但在医疗资源紧张、医生负荷沉重的情况下(比如2小时鉴定129张病理切片)会有更高比例的病例被误判为阴性,但不管时间是否充裕,人类医生诊断的假阳性率始终是非常低的。而AI正好相反,虽然诊断的准确率比较理想,但假阳性率较高,并且算法容许更多假阳性时灵敏度更好[1]。在Litjensetal.的报道中,深度学习算法的灵敏度达到了100%,但假阳性率也高达40%[5]。
随便举个例子,比如,我上传给花卉识别AI一张长筒花的照片,她其实并不认识长筒花,但因为长筒花跟非洲凌霄的花有些类似,所以她很自信地给出非洲凌霄的诊断结果。
长筒花被错误地识别成非洲凌霄
真的放心让专注表象十年的AI给你看病吗?
4
AI无法根据实际调整诊疗方案
AI在可以标准化或量化的数据处理中强于人类,但医生看病并不仅仅是诊断这么简单,医生的目的是要把病人治好。
为了达到这个目的,医生需要根据患者病情的发展,并发症的情况,身体情况,经济条件给出最优的治疗方案,这个复杂的过程需要的不仅是专业知识,还有经验和智慧[6]。
你也许会说Alphago和Zero不是很有智慧吗?那是因为围棋只是一个游戏,规则清晰,地盘有限,计算机可以左右手互搏赚取经验。在真实世界里,医疗行业日新月异,影响医疗结果的因素众多,受到新技术、新政策、疾病的分布变化等等因素的影响,有那么多「小白鼠」供AI练习吗?我们甚至没有一个能够模拟人体在各种疾病和治疗下会有如何改变的模拟器。
AI能否在实际医疗场景中的提高医疗质量,还有待更严谨的前瞻性研究的证实。
5
AI无法自己发现新的方法
最后一点也最为重要:医学不是一成不变的科学,医学每天都在进步,每天都在面临新的挑战,诊断标准与诊疗方案也需要与时俱进。而AI不能自己给自己建立新的诊断标准,更不能从新的病例中发现新的方法。
AI的强项在于数据的收集和分析,在有足够多的医疗样本后,AI也许会对诊疗指南有自己的看法。
但是每个医生都知道,新术式、新治疗方案、新药使用和尝试,甚至是面对新的疾病,都是临床实际工作中的一部分。在目前,推进医学进步的重任唯有人类医生可以担当。
结束语
AI,愿你在这盛世能成为一名合格的仆从,帮助医生完成一些简单重复的劳动,让我们的医生不再那么辛苦,可以有更多的时间更充沛的精力来做重要的事情、帮助更多的患者!(责任编辑:刘冬宸)
本文作者王婧,剑桥大学博士后,丁香园大数据部高级分析师。
参考文献:
1.EhteshamiBejnordiB,VetaM,vanDiestPJ,etal;CAMELYON16Consortium.Diagnosticassessmentofdeeplearningalgorithmsfordetectionoflymphnodemetastasesinwomenwithbreastcancer.JAMA.2017;318(22):2199-2210.
2.EstevaA,KuprelB,NovoaRA,etal.Dermatologist-levelclassificationofskincancerwithdeepneuralnetworks.Nature.2017;542(7639):115-118.
3.GulshanV,PengL,CoramM,etal.Developmentandvalidationofadeeplearningalgorithmfordetectionofdiabeticretinopathyinretinalfundusphotographs.JAMA.2016;316(22):2402-2410.
4.GoldenJA.DeepLearningAlgorithmsforDetectionofLymphNodeMetastasesFromBreastCancer.JAMA.2017;318(22):2184-2186.
5.LitjensG,SánchezCI,TimofeevaN,etal.Deeplearningasatoolforincreasedaccuracyandefficiencyofhistopathologicaldiagnosis.SciRep.2016;6:26286.
