智能机器人4大类关键技术和应用
2)能够靠自动控制实行作业;
3)能够重新编程作业内容
只具有第1项功能的装置是操作机,操作机再加上第2或第3项功能的为准机器人。
人们通常把机器人划分为三代
第一代是可编程机器人。这种机器人一般可以根据操作人员所编的程序,完成一些简单的重复性操作。这一代机器人是从60年代后半叶开始投入实际使用的,目前在工业界已得到广泛应用。
第一代是可编程机器人。这种机器人一般可以根据操作人员所编的程序,完成一些简单的重复性操作。这一代机器人是从60年代后半叶开始投入实际使用的,目前在工业界已得到广泛应用。
图:世界上第一台可编程的机器人
第二代是“感知机器人”,又叫做自适应机器人。它在第一代机器人的基础上发展起来的,能够具有不同程度的“感知”周围环境的能力。这类利用感知信息以改善机器人性能的研究开始于70年代初期,到1982年,美国通用汽车公司为其装配线上的机器人装配了视觉系统,宣告了感知机器人的诞生,在80年代得到了广泛应用。
第二代是“感知机器人”,又叫做自适应机器人。它在第一代机器人的基础上发展起来的,能够具有不同程度的“感知”周围环境的能力。这类利用感知信息以改善机器人性能的研究开始于70年代初期,到1982年,美国通用汽车公司为其装配线上的机器人装配了视觉系统,宣告了感知机器人的诞生,在80年代得到了广泛应用。
图:美国RethinkRobotics公司的自适应型低成本机器人
第三代机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,因此能在非特定的环境下作业,称之为智能机器人。1956年在达特茅斯会议上,马文•明斯基提出了他对智能机器的看法:智能机器能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。这个定义一直影响着智能机器人的研究方向。
第三代机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,因此能在非特定的环境下作业,称之为智能机器人。1956年在达特茅斯会议上,马文•明斯基提出了他对智能机器的看法:智能机器能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。这个定义一直影响着智能机器人的研究方向。
智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能。而感知本身,就是人类和动物所具有的低级智能。
因此机器的智能分为两个层次:
①具有感觉、识别、理解和判断功能;
②具有总结经验和学习的功能。
所以,人们通常所说的第二代机器人可以看作是第一代智能机器人。
智能机器人是一个在感知-思维-效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。
二、智能机器人涉及的理论、技术
简单来说,智能机器人就是以人工智能决定其行动的机器人。目前研制中的智能机器人智能水平并不高,只能说是智能机器人的初级阶段。智能机器人研究中当前的核心问题有两方面:一方面是,提高智能机器人的自主性,这是就智能机器人与人的关系而言,即希望智能机器人进一步独立于人,具有更为友善的人机界面。从长远来说,希望操作人员只要给出要完成的任务,而机器能自动形成完成该任务的步骤,并自动完成它。另一方面是,提高智能机器人的适应性,提高智能机器人适应环境变化的能力,这是就智能机器人与环境的关系而言,希望加强它们之间的交互关系。
智能机器人涉及到许多关键技术,这些技术关系到智能机器人的智能性的高低。这些关键技术主要有以下几个方面:
多传感信息耦合技术,多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息,经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性;