6.ChenJH,AschSM.MachineLearningandPredictioninMedicine-BeyondthePeakofInflatedExpectations.NEnglJMed.2017Jun29;376(26):2507-2509.返回搜狐,查看更多
人工智能在医疗健康领域的应用及挑战
一、人工智能概述
1.人工智能发展历程
人工智能(ArtificialIntelligence,AI)是对人的意识和思维过程进行模拟并系统应用的一门新兴科学,其发展经历了三次浪潮。1956年,美国Dartmouth大学举行的聚会是人工智能正式诞生的标志,这一时期使用机械化思考方式和逻辑学知识来解决问题,但对复杂的问题束手无策;20世纪80年代,Hopfield神经网络和BT训练算法的提出,使AI再次兴起,出现了语音识别、翻译等计划,但迟迟未进入人们的生活之中;2006年,Hinton提出深度学习技术,并随着互联网的普及和应用,AI在各个领域迅速得到发展和应用。
2.人工智能的基础和要求
人工智能的核心是算法,基础条件是数据及计算能力。因此,可以认为医疗与人工智能结合的关键要素是“算法+有效数据+计算能力”。先进算法能提升数据使用效率。在医疗领域,有效的医疗大数据是人工智能应用的基础,医疗数据的有效性包括三个方面:电子化程度、标准化程度以及共享机制。电子化程度强调数据和病历的供给量;标准化程度强调数据之间的可比性和通用型;共享机制强调数据获取渠道的便利性和合法性。随着互联网的普及,我国各级医疗机构、健康管理机构、行政机构、居民都已普遍了解互联网并链接互联网,给大数据的实现奠定了基础。
3.医疗健康领域对人工智能的需求
近年来,借助人工智能技术,开展智慧医疗成为医疗领域的热点。2017年7月,国务院印发的《新一代人工智能发展规划》提出,要建立新一代人工智能基础理论体系和关键共性技术体系,加快培养聚集人工智能高端人才。同年12月,工信部印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》,对医疗人工智能的发展做出了详细的规划,提出要着重在医疗影像辅助诊断系统等领域率先取得突破。2018年,国务院办公厅印发《关于促进“互联网+医疗健康”发展的意见》,明确支持“互联网+医疗保健”的发展,允许依托医疗机构发展互联网医院。事实上,除了医疗影像辅助诊断对AI具有巨大的需求外,辅助诊断、辅助手术、辅助护理、辅助检查、辅助医院管理、辅助挂号、辅助减少计量误差、健康管理、药品研发等医疗健康领域对AI技术都有强大需求。
随着我国人口老龄化程度不断加深,慢性病、癌症发病率逐年上升,以人力为主的各类卫生资源配置不足、分布不均的困境越发突显,AI作为一门综合性极强的交叉学科,将在医疗领域内得到越来越多的应用,并将成为影响医疗行业发展的重要科技手段。
二、医疗人工智能应用现状
目前,人工智能在医疗健康领域已得到了初步的应用,主要集中在辅助影像和病理诊断、辅助护理、辅助随访、基层医生助手、医院智能管理及辅助健康管理等方面。
1.辅助影像和病理诊断
医学影像及病理切片作为结构化数据,是AI应用的绝佳场所。2015年起举办的CAMELYON16挑战赛,比较AI和病理医生在检测乳腺癌患者淋巴结转移病理切片中转移灶的潜力,结果显示AI在诊断模拟中的表现优于病理医师。目前,人工智能辅助影像和病理诊断在国内发展迅速,2006年我国首家独立临床病理诊断专业机构——上海复旦临床病理诊断中心成立,启用数字病理远程会诊平台,免去患者来回奔波。2015年沸腾医疗有限公司以“E诊断医学影像服务平台”为核心,通过“E诊断”医学影像技术专业输出及专业精准的远程医学影像诊疗合作,实现了远程医学影像信息交互的目标。
2.辅助护理
我国台湾医院应用AI产生护理诊断,AI建议的诊断与护士建议的诊断一致百分比高达87%。国外AI已普遍运用于人们的日常生活护理中,日本研究机构Riken开发的机器人Robear,能将病人从床上抬起,帮助行动不便的病人行走、站立等;应用AI开发的机器人能为老年及瘫痪患者提供喂饭、日常照护等服务。澳大利亚养老院用机器人做护工,通过给机器人输入程序,使其可以与老年人一对一交流,消减老年人的苦闷。AI在护理领域的应用,极大减轻了护理人员负担,为患者提供了温暖且有力的服务,是应对老龄化社会的有力帮助。