导航和定位技术,在自主移动机器人导航中,无论是局部实时避障还是全局规划,都需要精确知道机器人或障碍物的当前状态及位置,以完成导航、避障及路径规划等任务;
路径规划技术,最优路径规划就是依据某个或某些优化准则,在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径;机器人视觉技术,机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识;
智能控制技术,智能控制方法提高了机器人的速度及精度;人机接口技术,人机接口技术是研究如何使人方便自然地与计算机交流。
多传感信息耦合技术,多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息,经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性;
导航和定位技术,在自主移动机器人导航中,无论是局部实时避障还是全局规划,都需要精确知道机器人或障碍物的当前状态及位置,以完成导航、避障及路径规划等任务;
路径规划技术,最优路径规划就是依据某个或某些优化准则,在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径;机器人视觉技术,机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识;
智能控制技术,智能控制方法提高了机器人的速度及精度;人机接口技术,人机接口技术是研究如何使人方便自然地与计算机交流。
智能机器人的关键技术
(一)智能机器人的智能
在人工智能研究方面,人们一直沿着模拟脑方向做出努力,研究的内容主要包括:
①理解自然智能(特别是人类智能)的认知机理与决策机理;
②探索各种模拟和实现自然智能工作机理(包括认知的机理和决策的机理)的方法与途径;
③根据经济与社会发展的需要,研制具有一定智能水平的机器系统;
④把智能系统应用于国家经济建设与社会服务各领域,促进科学技术和经济社会发展的智能化。
(二)智能机器人的能源
机器人的能源问题是机器人能否得到广泛应用的基础。要让机器人走出工厂,走出房门,就必须考虑机器人的能源问题。现在的高能电池要么十分昂贵,要么体型巨大,而很多机器人都注定是一个高耗能的机器。因此,能源问题,几乎是机器人的一道门槛。迈不出门槛,机器人就只能是室内插电源线的“室内机器人”。
智能机器人的机动性要求动力源轻、小、出力大。而现有的移动机器人无一例外地拖着“辫子”。以动力源的重量/功率之比为例,目前电池约达到60g/W(连续使用小时),汽油机约为1.3g/W,都不理想,而且使用有局限性。到目前为止,尚未见到改善动力源的有效办法。电机仍然是智能机器人的主要驱动器。要使智能机器人的作业能力与人相当,它的指、肘、肩、腕各关节大致需要3-300Nm的输出力矩和30-60r/min的输出转速。传统伺服电机的重量/功率之比约为30g/W,而人在百米跑和投掷垒球时腿、肩、臂的出力大约为1g/W,相差甚大。
总之,智能机器人性能指标的改进是无止境的,对驱动器的要求也越来越高。什么是客观的衡量标准呢?一个容易接受的办法就是把它与人的体能加以比较。从这个角度来看,智能机器人驱动技术目前差距还相当大。
(三)智能机器人的运算速度
在人们对智能机器人的期望中,都希望机器人能够在极端环境下完成复杂的工作。有的机器人可能需要很小,而且需要完成的工作又极其复杂。这就对现代芯片集成工艺提出了挑战。这种机器人需要集成度更高,运算速度更快,而且能够在极端环境下正常工作的芯片。由于运算器速度的限制,导致许多人类可以轻易完成的任务,而在机器人身上几乎是无法完成的。
解决运算速度的方法有二:
其一是芯片制造工艺上的发展。就像前面说的那样,提高芯片的集成化。但是在现在看来,芯片的集成技术似乎发展到了一个瓶颈的地步。微型的芯片似乎已经到了一个很高的地步。
第二种解决方法就是采用物联网的方式来管理机器人。用一个终端服务器来对机器人遇见的问题进行统一运算。这就是把机器人的“脑袋”统一管理,这样就不需要把用于运算的芯片做得很小了。只要网络传输的速度能符合要求就够了。随着物联网的推广,以后给每一个机器人分一个IP地址也不是问题。所以这种解决方法也是很有前景应用价值的。即运算速度的关键问题,就是远程控制通讯问题以及芯片制造工艺问题。
其一是芯片制造工艺上的发展。就像前面说的那样,提高芯片的集成化。但是在现在看来,芯片的集成技术似乎发展到了一个瓶颈的地步。微型的芯片似乎已经到了一个很高的地步。
第二种解决方法就是采用物联网的方式来管理机器人。用一个终端服务器来对机器人遇见的问题进行统一运算。这就是把机器人的“脑袋”统一管理,这样就不需要把用于运算的芯片做得很小了。只要网络传输的速度能符合要求就够了。随着物联网的推广,以后给每一个机器人分一个IP地址也不是问题。所以这种解决方法也是很有前景应用价值的。即运算速度的关键问题,就是远程控制通讯问题以及芯片制造工艺问题。
近年来,传感器技术发展迅速。一些普通的传感器的价格也越来越便宜。但即使这样,运行了先进传感器技术的现代机器人在一些问题上,任然无法达到人类感触外界的能力。
人类的“传感器”很小,一个神经细胞就是人类的传感器。人的身体外部皮肤,几乎处处都可以起到温觉传感器和压力传感器的作用。人类的耳朵结构也不是话筒就可以简单代替的。人类的眼球里,就有很多“光敏传感器”。这些“光敏传感器”协同工作能力,以及两个眼睛的协同工作能力,也不是简单的两个摄像头可以解决得了的。相对于智能生物---人类而言,现有的传感器技术还远远不够。
智能机器人身上的传感器,应该需要满足以下特点:
①体积小,能耗低或者不耗能。
②初步具有一些物理处理事件的能力。不能把所有的问题都传给“大脑”来处理。
③传感器与传感器之间需要能够互相通信。当一个范围内的传感器都接收到信号时,那个范围内的传感器可以经过通信处理后,决定发送一个统一的信号给计算机处理。
(五)智能机器人驱动方式
到目前为止,现有的大部分机器人和机器的驱动几乎都是依靠电机进行驱动的。我们知道电机可以提供扭矩,可以驱动旋转副。然而人类肢体运动的驱动方式是依靠肌肉的伸缩来完成的。这种驱动方式比电机耗能要低得多。现有的技术中,气压和液压似乎是可以代替人工肌肉来实现伸缩的功能。但是这两种方式都需要气压泵或者液压泵。如果真用气压和液压来驱动机器人,那么要么机器人背着一个气压泵或者液压泵走,要么让机器人脱着一根管子走。这两种方式都不大理想。除非解决了气压泵或者液压泵的重量,体积,以及能耗问题。
必须寻找能够替代气压和液压的东西来解决驱动方式的问题。伸缩的驱动方式在理论上磨损要比旋转的驱动方式要低。现有的智能机器人,比如说日本的一款用来模拟人类表情的机器人。这种机器人的脸上几乎就布满了微型电机。以这种发展趋势看,目前几乎没有完美的解决智能机器人驱动方式的方法。依靠电机的小型化来实现一连串合成且又复杂的动作,必定会增加控制上和能耗上的负担。好比是饮鸩止渴。
三、智能机器人的广泛应用
现代智能机器人基本能按人的指令完成各种比较复杂的工作,如深海探测、作战、侦察、搜集情报、抢险、服务等工作,模拟完成人类不能或不愿完成的任务,不仅能自主完成工作,而且能与人共同协作完成任务或在人的指导下完成任务,在不同领域有着广泛的应用。