3.辅助随访
随访是医院常规工作的重要组成部分,然而目前的卫生人力无法满足所有患者的随访需求。AI的发展打破了长期随访在时间和空间上的限制。2017年,海宁市中心医院首次应用AI智能随访助手,采用声纹预测思维算法,语言识别准确率高达97.5%。2018年,上海交通大学医学院附属仁济医院东院日间手术病房正式上线AI随访助手,随访助手可以根据问题模板模拟医生进行电话随访,主要询问患者出院后是否发生呕吐、疼痛、发热、伤口渗血感染等不良情况。随访助手的上线不仅大大提高了随访效率,还确保了随访信息采集的全覆盖及准确性。同时,随访助手可以根据不同的手术种类,制订个性化随访计划,通过终端自动拨打患者电话,模拟人声与患者进行术后随访沟通,并有效采集患者回答的信息。随访结束后,医务人员能清楚地了解每位患者的术后情况。
4.基层医生助手
基层医院在实现“健康中国”战略中有着举足轻重的作用,但目前其服务能力难以满足广大群众的基本需求。AI通过学习海量的专家经验和医学知识,建立深度神经网络,并在临床中不断完善,协助基层医生给群众提供高质量的服务。2017年,科大讯飞和清华大学联合研发的“智医助理”以超过合格线96分的成绩成为全球第一个通过国家执业医师资格考试综合笔试测评的AI机器人,可以辅助基层医生提升诊疗质量和效率。2017年9月,国家在安徽省旌德县首次开展全科医生机器人辅助基层医疗试点,深受基层群众欢迎。
5.医院智能管理
人工智能技术在医院的应用,能提高医院为患者提供正确治疗方案的精准性,减少了患者的不必要支出,并且能合理地为患者安排治疗计划。澳门仁伯爵综合医院应用AI技术,在电子处方系统内设置安全警示,确保用药规范,防止滥用抗生素等药物。美国IBM公司应用机器学习方法,自动读取患者电子病历相关信息,得出辅助诊断信息,实现医疗辅助诊断。
6.辅助健康管理
传统的健康管理技术在信息的获取、处理和应用上相对落后,将AI应用于健康管理,通过对健康数据实时采集、分析和处理,评估疾病风险,给出个性化、精准化的基本管理方案和后续治疗方案,能有效降低疾病发病率和患病率。健康管理机构可以通过手机APP或智能可穿戴设备,检测用户的血压、血糖、心率等指标,进行慢性病管理。国外Welltok公司利用“CaféWell健康优化平台”,管理用户健康,包括压力管理、营养控制以及糖尿病护理等,并在用户保持健康生活习惯时给予奖励。同时,为用户提供更灵活、全方位的健康促进方案,包括阶段性临床护理、长期保持最佳健康状态等多个方面。
三、人工智能存在的问题和挑战
目前,人工智能+健康医疗正在起步阶段,要保证AI在医疗健康领域应用的深入发展,仍有许多亟需解决的问题和挑战。
1.监管缺失
目前,国内尚未出台相关法律法规对AI进行监管,而作为AI的基础医疗大数据也没有完善的法律条文来规范,对数据的隐私保护、责任规范、安全性等没有明确的法律指示。AI在医疗健康领域应用的质量标准、准入体系、评估体系尚是空白,无法对AI数据和算法进行有效验证和评价,不利于监管,阻碍了AI产品在医疗健康领域的应用和发展。
2.数据质量
高质量的医疗数据对提升AI在医疗健康领域应用的准确性有着至关重要的作用,尽管我国医院的数据庞大,但大部分是非结构化数据,不能发挥出“大数据”挖掘的价值。由于疾病的复杂性,数据维度、特性各不相同,质量参差不齐,如将数据细分到每种疾病,可利用的样本量很少。同时, AI的深度学习需要使用大规模规范化数据进行训练,细微的数据误差会对AI发展产生负面影响。我国当前医院与医院、院内科系互不相连,没有统一标准的临床结构化病历报告,医生手写病历不规范,临床用药、检查等细节缺失,患者离开医院后失访率较高等各种原因,造成医疗数据错漏、数据质量低下。
3.伦理问题
AI产品做出的医疗决策是通过机器学习大量的医疗数据模拟医生做出的,大规模医疗数据在使用过程中会有泄露的风险,对个人隐私造成影响。决策是基于算法,而算法在分析数据过程中也会获得类似于人类偏见的思想,导致出现算法歧视的不良后果。算法歧视将带来一系列伦理问题,是AI不可回避的挑战。