智能机器人在各种具体场合可以为人们提供智能化服务:可以在工业生产流水线上执行一定工作流程任务(比如车钳铣刨等操作、设备保养、产品装配、产品检验、材料供应与管理)的智能机器人,可以完成农业生产特定作业(比如选种、育种、播种、施肥、收割、运输)的智能机器人,可以提供特定社会服务(比如文化教育、景点导游、语言翻译、售票检票、宾馆服务、医疗监护、清洁卫生)的智能机器人,可以执行特定家政服务(比如家庭保安、家务劳作、看护老人、照看婴儿、菜肴烹调、餐具清洗)的智能机器人。
在国防领域中,军用智能机器人得到前所未有的重视和发展。近年来,美英等国研制出第二代军用智能机器人,其特点是采用自主控制方式,能完成侦察、作战和后勤支援等任务,在战场上具有看、嗅等能力,能够自动跟踪地形和选择道路,具有自动搜索、识别和消灭敌方目标的功能。如美国的Navplab自主导航车,SSV自主地面战车等。在未来的军事智能机器人中,还会有智能战斗机器人、智能侦察机器人、智能警戒机器人、智能工兵机器人、智能运输机器人等等,成为国防装备中新的亮点。
在服务工作方面,世界各国尤其是西方发达国家都在致力于研究开发和广泛应用服务智能机器人,以清洁机器人为例,随着科学技术的进步和社会的发展,人们希望更多地从繁琐的日常事务中解脱出来,这就使得清洁机器人进入家庭成为可能。
日本公司研制的地面清扫机器人,可沿墙壁从任何一个位置自动启动,利用不断旋转的刷子将废弃物扫入自带容器中;车站地面擦洗机器人工作时一面将清洗液喷洒到地面上,一面用旋转刷不停地擦洗地面,并将脏水吸入所带的容器中;工厂的自动清扫机器人可用于各种工厂的清扫工作。
美国的一款清洁机器人“Roomba”具有高度自主能力,可以游走于房间各家具缝隙间,灵巧地完成清扫工作。
日本公司研制的地面清扫机器人,可沿墙壁从任何一个位置自动启动,利用不断旋转的刷子将废弃物扫入自带容器中;车站地面擦洗机器人工作时一面将清洗液喷洒到地面上,一面用旋转刷不停地擦洗地面,并将脏水吸入所带的容器中;工厂的自动清扫机器人可用于各种工厂的清扫工作。
美国的一款清洁机器人“Roomba”具有高度自主能力,可以游走于房间各家具缝隙间,灵巧地完成清扫工作。
瑞典的一款机器人“三叶虫”,表面光滑,呈圆形,内置搜索雷达,可以迅速地探测到并避开桌腿、玻璃器皿、宠物或任何其它障碍物。一旦微处理器识别出这些障碍物,它可重新选择路线,并对整个房间做出重新判断与计算,以保证房间的各个角落都被清扫。
瑞典的一款机器人“三叶虫”,表面光滑,呈圆形,内置搜索雷达,可以迅速地探测到并避开桌腿、玻璃器皿、宠物或任何其它障碍物。一旦微处理器识别出这些障碍物,它可重新选择路线,并对整个房间做出重新判断与计算,以保证房间的各个角落都被清扫。
甚至在体育比赛方面,也得到了很大的发展,近年来在国际上迅速开展起来足球机器人与机器人足球高技术对抗活动,国际上已成立相关的联合会FIRA,许多地区也成立了地区协会,已达到比较正规的程度且有相当的规模和水平。
机器人足球赛目的是将足球(高尔夫球)撞入对方球门取胜。球场上空(2m)高悬挂的摄像机将比赛情况传入计算机内,由预装的软件做出恰当的决策与对策,通过无线通讯方式将指挥命令传给机器人。机器人协同作战,双方对抗,形成一场激烈的足球比赛。在比赛过程中,机器人可以随时更新它的位置每当它穿过地面线截面,双方的教练员与系统开发人员不得进行干预。机器人足球融计算机视觉、模式识别、决策对策、无线数字通讯、自动控制与最优控制、智能体设计与电力传动等技术于一体,是一个典型的智能机器人系统。
现代智能机器人不仅在上述方面有广泛应用,而将渗透到生活的各个方面:像在煤炭工业在矿业方面,考虑到社会上对煤炭需求量日益增长的趋势和煤炭开采的恶劣环境,将智能机器人应用于矿业势在必行。在建筑方面,有高层建筑抹灰机器人、预制件安装机器人、室内装修机器人、擦玻璃机器人、地面抛光机器人等。在核工业方面,主要研究机构灵巧、动作准确可靠、反应快、重量轻的机器人等等。智能机器人的应用领域的日益扩大,人们期望智能机器人能在更多的领域为人类服务,代替人类完成更多更复杂的工作。
一网打尽系列文章,请回复以下关键词查看:创新发展:习近平|创新中国|创新创业|科技体制改革|科技创新政策|协同创新|成果转化|新科技革命|基础研究|产学研|供给侧热点专题:军民融合|民参军|工业4.0|商业航天|智库|国家重点研发计划|基金|装备采办|博士|摩尔定律|诺贝尔奖|国家实验室|国防工业|十三五预见未来:预见2016|预见2020|预见2025|预见2030|预见2035|预见2045|预见2050|前沿科技:颠覆性技术|生物|仿生|脑科学|精准医学|基因|基因编辑|虚拟现实|增强现实|纳米|人工智能|机器人|3D打印|4D打印|太赫兹|云计算|物联网|互联网+|大数据|石墨烯|能源|电池|量子|超材料|超级计算机|卫星|北斗|智能制造|不依赖GPS导航|通信|MIT技术评论|航空发动机|可穿戴|氮化镓|隐身|半导体|脑机接口先进武器:中国武器|无人机|轰炸机|预警机|运输机|战斗机|六代机|网络武器|激光武器|电磁炮|高超声速武器|反无人机|防空反导|潜航器|未来战争:未来战争|抵消战略|水下战|网络空间战|分布式杀伤|无人机蜂群领先国家:俄罗斯|英国|日本|以色列|印度前沿机构:战略能力办公室|DARPA|Gartner|硅谷|谷歌|华为|俄先期研究基金会|军工百强前沿人物:钱学森|马斯克|凯文凯利|任正非|马云专家专栏:黄志澄|许得君|施一公|王喜文|贺飞|李萍|刘锋|王煜全|易本胜|李德毅|游光荣|刘亚威|赵文银|廖孟豪全文收录:2016文章全收录|2015文章全收录|2014文章全收录其他主题系列陆续整理中,敬请期待……返回搜狐,查看更多浅谈人工智能在银行领域的应用及未来发展趋势
一.人工智能的发展历史
人工智能诞生于上世纪40~50年代,按照“人工智能之父”艾伦·图灵的定义:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。
1956年夏天,美国达特茅斯学院举行了历史上第一次人工智能研讨会,会上麦卡锡首次提出了“人工智能”这个概念,被认为是人工智能诞生的标志。人工智能在上世纪20世纪50~70年代迎来黄金时代,在1966年~1972年期间,美国斯坦福国际研究所研制出机器人Shakey,这是首台采用人工智能的移动机器人,1966年美国麻省理工学院(MIT)的魏泽鲍姆发布了世界上第一个聊天机器人ELIZA。
ELIZA的智能之处在于她能通过脚本理解简单的自然语言,并能产生类似人类的互动。但20世纪70年代初,人工智能遭遇了瓶颈。当时的计算机有限的内存和处理速度不足以解决任何实际的人工智能问题。在1980年后,人工智能来到繁荣期,1997年5月11日,IBM公司的电脑“深蓝”战胜国际象棋世界冠军卡斯帕罗夫,成为首个在标准比赛时限内击败国际象棋世界冠军的电脑系统。
2013年,深度学习算法被广泛运用在产品开发中,Facebook人工智能实验室成立,探索深度学习领域,借此为Facebook用户提供更智能化的产品体验;Google收购了语音和图像识别公司DNNResearch,推广深度学习平台;百度创立了深度学习研究院等。2016年,AlphaGo战胜围棋世界冠军李世石,人机大战第五场经过长达5个小时的搏杀,以李世石认输结束。这一次的人机对弈让人工智能正式被世人所熟知,整个人工智能市场也像是被引燃了导火线,开始了新一轮爆发。
二.人工智能在银行领域的应用
银行的运行模式决定它非常适合采用人工智能来取代人工,目前为止,银行使用人工智能的产品已经非常普遍了,例如智能客服,智能外呼,智能营销,智能风控,智能运营等。目前工商银行提出“e-ICBC3.0智慧银行”、建设银行提出“5G智慧银行”、平安银行提出三大阶段打造“AIBank”,由此可见人工智能对银行科技战略的深刻影响。