4.医保支付
AI应用于医疗健康领域,最核心的问题是谁来买单,因此医保覆盖是一个绕不开的话题。如果由患者自费,那么市场就会缩小,AI产业无法向前发展,也很难证明AI在医疗领域的有效价值。目前,公立医院医保报销压力较大,将AI产品纳入医保,医保报销的资金压力将会激增。同时,互联网医疗由于其特殊的属性,还面临异地结算的难题。
5.人才匮乏
目前,既懂医疗又懂AI技术的复合型、战略型人才极其短缺,其中10年以上资深人才尤为缺乏。同时,医务人员对AI的接纳度不足,部分医务人员甚至对AI抱有抵触心理。AI技术的使用需要对医务人员进行专业化规范培训,在此背景下,建立完善的人才培养和人才引进机制是重中之重。
四、讨论与建议
1.加强行业指导和监管
政府部门应尽快出台人工智能相关法律法规,加强对人工智能的监管,通过强化监管,加强对数据的保护,防止数据泄露导致居民隐私受损,甚至危害国家安全。同时,还应建立AI在医疗健康领域应用的标准规范,保障AI产品的质量。此外,政府部门应明确AI在医疗健康领域的定位,明确医生不会被AI取代,AI只是帮助医生进行临床诊疗,方便患者获得高质量的医疗服务,医生仍对诊断结果负主要责任。政府部门应理性看待新一轮的AI浪潮,提升居民对AI的接纳度,积极引导居民、资本和相关机构按更加合理的速度和方向发展医疗AI。
2.加强核心技术人才培养
面对AI人才匮乏的严峻形势,政府要加强人工智能领域专业建设,培养AI算法和技术方面的优秀人才。推进“新工科”建设,形成“人工智能+X”复合专业培养新模式,推动AI领域国家级精品在线课程建设。同时,建立人工智能学院、研究院或交叉研究中心,引导高校通过增量支持和存量调整,加大对人工智能领域核心人才的培养力度。在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术人才。另外,要加强对医务人员使用AI的技能培训,保证AI产品能更好地服务于临床实践。
3.夯实数据基础
IBM公司用于辅助医生设计癌症治疗方案的AI产品沃森,由于使用的不是真实患者的数据训练沃森,沃森开出了不合适且危险的治疗方案。可见,数据的质量和数量是AI竞争的核心所在,目前互联网的基础体系已初步健全,但仍存在许多虚假数据,这与脱离统计模型的桎梏、用全数据即真实数据直接分析的大数据初衷相悖。因此,应打破医疗机构、政府部门的数据壁垒,建立数据共享机制,促进不同机构之间、地区之间的数据联网,形成真正的大数据。由于医疗健康数据种类繁多、标准不统一,应加快医疗数据电子化、标准化的进程,形成规范化AI数据集,夯实AI应用的数据基础。同时,加强信息隐私保护建设,研究数据脱敏技术,保障医疗数据可以实时、准确地进行流通,避免数据泄露的风险。
4.深度推进互联网应用
目前,我国东部地区医疗健康机构已具备互联网基础,但部分中西部地区尚有欠缺,而这些地区由于经济水平较低、医疗水平较差,对远程医疗、人工诊疗助手等AI需求强烈,建议国家有侧重地对中西部地区互联网建设给予政策倾斜,促进互联网应用的全面发展。加强基层医疗机构互联网应用,引导优质的医疗资源下沉至基层,实现资源共享,提高医疗服务水平,推动分级诊疗制度。
五、小结
人工智能的记忆力和计算能力远优于人脑,且可扩充脑容量、延伸脑功能、增强脑负荷,能够成为基层医生的智囊、三甲医院医生的秘书,弥补卫生人力资源不足。目前,我国人工智能尚处于起步阶段,仅具有计算智能,“人工智能+医疗健康”应用的领域将会越来越广,尤其适合社区,通过早发现、早诊断、早治疗,有针对性地进行人群健康干预,降低后续的医疗成本。在医院管理方面,AI可简化行政管理和临床医疗管理流程;在影像诊断领域,AI可快速阅读成像,进行分析和诊断;在医疗资源方面,AI能解决昂贵的剂量误差问题;在诊疗方面,AI可为特定病种初诊,进行辅助手术。总之,AI将在人类生命健康全周期中发挥更大的作用,但真正用于卫生健康的核心领域可能还需一个漫长的过程。
作者:金春林、何达,上海市卫生和健康发展研究中心(上海市医学科学技术情报研究所)。