从应用上看,人工智能在银行主要应用集中在如下方面:
1.智能外呼催收:人工智能催收,主要融合了智能语音、智能分案引擎、催收知识图谱的全新贷后资产处置全流程管理平台,致力于为催收机构提供一站式技术与业务解决方案。依据银行催收的业务场景,结合众多银行金融机构的不良资产处置实战经验,采取事前需求沟通、事后专属优化,确保系统和业务的稳定高效对接,实现人工智能技术真正赋能不良资产处置机构业务。
在智能催收后台中,语音质检为合规催收保驾护航,智能话术、录音识别、行为健康等方式保证合规做作业;通过采用人工智能技术筛选标记,加速坐席开案效率;整合贷前申请数据、贷后催收数据、外部接入数据等,形成闭环的数据更新体系;智能分案引擎对案件处置整体过程提速,坐席辅助引擎实时为案件处理提供话术和合规性的作业指导,同时批量核验,底层通讯平台保证有效的语音沟通和短信触达。在疫情期间,利用人工智能催收,可以远程进行无接触的催收工作,通过智能外呼进行批量电话催收,及时将还款计划传达给欠款人,而且可依据企业M1,M2的情况,指导制定合理的解决方案,帮助企业提升催款还款效率。
2.智能营销与投顾:根据马科维茨的现代资产组合理论(MTP),结合个人客户的风险偏好和理财目标,利用人工智能算法和互联网技术为客户提供资产管理和在线投资建议服务,实现个人客户的批量投资顾问服务。运用人工智能,采用多层神经网络,实时采集所有重要的经济数据指标,智能营销投顾系统不断进行学习。它采用合适的资产分散投资策略,可实现大批量的不同个体定制化投顾方案,以不追求短期的涨跌回报,而期望长期的稳健回报为目标,进一步深刻践行银行长期服务客户的理念。通过智能营销投顾解决方案,把财富管理这个服务门槛降到一个普通的家庭人群来使用。
3.RPA银行机器人:RPA即机器人流程自动化(RoboticProcessAutomation),通过软件机器人自动处理大量重复性、基于规则的工作流程任务。通俗来讲,RPA就是通过模拟人对计算机的操作,只要是人可以在计算机上通过操作鼠标和键盘来实现的,RPA都可以实现。作为信息化程度最高的行业之一,银行内部完成了成百上千套信息系统的建设,导致了大量系统与系统,数据与数据之间是割裂的,许多‘衔接性’的工作流程需要有员工操作完成。这些高流量、重复的、容易产生风险和失误的场景是RPA的应用首选,它们分布在银行里各个业务条线的前、中后台。
(1)企业征信查询机器人:在企业或个人授信审批过程中,客户经理需要登录法院、工商、税务、裁判文书等20多个企业/个人征信相关系统网站,汇总查询结果信息。同时,客户经理还要按照合规要求截图保存。企业征信查询系统实现对企业相关信息的一键查询。机器人自动登录外部征信系统或者网站,获取、汇总并截图保存查询结果信息。不仅提升了工作效率,还保障了征信数据的完整性。
(2)财务报表机器人:分支机构客户经理需要将大量的财务报表上的数百项信息手动录入至相应的企业金融系统,并将财务信息填写至相应的企业金融系统,并将财务信息填写至尽职调查报告。同时,这些财务报表的会计科目数值大,再加上报表的会计科目也不规范,例如有些企业资产负债表中提供的科目是“实收资本”,有些企业是“实收股本”,这类同义词也需要由专业财务资质经验的业务老师做后续判断。财务报表数量多,会计科目数值大,报表不规范,导致财务报表采集过程费时费力,且容易出错。
在这种场景下,采用RPA+OCR+自然语言处理的解决方案,首先通过OCR技术将财务报表扫描件转化成电子文件,再使用自然语言处理技术识别同义词,最后再用RPA实现信息的自动化采集和尽职2调查报告财务分析的自动生成。在机器人的帮助下,财务报表采集和分析的时间从几个小时降低到10分钟以内,效率显著提升。
(3)智慧贷后审判机器人:当授信申请通过审批后,银行就会出具审批意见书。授信部门贷后管理人员需要从长篇幅的审批意见书中提取出需要执行与关注的内容,并下发给支行及支行的客户经理执行。客户经理需要关注企业贷款的资金流向、经营情况,如果是外贸项目还要关注汇率的变动情况等。审批意见书篇幅比较长,不同人员在阅读理解时对要点理解上可能不一致,这会让后面的执行和落地存在一定的挑战和困难。
针对这一痛点,提供了智慧贷后审批机器人解决方案。首先用自然语言处理技术实现审批意见书的关键要素的提取,同时将提取的要素按照高级、中级、低级进行分类,然后再下发给客户经理执行,最后贷后管理人员做执行情况的跟进。在智能RPA的帮助下,大幅度提升了经营机构的贷后管理水平,更好地满足了监管机构的合规要求。
4.智能客服:客服系统是为客户服务的窗口,智能客户整合全部对外的客服服务通道,提供多模式融合(包括电视、网页在线、微信、短信及App等)的在线智能客服;对内实现语音分析,客服助理等商业智能运用。为坐席提供一种辅助手段,帮助坐席快速解决客户问题。客服助理通过实时语音识别,实时语义理解,掌握客户需求,自动推送客户特征,知识库等内容,借助微信公众号等平台,推出语音问答系统,打造个人金融助理形象。
通过电话客服渠道、网上客服、APP、短信、微信以及智能机器人终端与客服进行语音或文本的互动交流,理解客服业务需求,语音回复客户提出的业务咨询,并能根据客服语音导航至指定业务模块。对传统按键式菜单进行改造,用户使用自然语音与系统交互,实现菜单扁平化,提升用户满意度,减轻人工服务压力,降低运营成本。电话客户不再受限于菜单,可开展全业务的语音导航播报服务。
5.智能风控:智能风控是一个基于人工智能技术的综合性系统工程,充分利用各种数据,借助如机器学习、深度学习和大数据技术,与风控业务逻辑、流程的有机结合,结合银行信贷业务中的交易欺诈、网贷申请欺诈、信贷全生命周期风险管理、客户价值分析、预期客户管理等场景的痛点及问题,最终形成一套完整的风控系统。
传统银行的业务一般是基于线下模式来开展的,缺少线上业务运营的经验,相应的风险控制经验和能力不足。而各类金融科技企业通过新兴技术—如人工智能、大数据、云计算—对多维度客户数据的处理,理解和预测不同客户的行为和需求,为他们提供个性化的服务。对于银行业而言,金融科技企业在产品与服务创新、运营效率与客户体验方面的优势明显,银行与金融科技企业的合作成为发展趋势。近年来,智能风控逐渐成为金融领域,尤其是银行业的应用热点,它提供一种贯穿事前预警与反欺诈、事中监控和事后分析全业务流程的风控手段。
三.未来的发展模式
人工智能的发展将推进银行改革,逐渐颠覆传统的业务流程、客户接触交互的方式、以及产品开发和企业运营决策的手段,利用人工智能构建新的竞争优势,除了自身的积累和技术进步,还需要积极与外部企业探索新的商业模式,加强与互联网公司合作,通过掌握细分市场数据,以场景应用为入口,在积累海量数据的同时抓住用户,逐步成为行业的主导者和引领者,建立由银行主导、高校研发或金融科技公司合作的一体化的发展模式,将高校或金融科技公司在人工智能方面的科研成果与具体业务相结合,将技术转化为真正的商业价值。
最后:可以我的个人V:atstudy-js,可以免费领取一份10G软件测试工程师面试宝典文档资料。以及相对应的视频学习教程免费分享!,其中包括了有基础知识、Linux必备、Mysql数据库、抓包工具、接口测试工具、测试进阶-Python编程、Web自动化测试、APP自动化测试、接口自动化测试、测试高级持续集成、测试架构开发测试框架、性能测试等。
这些测试资料,对于做【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!
敲字不易,如果此文章对你有帮助的话,点个赞收个藏,给作者一个鼓励。也方便你下次能够快速查找。